Sparsity in Max-plus Algebra And Applications in Multivariate Convex Regression

Nikos Tsilivis ${ }^{1}$, Anastasios Tsiamis ${ }^{2}$, Petros Maragos ${ }^{1}$
${ }^{1}$ School of ECE, National Technical University of Athens, Greece
${ }^{2}$ ESE Department, SEAS, University of Pennsylvania, USA

June 6-11, 2021

Overview

(1) Introduction
(2) Theory - Sparsity in Max-plus algebra
(3) Application to Multivariate Convex Regression
(4) Conclusion

Convex regression - why?

Problem: Learn a convex function from data.

Optimization

Machine Learning, Signal Processing \& Finance

Convex regression

Data $\left(\mathbf{x}_{i}, y_{i}\right)$, where $y_{i}=f\left(\mathbf{x}_{i}\right), f$ an unknown convex function. How to estimate f ?

Convex regression

Data $\left(\mathbf{x}_{i}, y_{i}\right)$, where $y_{i}=f\left(\mathbf{x}_{i}\right), f$ an unknown convex function. How to estimate f ?
Idea from Convex Analysis [Rockafellar 1970, Maragos 1994]: Any convex function \approx
 maximum of hyperplanes $\mathbf{a}_{j}^{\top} \mathbf{x}+\mathbf{b}_{j}$.

Convex regression

Data $\left(\mathbf{x}_{i}, y_{i}\right)$, where $y_{i}=f\left(\mathbf{x}_{i}\right), f$ an
unknown convex function. How to estimate f ?
Idea from Convex Analysis [Rockafellar 1970, Maragos 1994]: Any convex function \approx
 maximum of hyperplanes $\mathbf{a}_{j}^{\top} \mathbf{x}+\mathbf{b}_{j}$.

$$
\begin{aligned}
& \max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{1}+b_{1}, \ldots, \mathbf{a}_{K}^{\top} \mathbf{x}_{1}+b_{K}\right)=y_{1} \\
& \max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{2}+b_{1}, \ldots, \mathbf{a}_{K}^{\top} \mathbf{x}_{2}+b_{K}\right)=y_{2}
\end{aligned}
$$

Convex regression

Data $\left(\mathbf{x}_{i}, y_{i}\right)$, where $y_{i}=f\left(\mathbf{x}_{i}\right), f$ an
unknown convex function. How to estimate f ?
Idea from Convex Analysis [Rockafellar 1970, Maragos 1994]: Any convex function \approx
 maximum of hyperplanes $\mathbf{a}_{j}^{\top} \mathbf{x}+\mathbf{b}_{j}$.

$$
\begin{aligned}
& \max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{1}+b_{1}, \ldots, \mathbf{a}_{K}^{\top} \mathbf{x}_{1}+b_{K}\right)=y_{1} \\
& \max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{2}+b_{1}, \ldots, \mathbf{a}_{K}^{\top} \mathbf{x}_{2}+b_{K}\right)=y_{2}
\end{aligned}
$$

Question 1: How to optimally estimate $\left(\mathbf{a}_{j}, b_{j}\right)_{j=1}^{K}$ from these equations?

Question 2: How to keep \# of hyperplanes as small as possible?

Convex regression \& Max-plus Algebra

This is not a linear problem!

Convex regression \& Max-plus Algebra

This is not a linear problem!

- But in a suitable algebra, it can be written in a linear like form.

Convex regression \& Max-plus Algebra

This is not a linear problem!

- But in a suitable algebra, it can be written in a linear like form.
- Max-Plus Algebra: "Linear Algebra, but + becomes max, and \times becomes + ".

Convex regression \& Max-plus Algebra

This is not a linear problem!

