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A B S T R A C T

Background: Gesture-based human-robot interaction (HRI) depends on the technical performance of the robot-
integrated gesture recognition system (GRS) and on the gestural performance of the robot user, which has been
shown to be rather low in older adults. Training of gestural commands (GCs) might improve the quality of older
users’ input for gesture-based HRI, which in turn may lead to an overall improved HRI.
Objective: To evaluate the effects of a user training on gesture-based HRI between an assistive bathing robot and
potential elderly robot users.
Methods: Twenty-five older adults with bathing disability participated in this quasi-experimental, single-group,
pre-/post-test study and underwent a specific user training (10−15min) on GCs for HRI with the assistive
bathing robot. Outcomes measured before and after training included participants’ gestural performance as-
sessed by a scoring method of an established test of gesture production (TULIA) and sensor-based gestural
performance (SGP) scores derived from the GRS-recorded data, and robot’s command recognition rate (CRR).
Results: Gestural performance (TULIA=+57.1 ± 56.2 %, SGP scores=+41.1 ± 74.4 %) and CRR
(+31.9 ± 51.2 %) significantly improved over training (p < .001). Improvements in gestural performance and
CRR were highly associated with each other (r=0.80–0.81, p < .001). Participants with lower initial gestural
performance and higher gerontechnology anxiety benefited most from the training.
Conclusions: Our study highlights that training in gesture-based HRI with an assistive bathing robot is highly
beneficial for the quality of older users’ GCs, leading to higher CRRs of the robot-integrated GRS, and thus to an
overall improved HRI.

1. Introduction

Bathing disability is one of the first limitations in activities of daily
living (ADLs) to occur during aging process (Jagger, Arthur, Spiers, &
Clarke, 2001; Katz, Ford, Moskowitz, Jackson, & Jaffe, 1963) re-
presenting the strongest predictor of subsequent institutionalization in
older adults (Fong, Mitchell, & Koh, 2015). Institutionalized and non-

institutionalized older adults require personal assistance in bathing
more frequently than for other ADLs (Wiener, Hanley, Clark, & Van
Nostrand, 1990). The prevalence of bathing disability in community-
living older adults increases with age, ranging from 4.6 to 8.6% in those
aged ≥65 years (Wiener et al., 1990) to 20.1 % in those aged ≥85
years (Dawson, Hendershot, & Fulton, 1984). An even much higher
prevalence has been documented in nursing homes and personal care
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facilities, with ≥90 % of residents who require some assistance in
bathing (Jones, Dawyer, Bercovitz, & Strahan, 2009; Wiener et al.,
1990). As a consequence of the demographic change, the number of
older adults in need for bathing assistance will increase, which in turn
will contribute to an increase in the burden to both the formal health
and social care system and the informal care system. Because bathing is
highly sensitive and intimate, it is not unusual for older adults to be
reserved against or avoid, as long as possible, personal bathing assis-
tance from caregivers (Ahluwalia, Gill, Baker, & Fried, 2010). In this
context, assistive bathing robots that collaboratively support older
adults to take care of themselves in bathing can foster independent
living, preserve dignity and privacy, and reduce the burden of care-
givers.

Human-robot interaction can be defined as “information and action
exchanges between human and robot to perform a task by means of a
user interface” (International Organization for Standardization, 2012).
To enable humans and robots to successfully perform tasks in a colla-
borative way, an adequate and efficient HRI interface needs to be im-
plemented, making the interaction as natural, intuitive and easy as
possible to use, preferably with a minimum of training. There are
various ways to communicate and/or interact with a robot (e.g., speech,
body posture, gestures, facial expressions, etc.) (Goodrich & Schultz,
2008). Previous studies suggest that older adults tend to appreciate
communication methods that resemble natural interactions between
humans (Begum, Wang, Huq, & Mihailidis, 2013; Fischinger et al.,
2016). Being the most natural and simplest way in human commu-
nication, verbal communication is frequently used for HRI interfaces,
enabling robots to identify voice commands of the user (Mavridis,
2015). In typical real-world scenarios, voice commands can, however,
be disturbed by noise, reverberations, and other interfering sound
sources (Alameda-Pineda & Horaud, 2015). Addressing this issue of
speech-based HRI and given that gestures also play a central role in
human communication (Goldin-Meadow & Alibali, 2013), gesture-
based HRI has become a core element in the development of natural,
intuitive and easy to use HRI interfaces (Hernandez-Belmonte & Ayala-
Ramirez, 2016).

