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Convex regression - why?

Problem: Learn a convex function from data.

Optimization

Machine Learning, Signal Processing & Finance
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Convex regression

Data (xi , yi), where yi = f (xi), f an

unknown convex function. How to estimate

f ?

Idea from Convex Analysis [Rockafellar 1970,

Maragos 1994]: Any convex function ≈
maximum of hyperplanes aᵀj x+ bj .

max(aᵀ1x1 + b1, . . . , a
ᵀ
Kx1 + bK ) = y1

max(aᵀ1x2 + b1, . . . , a
ᵀ
Kx2 + bK ) = y2

. . .

Question 1: How to optimally estimate (aj , bj)
K
j=1 from these equations?

Question 2: How to keep # of hyperplanes as small as possible?
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Convex regression & Max-plus Algebra

This is not a linear problem!

But in a suitable algebra, it can be written in a linear like form.

Max-Plus Algebra: “Linear Algebra, but + becomes max, and × becomes +”.
aᵀ1x1 aᵀ2x1 . . . aᵀKx1

. . . .

. . . .

aᵀ1xm aᵀ2xm . . . aᵀKxm


︸ ︷︷ ︸

A

�


b1

b2

.

.

bK


︸ ︷︷ ︸

b

=


y1

.

.

ym


︸ ︷︷ ︸

y

,

where [C�D]ij = maxnk=1(cik + dkj).

If we assume known slopes, problem reduces to solving a “linear” max-plus matrix

equation A� b = y.

Question 1: How to optimally estimate (aj , bj)
K
j=1 from these equations?
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Sparsity Motivation

Observation

If bj = −∞, then the maximum will never attain its value on the hyperplane aᵀj x+ bj ⇒
The whole region can be discarded.

e.g. max(5x + 3, 20x −∞, x) = max(5x + 3, x), ∀x

Simpler & more robust approximation!

Idea

Force as many bj as possible to be −∞!

Question 2: How to keep # of hyperplanes as small as possible?
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Convex Regression as an Optimization Problem

Step 1. Enforce sparsity constraints - Optimization problem:

argmin
b
|supp(b)|

s.t. A� b = y, where supp(b) , {j | bj 6= −∞}.

Step 2. Account for noise - Optimization problem:

argmin
b
|supp(b)|

s.t. dist(A� b, y) ≤ ε.
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Prior work & Contributions

Prior work:

[Tsiamis & Maragos 2019] introduced sparsity in Max-plus algebra.

[Magnani & Boyd 2009, Kim et. al. 2010, Hannah & Dunson 2011] solve convex regression

by alternating between partitioning the input and locally fitting affine functions.

[Maragos & Theodosis 2020] initiated the study of the problem through the lens of

Max-plus algebra ⇒ complexity benefits.

Contributions:

Algorithms for sparse approximate solutions to max-plus matrix equations for any `p
norm - Submodularity properties of the optimization problems.

Application into the context of convex regression - robust approximations with an

approximately minimum number of affine regions.
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Sparsity in Max-plus algebra

Definition (Sparsity)

We call a vector x sparse if it contains many −∞ elements.

Definition (Support set)

The support set of a vector is the set of indices of its values that are not equal to −∞,

that is: supp(x) = {j | xj 6= −∞}.

e.g. |supp(1, 4,−∞,−2, 0, 0)| = 5

Theorem (Tsiamis & Maragos 2019)

Computing the sparsest solution of A� b = y is an NP-complete problem.
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Sparse Approximate Solutions (1/3)

Problem formulation

argmin
b
|supp(b)|

s.t. ‖y − A� b‖pp ≤ ε,

A� b ≤ y,A ∈ Rm×n, y ∈ Rm.

Notes

We restrict the `p, p <∞, error to be small

We add an extra constraint A� b ≤ y: Technical reasons & enforce approximation

from below!
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Sparse Approximate Solutions (2/3)

Problem formulation

argmin
b
|supp(b)|

s.t. ‖y − A� b‖pp ≤ ε,

A� b ≤ y,A ∈ Rm×n, y ∈ Rm.

(1)

Theorem

Problem (1) can be approximately solved in O(nm + n2) time with a greedy algorithm.

Technical details

Tools from Submodular Optimization ⇒ approximation ratio guarantees.
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Sparse Approximate Solutions (3/3)

Approximating noise corrupted data from below might be problematic! Is it possible to

remove the A� b ≤ y contraint?

argmin
b
|supp(b)|

s.t. ‖y − A� b‖∞ ≤ ε,A ∈ Rm×n, y ∈ Rm.
(2)

Proposition

We can find a locally optimal solution of Problem (2) by solving Problem (1).

Nikos Tsilivis , Anastasios Tsiamis , Petros Maragos ( School of ECE, National Technical University of Athens, Greece, ESE Department, SEAS, University of Pennsylvania, USA)June 6-11, 2021 12 / 16



Sparse Approximate Solutions (3/3)

Approximating noise corrupted data from below might be problematic! Is it possible to

remove the A� b ≤ y contraint?

argmin
b
|supp(b)|

s.t. ‖y − A� b‖∞ ≤ ε,A ∈ Rm×n, y ∈ Rm.
(2)

Proposition

We can find a locally optimal solution of Problem (2) by solving Problem (1).

Nikos Tsilivis , Anastasios Tsiamis , Petros Maragos ( School of ECE, National Technical University of Athens, Greece, ESE Department, SEAS, University of Pennsylvania, USA)June 6-11, 2021 12 / 16



Sparse Approximate Solutions (3/3)

Approximating noise corrupted data from below might be problematic! Is it possible to

remove the A� b ≤ y contraint?

argmin
b
|supp(b)|

s.t. ‖y − A� b‖∞ ≤ ε,A ∈ Rm×n, y ∈ Rm.
(2)

Proposition

We can find a locally optimal solution of Problem (2) by solving Problem (1).

Nikos Tsilivis , Anastasios Tsiamis , Petros Maragos ( School of ECE, National Technical University of Athens, Greece, ESE Department, SEAS, University of Pennsylvania, USA)June 6-11, 2021 12 / 16



Application to Multivariate Convex Regression (1/2)

Input: Data (xi , yi) ∈ Rn+1, i = 1, 2, . . . ,m.

Model: max(aᵀ1xi + b1, . . . , a
ᵀ
Kxi + bK ) = yi , i = 1, 2, . . . ,m.

Step 1: Estimate K slopes ak :

Fixed values from an n-dimensional interval, or

Numerical gradients of data.

Step 2: Solve Problem (1) (method called Sparse Greatest Lower Estimate - SGLE ) or

Problem (2) (called Sparse Minimum Max Absolute Error - SMMAE ), and calculate

intercepts bk .

Complexity: O(K 2 + K(n + 1)m) or O(K 2 + K(n + 2)m), respectively.

Output: A PWL convex approximation of the data with the approximately minimum

number of affine regions needed for achieving the desired level of data fidelity.
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Application to Multivariate Convex Regression (2/2)

Data from noisy paraboloid z = x2 + y 2 +N (0, 1).

(a) Approximation with 5 affine regions. (b) Approximation with 16 affine regions.

Figure: Comparison of SMMAE method (black line) with [Maragos & Theodosis 2020] (red line).
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Conclusion & Future work

Fundamental problem of convex regression through the lens of Max-plus algebra.

Theoretical progress in algorithms for sparsity in this nonlinear space.

Application into the problem of convex regression yields more robust estimators.

Future work: Statistical properties of the estimators & Sparsity in more abstract

nonlinear spaces with an underlying lattice structure.

Thank you for your attention!
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