- But in a suitable algebra, it can be written in a linear like form.
- Max-Plus Algebra: "Linear Algebra, but + becomes max, and \times becomes + ".

$$
\underbrace{\left(\begin{array}{cccc}
\mathbf{a}_{1}^{\top} \mathbf{x}_{1} & \mathbf{a}_{2}^{\top} \mathbf{x}_{1} & \ldots & \mathbf{a}_{K}^{\top} \mathbf{x}_{1} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\mathbf{a}_{1}^{\top} \mathbf{x}_{m} & \mathbf{a}_{2}^{\top} \mathbf{x}_{m} & \ldots & \mathbf{a}_{K}^{\top} \mathbf{x}_{m}
\end{array}\right)}_{\mathrm{A}} \boxplus \underbrace{\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
b_{K}
\end{array}\right)}_{\mathrm{b}}=\underbrace{\left(\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
y_{m}
\end{array}\right)}_{\mathrm{y}}
$$

where $[\mathbf{C} \boxplus \mathbf{D}]_{i j}=\max _{k=1}^{n}\left(c_{i k}+d_{k j}\right)$.

Convex regression \& Max-plus Algebra

This is not a linear problem!

- But in a suitable algebra, it can be written in a linear like form.
- Max-Plus Algebra: "Linear Algebra, but + becomes max, and \times becomes + ".

$$
\underbrace{\left(\begin{array}{cccc}
\mathbf{a}_{1}^{\top} \mathbf{x}_{1} & \mathbf{a}_{2}^{\top} \mathbf{x}_{1} & \ldots & \mathbf{a}_{K}^{\top} \mathbf{x}_{1} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\mathbf{a}_{1}^{\top} \mathbf{x}_{m} & \mathbf{a}_{2}^{\top} \mathbf{x}_{m} & \ldots & \mathbf{a}_{K}^{\top} \mathbf{x}_{m}
\end{array}\right)}_{\mathrm{A}} \boxplus \underbrace{\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
b_{K}
\end{array}\right)}_{\mathrm{b}}=\underbrace{\left(\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
y_{m}
\end{array}\right)}_{\mathrm{y}}
$$

where $[\mathbf{C} \boxplus \mathbf{D}]_{i j}=\max _{k=1}^{n}\left(c_{i k}+d_{k j}\right)$.

- If we assume known slopes, problem reduces to solving a "linear" max-plus matrix equation $\mathbf{A} \boxplus \mathbf{b}=\mathbf{y}$.

Convex regression \& Max-plus Algebra

This is not a linear problem!

- But in a suitable algebra, it can be written in a linear like form.
- Max-Plus Algebra: "Linear Algebra, but + becomes max, and \times becomes + ".

$$
\underbrace{\left(\begin{array}{cccc}
\mathbf{a}_{1}^{\top} \mathbf{x}_{1} & \mathbf{a}_{2}^{\top} \mathbf{x}_{1} & \ldots & \mathbf{a}_{K}^{\top} \mathbf{x}_{1} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\mathbf{a}_{1}^{\top} \mathbf{x}_{m} & \mathbf{a}_{2}^{\top} \mathbf{x}_{m} & \ldots & \mathbf{a}_{K}^{\top} \mathbf{x}_{m}
\end{array}\right)}_{\mathrm{A}} \boxplus \underbrace{\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
b_{K}
\end{array}\right)}_{\mathrm{b}}=\underbrace{\left(\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
y_{m}
\end{array}\right)}_{\mathrm{y}}
$$

where $[\mathbf{C} \boxplus \mathbf{D}]_{i j}=\max _{k=1}^{n}\left(c_{i k}+d_{k j}\right)$.

- If we assume known slopes, problem reduces to solving a "linear" max-plus matrix equation $\mathbf{A} \boxplus \mathbf{b}=\mathbf{y}$.

Question 1: How to optimally estimate $\left(\mathbf{a}_{j}, b_{j}\right)_{j=1}^{K}$ from these equations?

Sparsity Motivation

Observation

If $b_{j}=-\infty$, then the maximum will never attain its value on the hyperplane $\mathbf{a}_{j}^{\top} \mathbf{x}+b_{j} \Rightarrow$ The whole region can be discarded.

Sparsity Motivation

Observation

If $b_{j}=-\infty$, then the maximum will never attain its value on the hyperplane $\mathbf{a}_{j}^{\top} \mathbf{x}+b_{j} \Rightarrow$ The whole region can be discarded.
e.g. $\max (5 x+3,20 x-\infty, x)=\max (5 x+3, x), \forall x$

Sparsity Motivation

Observation

If $b_{j}=-\infty$, then the maximum will never attain its value on the hyperplane $\mathbf{a}_{j}^{\top} \mathbf{x}+b_{j} \Rightarrow$ The whole region can be discarded.

$$
\text { e.g. } \max (5 x+3,20 x-\infty, x)=\max (5 x+3, x), \forall x
$$

Simpler \& more robust approximation!