Gestures can be defined as a form of non-verbal communication in
which visible bodily actions, typically of the hands and arms, commu-
nicate particular messages (Kendon, 2004; McNeill, 1992). For inter-
acting with an assistive robot via gestures, several cognitive abilities are
relevant such as attention control, working memory, information pro-
cessing speed, executive function, and visuospatial abilities. However,
most of these abilities show a pronounced decline across the life span
into old age (Craik & Salthouse, 2008; Harada, Natelson Love, &
Triebel, 2013). In addition, cognitive impairment is frequent among
older adults with ADL limitations (Gure, Langa, Fisher, Piette, &
Plassman, 2013; Hakkinen et al., 2007), representative of potential end
users of assistive robots, which may considerably impede the interac-
tion with such robots, as it has previously been reported also for in-
teracting with other technologies (Schmidt & Wahl, 2019).

Research on gesture-based HRI often seems to focus on improving a
robot’s technical performance and robustness in recognizing and in-
terpreting a user’s input by integrating new hardware evolutions and/or
developing new software algorithms (Guler et al., 2016; Liu & Wang,
2018; Wang, Kläser, Schmid, & Liu, 2011). However, successful HRI is
not just a matter of the performance of the robot-integrated gesture
recognition system (GRS), but also of the quality of a user’s input and
the characteristics of a user. Thus, to fully understand what makes in-
teraction between humans and robots successful and how HRI can be
improved in a broader context, a more in-depth understanding also of
the human side of the HRI seems to be necessary. For example, a pre-
vious study on gesture-based HRI with assistive mobility robot reported
rather poor HRI in frail older adults with some levels of cognitive im-
pairment, with a command recognition rate (CRR) of the robot-in-
tegrated GRS of only 40 % (Efthimiou et al., 2016). The low gestural
performance observed in a considerable portion of the sample (26 %)

has been implicated as one major cause of the low HRI in this study,
which therefore called for training approaches on HRI in older robot
users to ensure successful HRI.

Training procedures used to teach naïve individuals how to interact
with the robot provide a potential option to improve not only the
performance of a user’s input for HRI but also the user’s attitudes and
emotions toward the robot (Engelhardt & Edwards, 1992; Louie,
McColl, & Nejat, 2014), which have been shown to improve over time
of robot use (Stafford, MacDonald, Jayawardena, Wegner, & Broadbent,
2014; Wu et al., 2014) and to be predictive for the quality of HRI
(Broadbent et al., 2010). User training on the HRI that takes into ac-
count the individual resources and limitations of the user might espe-
cially be of importance in older adults, who typically have less tech-
nology experience and express more negativity and anxiety toward
robot assistance than younger people (Dyck & Smither, 1994; Scopelliti,
Giuliani, D’Amico, & Fornara, 2004). The lack of training or advice on
how to use new technologies can significantly affect older adults’ ac-
ceptance of technology (Tacken, Marcellini, Mollenkopf, Ruoppila, &
Széman, 2005). For example, the user’s perception of his/her own in-
sufficient user performance for HRI associated with a low efficiency in
controlling the functionalities of the robot can potentially reduce the
self-efficacy and reinforce the feeling of loss of control (Hauer, 2018).

The variability in physical, cognitive, sociological and psychological
characteristics increases with age (Hunter, Pereira, & Keenan, 2016;
Nelson & Dannefer, 1992; Yang & Lee, 2010). Older adults may thus be
regarded as the most heterogeneous population of all. A recent sys-
tematic review suggests that previous studies most frequently failed,
however, to consider the participant characteristics when studying the
interaction of older adults with a robot and highlights the importance
for future studies to better examine HRI in later life (Zafrani & Nimrod,
2018).

The primary aim of this study was to evaluate the effects of a spe-
cific user training on gesture-based HRI between an assistive bathing
robot and potential robot users. We hypothesized that such a training
would improve both the gestural performance of the participants and
the performance of the robot-integrated GRS, leading to an overall
improved HRI. Secondary aims were to explore participant character-
istics associated with the initial gestural performance and the training
response in the gestural performance, and to examine the relationship
between the gestural performance and performance of the robot-in-
tegrated GRS. We expected lower cognitive abilities and more negative
feelings toward technology to be significantly associated with lower
gestural performance (i.e. user input for HRI). According to the rate-
dependency phenomenon and general training principles which in-
dicate that intervention response rates are highest in those individuals
with the lowest baseline performance (Dews, 1977; Haskell, 1994;
Snider, Quisenberry, & Bickel, 2016), we hypothesized that training
response in the gestural performance would be significantly associated
with the initial gestural performance before training. Moreover, as we
assumed that the performance of the robot-integrated GRS in re-
cognizing the user’s gestural commands (GCs) would highly depend on
the user’s gestural performance, we expected better gestural perfor-
mances to be significantly associated with better performance of the
GRS.

