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Convex regression - why?

Problem: Learn a convex function from data.

Optimization




Convex regression

Data (x;, yi), where y; = f(x;), f an
unknown convex function. How to estimate
f?
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Convex regression

Data (x;, yi), where y; = f(x;), f an
unknown convex function. How to estimate
f?

Idea from Convex Analysis [Rockafellar 1970,
Maragos 1994]: Any convex function =
maximum of hyperplanes aJTx + b;.

max(ajxi + b1, ..., ax1 + bx) = n

max(a]xz + b1, ..., aLX2 + bk) = 2
Question 1: How to optimally estimate (aj, bj)jK=1 from these equations? J
Question 2: How to keep # of hyperplanes as small as possible? )
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Convex regression & Max-plus Algebra

This is not a linear problem! )

@ But in a suitable algebra, it can be written in a linear like form.
@ Max-Plus Algebra: “Linear Algebra, but + becomes max, and X becomes +".

by
a{xl agxl A a}xl b pZ1
2
H . = .,
alXm  alXm ... aLXm b. Ym
K N——
A — y

where [C B D];; = maxj_;(cik + di;).
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@ But in a suitable algebra, it can be written in a linear like form.

@ Max-Plus Algebra: “Linear Algebra, but + becomes max, and X becomes +".

by
a{xl agxl A a}xl b pZ1
2
H . = .,
alXm  alXm ... aLXm b. Ym
K N——
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where [C B D];; = maxj_;(cik + di;).

@ If we assume known slopes, problem reduces to solving a “linear” max-plus matrix
equation AHDb =y.
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Convex regression & Max-plus Algebra

This is not a linear problem! )

@ But in a suitable algebra, it can be written in a linear like form.

@ Max-Plus Algebra: “Linear Algebra, but + becomes max, and X becomes +".

by
a{xl a;X1 A a}xl b pZ1
2
H . = .,
alXm  alXm ... aLXm b. Ym
K N——
A — y

where [C B D];; = maxj_;(cik + di;).

@ If we assume known slopes, problem reduces to solving a “linear” max-plus matrix
equation AHDb =y.

Question 1: How to optimally estimate (aj, bj)jK=1 from these equations? v~ J
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Sparsity Motivation

Observation

If bj = —o0, then the maximum will never attain its value on the hyperplane aJTx + bj =
The whole region can be discarded.
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Sparsity Motivation

Observation

If bj = —o0, then the maximum will never attain its value on the hyperplane a}x—i— bj =
The whole region can be discarded.

e.g. max(5x + 3,20x — 0o, x) = max(5x + 3, x), Vx

Simpler & more robust approximation!

Idea
Force as many b; as possible to be —oo! J

Question 2: How to keep # of hyperplanes as small as possible? v~ J
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Convex Regression as an Optimization Problem

Step 1. Enforce sparsity constraints - Optimization problem:

arg mbin|supp(b)|
st. ABHb =Yy, where supp(b) £ {j | b; # —oo}.
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Convex Regression as an Optimization Problem

Step 1. Enforce sparsity constraints - Optimization problem:

arg mbin|supp(b)|

st. ABHb =Yy, where supp(b) £ {j | b; # —oo}.

Step 2. Account for noise - Optimization problem:

arg mbin|supp(b)|
s.t. dist(AHb,y) <e.

Nikos Tsilivis , Anastasios Tsiamis , Petros Maragos June 6-11, 2021 7/16
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Prior work & Contributions

@ Prior work:

@ [Tsiamis & Maragos 2019] introduced sparsity in Max-plus algebra.

o [Magnani & Boyd 2009, Kim et. al. 2010, Hannah & Dunson 2011] solve convex regression
by alternating between partitioning the input and locally fitting affine functions.

@ [Maragos & Theodosis 2020] initiated the study of the problem through the lens of
Max-plus algebra = complexity benefits.

o Contributions:

o Algorithms for sparse approximate solutions to max-plus matrix equations for any £,

norm - Submodularity properties of the optimization problems.

e Application into the context of convex regression - robust approximations with an
approximately minimum number of affine regions.
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Sparsity in Max-plus algebra

Definition (Sparsity)
We call a vector x sparse if it contains many —oo elements. J
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Sparsity in Max-plus algebra

Definition (Sparsity)

We call a vector x sparse if it contains many —oo elements.

Definition (Support set)

The support set of a vector is the set of indices of its values that are not equal to —oo,
that is: supp(x) = {j | x; # —o0}.

e.g. |supp(1,4, —o0,—2,0,0)| =5

Theorem (Tsiamis & Maragos 2019) J

Computing the sparsest solution of AB b =y is an NP-complete problem.
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Sparse Approximate Solutions (1/3)

Problem formulation

arg mbin|supp(b)|
st. ly—ABEb|) <e,
ABEb<y AcR™" yecR"
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Sparse Approximate Solutions (1/3)

Problem formulation

arg mbin|supp(b)|
st. ly—ABEb|) <e,
ABEb<y AcR™" yecR"

Notes
@ We restrict the £,, p < oo, error to be small

@ We add an extra constraint ABH b <'y: Technical reasons & enforce approximation
from below!

v
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Sparse Approximate Solutions (2/3)

Problem formulation

arg mbin|supp(b)|
st |ly— ABb|5 <e, (1)
AEHb<y AcR™"yecR".
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Sparse Approximate Solutions (2/3)

Problem formulation

arg mbin|supp(b)|
st |ly— ABb|5 <e, (1)
AEHb<y AcR™"yecR".