Sparsity Motivation

Observation

If $b_{j}=-\infty$, then the maximum will never attain its value on the hyperplane $\mathbf{a}_{j}^{\top} \mathbf{x}+b_{j} \Rightarrow$ The whole region can be discarded.

$$
\text { e.g. } \max (5 x+3,20 x-\infty, x)=\max (5 x+3, x), \forall x
$$

Simpler \& more robust approximation!

Idea

Force as many b_{j} as possible to be $-\infty$!

Sparsity Motivation

Observation

If $b_{j}=-\infty$, then the maximum will never attain its value on the hyperplane $\mathbf{a}_{j}^{\top} \mathbf{x}+b_{j} \Rightarrow$ The whole region can be discarded.

$$
\text { e.g. } \max (5 x+3,20 x-\infty, x)=\max (5 x+3, x), \forall x
$$

Simpler \& more robust approximation!

Idea

Force as many b_{j} as possible to be $-\infty$!

Question 2: How to keep \# of hyperplanes as small as possible?

Convex Regression as an Optimization Problem

Step 1. Enforce sparsity constraints - Optimization problem:
$\arg \min _{\mathbf{b}}|\operatorname{supp}(\mathbf{b})|$
s.t. $\mathbf{A} \boxplus \mathbf{b}=\mathbf{y}, \quad$ where $\operatorname{supp}(\mathbf{b}) \triangleq\left\{j \mid b_{j} \neq-\infty\right\}$.

Convex Regression as an Optimization Problem

Step 1. Enforce sparsity constraints - Optimization problem:

$$
\arg \min _{b}|\operatorname{supp}(\mathbf{b})|
$$

s.t. $\mathbf{A} \boxplus \mathbf{b}=\mathbf{y}, \quad$ where $\operatorname{supp}(\mathbf{b}) \triangleq\left\{j \mid b_{j} \neq-\infty\right\}$.

Step 2. Account for noise - Optimization problem:
$\arg \min _{b}|\operatorname{supp}(\mathbf{b})|$
\quad s.t. $\operatorname{dist}(\mathbf{A} \boxplus \mathbf{b}, \mathbf{y}) \leq \epsilon$

Prior work \& Contributions

- Prior work:
- Contributions:

Prior work \& Contributions

- Prior work:
- [Tsiamis \& Maragos 2019] introduced sparsity in Max-plus algebra.
- Contributions:

Prior work \& Contributions

- Prior work:
- [Tsiamis \& Maragos 2019] introduced sparsity in Max-plus algebra.
- [Magnani \& Boyd 2009, Kim et. al. 2010, Hannah \& Dunson 2011] solve convex regression by alternating between partitioning the input and locally fitting affine functions.
- Contributions:

Prior work \& Contributions

- Prior work:
- [Tsiamis \& Maragos 2019] introduced sparsity in Max-plus algebra.
- [Magnani \& Boyd 2009, Kim et. al. 2010, Hannah \& Dunson 2011] solve convex regression by alternating between partitioning the input and locally fitting affine functions.
- [Maragos \& Theodosis 2020] initiated the study of the problem through the lens of Max-plus algebra \Rightarrow complexity benefits.
- Contributions:

Prior work \& Contributions

- Prior work:
- [Tsiamis \& Maragos 2019] introduced sparsity in Max-plus algebra.
- [Magnani \& Boyd 2009, Kim et. al. 2010, Hannah \& Dunson 2011] solve convex regression by alternating between partitioning the input and locally fitting affine functions.
- [Maragos \& Theodosis 2020] initiated the study of the problem through the lens of Max-plus algebra \Rightarrow complexity benefits.
- Contributions:
- Algorithms for sparse approximate solutions to max-plus matrix equations for any ℓ_{p} norm - Submodularity properties of the optimization problems.