2. Methods

2.1. I-SUPPORT bathing robot

The assistive bathing robot used in this study represented a first
prototype developed in the I-SUPPORT project (ICT-Supported Bath
Robots), which focused on the development of an innovative, modular,
information and communication technology (ICT)-supported domestic
service robotic system that safely assists frail older or disabled in-
dividuals in various bathing tasks (e.g., pouring water, soaping,
scrubbing, drying), with the overall aim to promote their independence
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in this intimate ADL and to relieve the care burden of family caregivers
or formal caregivers in medical centers and assisted living environ-
ments. More detailed and comprehensive information on the I-
SUPPORT project can be found at the project website (http://www.i-
support-project.eu/).

The I-SUPPORT bathing robot (Fig. 1) consists of the following main
components: (1) a motorized chair for supporting stand-to-sit and sit-to-
stand transfers and the transition into and out of the shower area; (2) a
robotic soft-arm for the specific bathing tasks (e.g., pouring water,
soaping, scrubbing, drying); (3) three Kinect V2 RGB-D sensors and
eight condenser microphones for natural audio-gestural HRI (human
and robot pose estimation, command and action recognition), and (4) a
context-aware system for monitoring environmental (water flow and
temperature, air temperature, humidity and illumination sensors) and
user information (smartwatch for user identification and (in-)activity
tracking) (not provided in Fig. 1). An overview of further technical
details of the I-SUPPORT bathing robot will be published elsewhere.

2.2. I-SUPPORT user group

The intended users of the I-SUPPORT bathing robot are persons with
(1) dependence in bathing activities and (2) no severe cognitive im-
pairment (Werle & Hauer, 2016). The criteria for dependence in
bathing activities was defined according to the bathing item of the
Barthel Index (BI) (bathing item: 0 pt. = “patient can use a bath tub, a
shower, or take a complete sponge bath only with assistance or su-
pervision from another person”) (Mahoney & Barthel, 1965). No severe
cognitive impairment was defined as a score of> 17 points on the Mini-
Mental State Examination (MMSE, Folstein, Folstein, & McHugh, 1975).

2.3. Gesture-based human-robot interaction

The I-SUPPORT bathing robot allows the interaction of the users
with the robot through a predefined set of GCs for different bathing
tasks (e.g., washing, scrubbing). The system architecture for gesture-
based HRI consists of three Kinects V2 sensors installed at the walls of
the bathroom. The Kinect V2 sensor is equipped with RGB-D and in-
frared sensors that enable to capture the video (Full HD RGB resolution)
and depth information (time-of-flight principle) required for the human
and robot pose reconstruction and the identification of the user’s GCs.

Kinect and other similar sensors are frequently employed for marker-
less motion tracking and visual recognition in robotics (El-laithy,
Huang, & Yeh, 2012; Naeemabadi, Dinesen, Andersen, & Hansen,
2018). Two Kinect V2 sensors were placed inside the shower space for
estimating the 3-dimensional pose of the human and robot, and one
Kinect V2 sensor was placed outside the shower space for recognizing
the GCs performed by the user. The processing methods of the visual
information provided by the Kinect sensor for gesture recognition
follow state-of-the-art computer vision and machine learning ap-
proaches for visual feature extraction and classification. In particular,
“dense trajectories” are employed for feature extraction (Wang et al.,
2011), an approach frequently used for action and gesture recognition
(Baraldi, Paci, Serra, Benini, & Cucchiara, 2014; Yamada, Yoshida,
Sumi, Habe, & Mitsugami, 2017) and various other visual recognition
problems (Afshar & Salah, 2016; Huang, Zhang, & Li, 2016), especially
in cases where the available data for training the algorithms is limited.
In brief, this method consist in sampling salient points in the video (e.g.,
from hand edges, etc.) and tracking them through time, which produces
a large number of trajectories. These trajectories are processed to ex-
tract the motion boundary histogram (MBH) descriptor in the standard
bag-of-features framework (Dalal, Triggs, & Schmid, 2006; Zhang,
Marszałek, Lazebnik, & Schmid, 2007), resulting in a high-dimensional
numeric representation of the video. Finally, using this representation,
each gesture is classified as one of the pre-defined GCs using non-linear
support vector machines (SVMs) (Schuldt, Laptev, & Caputo, 2004;
(Wang , Kläser , Schmid ,& Liu, 2011). More importantly, SVMs can also
provide the probability of each video containing the recognized GC (see
2.9), enabling more in-depth analysis. More technical details on the
GRS can be found elsewhere (Kardaris, Rodomagoulakis, Pitsikalis,
Arvanitakis, & Maragos, 2016; Rodomagoulakis et al., 2016; Zlatintsi
et al., 2018).