Theorem

Problem (1) can be approximately solved in O(nm + n?) time with a greedy algorithm.

v
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Sparse Approximate Solutions (2/3)

Problem formulation

arg mbin|supp(b)|
st |ly— ABb|5 <e, (1)
AEHb<y AcR™"yecR".

Theorem

Problem (1) can be approximately solved in O(nm + n?) time with a greedy algorithm.

Technical details

Tools from Submodular Optimization = approximation ratio guarantees.
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Sparse Approximate Solutions (3/3)

Approximating noise corrupted data from below might be problematic! Is it possible to
remove the AHb <y contraint? J
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Sparse Approximate Solutions (3/3)

Approximating noise corrupted data from below might be problematic! Is it possible to
remove the AHb <y contraint?

arg mbin|supp(b)|

()
st.|ly—ABb|x <eAcR™" yeR"

Proposition

We can find a locally optimal solution of Problem (2) by solving Problem (1).
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Application to Multivariate Convex Regression (1/2)

Input: Data (x;, ) €R™,i=1,2,..., m.
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Application to Multivariate Convex Regression (1/2)

Input: Data (x;, ) €R™,i=1,2,..., m.
Model: max(ajx; + b1,...,a)x; +bk) =y, i=12,...

Step 1: Estimate K slopes ak:

@ Fixed values from an n-dimensional interval, or
@ Numerical gradients of data.
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Application to Multivariate Convex Regression (1/2)

Input: Data (x;, ) €R™,i=1,2,..., m.
Model: max(ax; + b1, ..., aixi+bx)=y, i=12,..., m.

Step 1: Estimate K slopes ak:
@ Fixed values from an n-dimensional interval, or

@ Numerical gradients of data.

Step 2: Solve Problem (1) (method called Sparse Greatest Lower Estimate - SGLE) or
Problem (2) (called Sparse Minimum Max Absolute Error - SMMAE), and calculate
intercepts by.
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Application to Multivariate Convex Regression (1/2)

Input: Data (x;, ) €R™,i=1,2,..., m.
Model: max(ax; + b1, ..., aixi+bx)=y, i=12,..., m.

Step 1: Estimate K slopes ak:
@ Fixed values from an n-dimensional interval, or

@ Numerical gradients of data.

Step 2: Solve Problem (1) (method called Sparse Greatest Lower Estimate - SGLE) or
Problem (2) (called Sparse Minimum Max Absolute Error - SMMAE), and calculate
intercepts by.

Complexity: O(K? + K(n+1)m) or O(K? + K(n + 2)m), respectively.
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Application to Multivariate Convex Regression (1/2)

Input: Data (x;, ) €R™,i=1,2,..., m.
Model: max(ax; + b1, ..., aixi+bx)=y, i=12,..., m.

Step 1: Estimate K slopes ak:
@ Fixed values from an n-dimensional interval, or

@ Numerical gradients of data.

Step 2: Solve Problem (1) (method called Sparse Greatest Lower Estimate - SGLE) or
Problem (2) (called Sparse Minimum Max Absolute Error - SMMAE), and calculate
intercepts by.

Complexity: O(K? 4+ K(n+ 1)m) or O(K? 4+ K(n+ 2)m), respectively.

Output: A PWL convex approximation of the data with the approximately minimum
number of affine regions needed for achieving the desired level of data fidelity.
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Application to Multivariate Convex Regression (2/2)

Data from noisy paraboloid z = x* 4+ y* + A(0, 1).

(a) Approximation with 5 affine regions.

(b) Approximation with 16 affine

regions.

- sae
\
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Conclusion & Future work

@ Fundamental problem of convex regression through the lens of Max-plus algebra.
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Conclusion & Future work

@ Fundamental problem of convex regression through the lens of Max-plus algebra.
@ Theoretical progress in algorithms for sparsity in this nonlinear space.

@ Application into the problem of convex regression yields more robust estimators.

Future work: Statistical properties of the estimators & Sparsity in more abstract
nonlinear spaces with an underlying lattice structure.
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Conclusion & Future work

@ Fundamental problem of convex regression through the lens of Max-plus algebra.
@ Theoretical progress in algorithms for sparsity in this nonlinear space.

@ Application into the problem of convex regression yields more robust estimators.

Future work: Statistical properties of the estimators & Sparsity in more abstract
nonlinear spaces with an underlying lattice structure.

Thank you for your attention!
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