Prior work \& Contributions

- Prior work:
- [Tsiamis \& Maragos 2019] introduced sparsity in Max-plus algebra.
- [Magnani \& Boyd 2009, Kim et. al. 2010, Hannah \& Dunson 2011] solve convex regression by alternating between partitioning the input and locally fitting affine functions.
- [Maragos \& Theodosis 2020] initiated the study of the problem through the lens of Max-plus algebra \Rightarrow complexity benefits.
- Contributions:
- Algorithms for sparse approximate solutions to max-plus matrix equations for any ℓ_{p} norm - Submodularity properties of the optimization problems.
- Application into the context of convex regression - robust approximations with an approximately minimum number of affine regions.

Sparsity in Max-plus algebra

Definition (Sparsity)

We call a vector \mathbf{x} sparse if it contains many $-\infty$ elements.

Sparsity in Max-plus algebra

Definition (Sparsity)

We call a vector \mathbf{x} sparse if it contains many $-\infty$ elements.

Definition (Support set)

The support set of a vector is the set of indices of its values that are not equal to $-\infty$, that is: $\operatorname{supp}(\mathbf{x})=\left\{j \mid x_{j} \neq-\infty\right\}$.
e.g. $|\operatorname{supp}(1,4,-\infty,-2,0,0)|=5$

Sparsity in Max-plus algebra

Definition (Sparsity)

We call a vector \mathbf{x} sparse if it contains many $-\infty$ elements.

Definition (Support set)

The support set of a vector is the set of indices of its values that are not equal to $-\infty$, that is: $\operatorname{supp}(\mathbf{x})=\left\{j \mid x_{j} \neq-\infty\right\}$.
e.g. $|\operatorname{supp}(1,4,-\infty,-2,0,0)|=5$

Theorem (Tsiamis \& Maragos 2019)
Computing the sparsest solution of $\mathbf{A} \boxplus \mathbf{b}=\mathbf{y}$ is an NP-complete problem.

Sparse Approximate Solutions (1/3)

Problem formulation

$$
\begin{aligned}
& \arg \min _{b}|\operatorname{supp}(\mathbf{b})| \\
& \text { s.t. }\|\mathbf{y}-\mathbf{A} \boxplus \mathbf{b}\|_{p}^{p} \leq \epsilon, \\
& \\
& \quad \mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{y} \in \mathbb{R}^{m} .
\end{aligned}
$$

Sparse Approximate Solutions (1/3)

Problem formulation

$$
\begin{aligned}
& \arg \min _{\mathrm{b}}|\operatorname{supp}(\mathbf{b})| \\
& \qquad \begin{aligned}
\text { s.t. } & \|\mathbf{y}-\mathbf{A} \boxplus \mathbf{b}\|_{p}^{p} \leq \epsilon, \\
& \mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{y} \in \mathbb{R}^{m} .
\end{aligned}
\end{aligned}
$$

Notes

- We restrict the $\ell_{p}, p<\infty$, error to be small
- We add an extra constraint $\mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}$: Technical reasons \& enforce approximation from below!

Sparse Approximate Solutions (2/3)

Problem formulation

$$
\begin{align*}
\arg \min _{b} & |\operatorname{supp}(\mathbf{b})| \\
\text { s.t. } & \|\mathbf{y}-\mathbf{A} \boxplus \mathbf{b}\|_{p}^{p} \leq \epsilon, \tag{1}\\
& \mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{y} \in \mathbb{R}^{m} .
\end{align*}
$$

Sparse Approximate Solutions (2/3)

Problem formulation

$$
\begin{align*}
& \arg \min _{b}|\operatorname{supp}(\mathbf{b})| \\
& \text { s.t. }\|\mathbf{y}-\mathbf{A} \boxplus \mathbf{b}\|_{p}^{p} \leq \epsilon, \tag{1}\\
& \\
& \quad \mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{y} \in \mathbb{R}^{m} .
\end{align*}
$$

Theorem

Problem (1) can be approximately solved in $\mathcal{O}\left(n m+n^{2}\right)$ time with a greedy algorithm.