2.4. Study design

A quasi-experimental, single-group, pre-/post-test study design was
used to analyze the effects of the user training on the gesture-based HRI
between the participant and the I-SUPPORT bathing robot. The study
was conducted between January 25 and February 8, 2018 with ap-
proval of the ethics committee of the Medical Faculty of the Heidelberg
University (September 27, 2016; S-382/2016) and in accordance with

Fig. 1. Rendering of the I-SUPPORT bathing robot placed within the test environment (= typical bathroom of a rehabilitation clinic at a German geriatric hospital).
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the Declaration of Helsinki. Written informed consent was obtained
from all participants prior to study inclusion.

2.5. Study population

Participants were recruited from rehabilitation wards of a geriatric
hospital, from nursing homes, and from a hospital-associated geriatric
rehabilitation sports club. According to the predefined user group of the
I-SUPPORT bathing robot, the following two main inclusion criteria
were used to recruit participants: (1) dependence in bathing activities
(BI, bathing item=0 pt.) and (2) no severe cognitive impairment
(MMSE score> 17 pt.). Further inclusion criteria were: no severe ADL
impairment (BI≥ 50 pt.); independence in bed-chair transfer (BI,
transfer item=15 pt.); no severe neurological, cardiovascular, meta-
bolic, or psychiatric disorders; residence within 15 km of the study
center, and written informed consent.

2.6. Test procedure

The I-SUPPORT bathing robot was installed in a typical bathroom of
the rehabilitation clinic at a German geriatric hospital. Seven different
GCs for the use case “back region shower process” had to be performed
by the participants: (1) wash back; (2) higher temperature; (3) lower
temperature; (4) scrub back; (5) repeat; (6) stop, and (7) halt. The
correct GCs performed by an expert and used as reference standard can
be found in online supplementary videos. During the whole testing
procedure, the participants were seated on the motorized chair of the
robot. Prior to the pre-test (T1), all participants received a brief in-
troduction on the GCs. For each GC, a test administrator presented a
large poster with images displaying the key movement elements of the
specific GC and also demonstrated each GC once directly in front of the
participant. After this brief introduction, the pre-test was performed
with the participant. During the testing phase, the administrator sub-
sequently presented the posters once more for each GC and asked the
participant to perform the specific GC shown on the poster. After the
participant performed a GC, a short brake was made to give the robot
the opportunity to respond on the GC. In case of successful gesture
recognition, the robot responded after about 3 s with an appropriate
audio response (but did not actually perform the corresponding bathing
task) and the next GC was tested. If the robot did not recognize the
command correctly in this time interval, the test administrator asked
the participant to repeat the GC once more. Independent of the robot
response, the test procedure was continued with the next GC after such
a second trial. This procedure was followed until all seven GCs were
tested. After the pre-test was completed, a more extensive training
phase on the GCs was performed by the administrator with the parti-
cipant (see below). Following this training phase, the test procedure as
described for the pre-test was repeated once more (T2 = post-test).

2.7. Intervention

Between the pre- and post-test, a training phase (10−15min) on the
specific GCs for the HRI with the I-SUPPORT bathing robot was per-
formed with the participants. For this purpose, specific teaching
methods and practice conditions, which have already been demon-
strated to be effective for motor learning in older people with cognitive
impairment (van Halteren-van Tilborg, Scherder, & Hulstijn, 2007;
Werner et al., 2017), were used to facilitate learning of the GCs: mirror
technique, combining movements with specific associations, haptic
assistance, and high repetitions. The administrator sat directly in front
of the participant and demonstrated the GC “like a mirror”, that is, if
the participants had to use their right hand for a GC, the administrator
demonstrated this GC with the left hand. The participants were en-
couraged to immediately join the demonstration and to simply mirror
the administrator’s movements. During the demonstration, the admin-
istrator described the gestures by combining it with specific

associations (e.g., “Like you would dip a sponge in a water bucket.”
[GC: wash my back]; “Like you would push someone away from you.”
[GC: stop]) to facilitate learning and memorizing of the GC. If neces-
sary, also haptic assistance was provided by the administrator to ensure
correct movement execution of the GC by the participant. Each GC was
trained until the participant was able to perform it once correctly.

2.8. Descriptive measures

Sociodemographic and clinical characteristics including age,
gender, living situation (community-dwelling vs. institutionalized),
falls in the previous year, and ADL status (BI) were documented from
patient charts or by standardized interviews. A trained interviewer as-
sessed cognitive status (MMSE) and psychological status for depression
(15-item Geriatric Depression Scale [GDS-15], Gauggel & Birkner,
1999; Sheikh & Yesavage, 1986), fear of falling (Falls Efficacy Scale-
International [FES-I], Dias et al., 2006; Hauer et al., 2010), and tech-
nology acceptance (Senior Technology Acceptance Model [STAM],
Chen & Chan, 2014): subscales for attitude towards technology, per-
ceived usefulness, ease of use, gerontechnology self-efficacy, ger-
ontechnology anxiety, and facilitating conditions). Physical perfor-
mance was measured by the Short Physical Performance Battery (SPPB,
Guralnik et al., 1994).

2.9. Outcome measures

The HRI was evaluated from both the human side, by assessing the
participant’s gestural performance, and the robot side, by assessing the
performance of the GRS in recognizing the GCs.

Gestural performance was evaluated by (1) scores of a standardized
clinical observation measure and (2) sensor-based performance scores
derived from the GRS-recorded data.

The clinical observation measure was based on the scoring system of
the Test of Upper Limb Apraxia (TULIA), which represents an estab-
lished test for the comprehensive assessment of gesture production
(Vanbellingen et al., 2010). Each GC was rated on a 6-point scale
ranging from 0 to 5 points, with higher observation-based gestural
performance (OGP) scores indicating better gestural performance. The
scoring procedure followed a two-step assessment approach. In a first
step, the achievement of the overall movement goal of the GC was
evaluated, narrowing the range of the scores to either 0 or 1 points
(‘movement goal not achieved’), or 2–5 points (‘movement goal
achieved’). The movement goal of a GC was considered to be not
achieved if errors occurred that seriously affected the trajectory of the
gesture. Trajectories were defined as the spatial orientation of the
movement including movement plane relative to the individual’s body,
joint coordination, and movement shape. If the movement goal of a GC
was achieved, a more detailed error analysis was performed in a second
step to yield the final score in the upper scale range (2–5 pt.). The de-
tailed scoring method is presented in Table 1. The first step of this two-
step assessment approach was directly performed during the test pro-
cedure and was used for deciding whether a second trial was given or
not, while the more detailed error analysis was performed after the test
procedure using the video recordings of the Kinect V2 sensor. The in-
dividual scores per GC were finally averaged over all seven GCs to yield
a mean score for the overall observation-based gestural performance
(OGPtotal). Test procedure and scoring were consistently performed by
the same person across all participants. Intra-rater reliability for scoring
the video recordings of the GCs has been established in a pilot study
with 8 participants randomly selected out of the total sample. Excellent
intra-rater reliability was found with intraclass correlation coefficients
(ICC(2,1), absolute agreement) ranging from 0.82 to 0.95.

A sensor-based gestural performance (SGP) score was calculated for
each GC by applying Platt scaling (Platt, 2000) to the output of the SVM
classifier of the GRS (see 2.3). This method is implemented by the
software libraries used for the GRS (Chang & Lin, 2011) and has been
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thoroughly shown to provide reliable estimates of class membership
probabilities (Caruana, Karampatziakis, & Yessenalina, 2008;
Niculescu-Mizil & Caruana, 2005). Each SGP score ranged from 0 to 1
(with higher scores indicating better gestural performance) and quan-
tifies the certainty or degree to which a performed gesture can be
classified as the respective GC, according to the GRS. A mean score for
the overall sensor-based gestural performance (SGPtotal) was also cal-
culated by averaging the individual SGP per GC over all seven GCs.