Sparse Approximate Solutions (2/3)

Problem formulation

$$
\begin{align*}
& \arg \min _{b}|\operatorname{supp}(\mathbf{b})| \\
& \quad \text { s.t. }\|\mathbf{y}-\mathbf{A} \boxplus \mathbf{b}\|_{p}^{p} \leq \epsilon, \tag{1}
\end{align*}
$$

$$
\mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{y} \in \mathbb{R}^{m}
$$

Theorem

Problem (1) can be approximately solved in $\mathcal{O}\left(n m+n^{2}\right)$ time with a greedy algorithm.

Technical details

Tools from Submodular Optimization \Rightarrow approximation ratio guarantees.

Sparse Approximate Solutions (3/3)

Approximating noise corrupted data from below might be problematic! Is it possible to remove the $\mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}$ contraint?

Sparse Approximate Solutions (3/3)

Approximating noise corrupted data from below might be problematic! Is it possible to remove the $\mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}$ contraint?

$$
\begin{align*}
& \arg \min _{b}|\operatorname{supp}(\mathbf{b})| \tag{2}\\
& \quad \text { s.t. }\|\mathbf{y}-\mathbf{A} \boxplus \mathbf{b}\|_{\infty} \leq \epsilon, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{y} \in \mathbb{R}^{m} .
\end{align*}
$$

Sparse Approximate Solutions (3/3)

Approximating noise corrupted data from below might be problematic! Is it possible to remove the $\mathbf{A} \boxplus \mathbf{b} \leq \mathbf{y}$ contraint?

$$
\begin{align*}
& \arg \min _{\mathrm{b}}|\operatorname{supp}(\mathbf{b})| \tag{2}\\
& \quad \text { s.t. }\|\mathbf{y}-\mathbf{A} \boxplus \mathbf{b}\|_{\infty} \leq \epsilon, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{y} \in \mathbb{R}^{m} .
\end{align*}
$$

Proposition

We can find a locally optimal solution of Problem (2) by solving Problem (1).

Application to Multivariate Convex Regression (1/2)

Input: Data $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathbb{R}^{n+1}, i=1,2, \ldots, m$.

Application to Multivariate Convex Regression (1/2)

Input: Data $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathbb{R}^{n+1}, i=1,2, \ldots, m$.
Model: $\max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{i}+b_{1}, \ldots, \mathbf{a}_{K}^{\top} \mathbf{x}_{i}+b_{K}\right)=y_{i}, i=1,2, \ldots, m$.

Application to Multivariate Convex Regression (1/2)

Input: Data $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathbb{R}^{n+1}, i=1,2, \ldots, m$.
Model: $\max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{i}+b_{1}, \ldots, \mathbf{a}_{k}^{\top} \mathbf{x}_{i}+b_{K}\right)=y_{i}, i=1,2, \ldots, m$.

Step 1: Estimate K slopes \mathbf{a}_{k} :

- Fixed values from an n-dimensional interval, or
- Numerical gradients of data.

Application to Multivariate Convex Regression (1/2)

Input: Data $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathbb{R}^{n+1}, i=1,2, \ldots, m$.
Model: $\max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{i}+b_{1}, \ldots, \mathbf{a}_{K}^{\top} \mathbf{x}_{i}+b_{K}\right)=y_{i}, i=1,2, \ldots, m$.

Step 1: Estimate K slopes \mathbf{a}_{k} :

- Fixed values from an n-dimensional interval, or
- Numerical gradients of data.

Step 2: Solve Problem (1) (method called Sparse Greatest Lower Estimate - SGLE) or Problem (2) (called Sparse Minimum Max Absolute Error - SMMAE), and calculate intercepts b_{k}.

Application to Multivariate Convex Regression (1/2)

Input: Data $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathbb{R}^{n+1}, i=1,2, \ldots, m$.
Model: $\max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{i}+b_{1}, \ldots, \mathbf{a}_{K}^{\top} \mathbf{x}_{i}+b_{K}\right)=y_{i}, i=1,2, \ldots, m$.

Step 1: Estimate K slopes \mathbf{a}_{k} :

- Fixed values from an n-dimensional interval, or
- Numerical gradients of data.