The performance of the robot-integrated GRS was evaluated by its
command recognition rate (CRR), defined as the percentage of suc-
cessfully recognized GCs relative to the seven GCs tested. The test ad-
ministrator noted the (un-)successful recognition of each command
directly during the test procedure.

2.10. Statistical analysis

Descriptive data were presented as frequencies and percentages for
categorical variables, and median and interquartile ranges (IQR) and/or
mean and standard deviations (SD) for continuous variables. If a par-
ticipant performed two trials for a GC that both were not successfully
recognized by the GRS, the trial with the highest observational-based
assessment score was used for the statistical analysis of all outcome
measures. In all other cases, the trial with the recognized GC was used.
Differences in outcome measures between pre- (T1) and post-test (T2)
were analyzed using Wilcoxon signed-rank tests. To quantify the mag-
nitude of pre/post-test changes, effect sizes (ES= Z/√N) were calcu-
lated and interpreted as small (0.1 to< 0.3), moderate (0.3 to< 0.5),
large (0.5 to< 0.7), or very large (≥0.7) (Cohen, 1988; Rosenthal,
1996). Associations between (1) participant characteristics (age,
gender, cognitive status [MMSE], physical performance [SPPB], psy-
chological status [GDS-15, FES-I, STAM]) and overall gestural perfor-
mance (OGPtotal, SGPtotal) at T1; (2) system (CRR) and overall gestural
performance (OGPtotal, SGPtotal); (3) participant characteristics (age,
gender, MMSE, SPPB, GDS-15, FES-I, STAM, baseline gestural perfor-
mance [OGPT1, SGPT1]) and relative changes in overall gestural per-
formance (OGPtotal, SGPtotal) over the training phase (T1-T2), and (4)
relative changes in the system (CRR) and overall gestural performance
(OGPtotal, SGPtotal) over the training phase (T1-T2) were analyzed using
Pearson’s, Spearman rank or point-biserial correlation coefficients (r) as
appropriate. Relative changes were calculated as: ((post-test score –
pre-test score)/pre-test score) × 100). Correlation coefficients were
interpreted as trivial (< 0.1), small (0.1 to< 0.3), moderate (0.3
to< 0.5), high (0.5 to< 0.7), very high (0.7 to< 0.9), extremely high
(≥0.9) (Cohen, 1988; Hopkins, Marshall, Batterham, & Hanin, 2009).
The sample size was calculated to be n=25, based on an a priori power
analysis for Wilcoxon signed rank tests comparing T1 vs. T2 gestural
performance scores (Faul, Erdfelder, Lang, & Buchner, 2007), with a

two-sided significance level (α) of 0.05, a statistical power (1-β) of
0.80, and a moderate effect size (Cohen’s dz = 0.6). The expected
moderate effect size was derived from findings of previous studies that
indicated gross motor skill learning in older adults after one session of
semantic instruction and demonstration (Voelcker-Rehage and
Willimczik, 2006; Cohen’s dz = 0.7–1.7) and in cognitively impaired
older adults after a motor learning exercise program including the same
teaching methods and practice conditions as used in the current study
(Werner et al., 2017; Cohen’s dz = 0.5–1.1). A two-sided p-value
of< 0.05 indicated statistical significance. Statistical analysis was
performed using IBM SPSS Statistics for Windows, Version 25.0 (IBM
Corp., Armonk, NY, USA).

3. Results

3.1. Participant characteristics

The study sample included 25 older people (77.9 ± 7.9 years) who
all were dependent in bathing (BI, bathing item=0 pt.). Thirteen (52
%) participants were recruited from the geriatric rehabilitation sports
club, seven (28 %) from nursing homes, and five (20 %) from geriatric
rehabilitation wards. The MMSE score averaged 25.6 ± 3.1 points,
with about half of the participants (n=13, 52 %) having some cog-
nitive impairment (MMSE 17–26 pt.). The sample showed a slightly
impaired ADL status, with a mean BI score of 81.6 ± 8.6 points (Brefka
et al., 2019). The SPPB score averaged 6.1 ± 2.9 points, indicating low
physical performance potentially associated with lower frailty status
and increased fall risk (Guralnik, Ferrucci, Simonsick, Salive, &
Wallace, 1995; Pritchard et al., 2017; Veronese et al., 2014). Most
participants (88 %) had no clinically relevant depressive symptoms
(GDS-15 > 5 pt.). More than the half reported one or more falls in the
previous year (n=14, 56 %). Fear of falling was low (FES-
I= 16–19 pt.) in 4 (16 %), moderate (FES-I= 20–27 pt.) in 9 (36 %),
and high (FES-I= 23−64 pt.) in 12 participants (48 %) (Delbaere et al.,
2010). Almost three out of four participants (n=18, 72 %) reported
concerns about falling while taking a shower or bath (FES-I, bathing
item>1 pt.). Technology acceptance was moderate to high, with mean
scores on the different STAM subscales in the upper half of the scoring
range (see Table 2).