Step 2: Solve Problem (1) (method called Sparse Greatest Lower Estimate - SGLE) or Problem (2) (called Sparse Minimum Max Absolute Error - SMMAE), and calculate intercepts b_{k}.

Complexity: $\mathcal{O}\left(K^{2}+K(n+1) m\right)$ or $\mathcal{O}\left(K^{2}+K(n+2) m\right)$, respectively.

Application to Multivariate Convex Regression (1/2)

Input: Data $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathbb{R}^{n+1}, i=1,2, \ldots, m$.
Model: $\max \left(\mathbf{a}_{1}^{\top} \mathbf{x}_{i}+b_{1}, \ldots, \mathbf{a}_{K}^{\top} \mathbf{x}_{i}+b_{K}\right)=y_{i}, i=1,2, \ldots, m$.

Step 1: Estimate K slopes \mathbf{a}_{k} :

- Fixed values from an n-dimensional interval, or
- Numerical gradients of data.

Step 2: Solve Problem (1) (method called Sparse Greatest Lower Estimate - SGLE) or Problem (2) (called Sparse Minimum Max Absolute Error - SMMAE), and calculate intercepts b_{k}.

Complexity: $\mathcal{O}\left(K^{2}+K(n+1) m\right)$ or $\mathcal{O}\left(K^{2}+K(n+2) m\right)$, respectively.

Output: A PWL convex approximation of the data with the approximately minimum number of affine regions needed for achieving the desired level of data fidelity.

Application to Multivariate Convex Regression (2/2)

$$
\text { Data from noisy paraboloid } z=x^{2}+y^{2}+\mathcal{N}(0,1)
$$

(a) Approximation with 5 affine regions.
(b) Approximation with 16 affine regions.

Figure: Comparison of SMMAE method (black line) with [Maragos \& Theodosis 2020] (red line).

Conclusion \& Future work

- Fundamental problem of convex regression through the lens of Max-plus algebra.

Conclusion \& Future work

- Fundamental problem of convex regression through the lens of Max-plus algebra.
- Theoretical progress in algorithms for sparsity in this nonlinear space.

Conclusion \& Future work

- Fundamental problem of convex regression through the lens of Max-plus algebra.
- Theoretical progress in algorithms for sparsity in this nonlinear space.
- Application into the problem of convex regression yields more robust estimators.

Conclusion \& Future work

- Fundamental problem of convex regression through the lens of Max-plus algebra.
- Theoretical progress in algorithms for sparsity in this nonlinear space.
- Application into the problem of convex regression yields more robust estimators.

Future work: Statistical properties of the estimators \& Sparsity in more abstract nonlinear spaces with an underlying lattice structure.

Conclusion \& Future work

- Fundamental problem of convex regression through the lens of Max-plus algebra.
- Theoretical progress in algorithms for sparsity in this nonlinear space.
- Application into the problem of convex regression yields more robust estimators.

Future work: Statistical properties of the estimators \& Sparsity in more abstract nonlinear spaces with an underlying lattice structure.

Thank you for your attention!

References

遇
L. A. Hannah and D. B. Dunson. "Multivariate convex regression with adaptive partitioning". In: (2011). arXiv: 1105. 1924.
J. Kim, L. Vandenberghe, and C.K.K. Yang. "Convex Piecewise-Linear Modeling Method for Circuit Optimization via Geometric Programming". In: IEEE Trans. Computer-Aided Design of Integr. Circuits Syst. 29.11 (Nov. 2010), pp. 1823-1827.
(A. Magnani and S. P. Boyd. "Convex piecewise-linear fitting". In: Optim. Eng. 10 (2009), pp. 1-17.

R P. Maragos. "Morphological Systems: Slope Transforms and Max-Min Difference and Differential Equations". In: Signal Processing 38.1 (July 1994), pp. 57-77.
P. Maragos and E. Theodosis. "Multivariate Tropical Regression and Piecewise-Linear Surface Fitting". In: Proc. IEEE Int'I Conf. on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 3822-3826.
R. T. Rockafellar. Convex Analysis. Princeton Univ. Press, 1970.
A. Tsiamis and P. Maragos. "Sparsity in Max-plus Algebra". In: Discrete Events Dynamic Systems 29 (2019), pp. 163-189.