3.2. Training effects on human-robot interaction

Prior to the training phase, the overall gestural performance was
low to moderate, with a median OGPtotal score of 2.4 points (IQR
1.8–2.9) and a median SGPtotal score of 0.60 points (IQR 0.47-0.67)
(Table 3). Only three participants (12 %) performed at least one GC
identical to the demonstrated ones without any movement errors (i.e.,

Table 1
Scoring guide for the observation-based assessment of the gestural performance.

Scores Description of scoring

5 pt. The movement goal of the gesture was achieved. The gesture was correct and identical to the demonstrated gesture.
4 pt. The movement goal of the gesture was achieved, but errors occurred not affecting the trajectory of the gesture (normal movement plane and spatial location of the hand

relative to the body, normal joint coordination and movement shape). Movement was too slow, hesitating, robot-like, and/or sloppy with minor spatial errors such as
reduced or excessive amplitudes or unprecise location of the hand relative to the body.

3 pt. The movement goal of the gesture was achieved, but errors occurred subtly affecting the trajectory of the gesture (imprecise movement plane relative to the body,
inaccurate joint coordination and movement shape), which were corrected. Additions or omissions of movement components (mainly distal) were present. Brief content
errors (substitutions, perseverations, pauses) occurred; however, corrections were made in the ongoing movement.

2 pt. The movement goal of the gesture was achieved, but errors occurred subtly affecting the trajectory of the gesture (imprecise movement plane relative to the body,
inaccurate joint coordination and movement shape), which were not corrected. Additions or omissions of (main) movement components (mainly distal) occurred without
corrections.

1 pt. The movement goal of the gesture was not achieved. Errors occurred seriously affecting the trajectory of the gesture. The final position was false, major errors in the
movement plane, spatial position of the hand relative to the body, joint coordination and movement shape. Overshoot and additional movements (mainly proximal) were
present or the gesture was performed with the wrong hand; however, the overall movement pattern of the gesture remained recognizable (1 point). Persisting
substitutions (related or unrelated to the gesture) and perseverations occur.

0 pt. The movement goal of the gesture was not achieved. No movement, gesture was totally incorrect or so incomplete that it was not recognizable. Seeking and amorphous
movements. No temporal or spatial reference to the requested gesture.
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OGP score= 5 pt.). The performance of the GRS at pre-test was also
only moderate, with a median CRR of 85.7 % (IQR 50.0–85.7).

3.3. Correlational results

Baseline gestural performance was significantly correlated with
cognitive status (OGPtotal: r= .68, p < .001; SGPtotal: r= .68,
p < .001) and gerontechnology anxiety (OGPtotal: r= .59, p= .002;
SGPtotal: r= .41, p= .041), such that participants with a higher cog-
nitive performance and less anxiety in gerontechnology showed a
higher initial gestural performance at pre-test. High to very high cor-
relation coefficients were observed for these significant correlations,
expect for that between SGPtotal and gerontechnology anxiety (mod-
erate correlation). For all other participant characteristics, there were
no significant correlations with the baseline gestural performance (r=
|.01-.33|, p= .144-.949) (Table 4).

The pre-/post-test change in the OGPtotal score was significantly and
moderately correlated with gerontechnology anxiety (r = -.41,p=
.041), such that those participants with the highest level of ger-
ontechnology anxiety improved most in the overall gestural perfor-
mance. The SGPtotal score tend to confirm this association; however, it
just missed the level of significance (r = -.37, p= .069). In addition,
lower baseline gestural performance was significantly and highly cor-
related with training-induced improvements in the gestural perfor-
mance (OGPtotal, SGPtotal: r=0.52-0.67, p< .001-.008). For all other

Table 2
Characteristics of 25 participants.

Variables

Age, years 77.9 ± 7.9
Sex, females 20 (80.0)
Mini-Mental State Examination, score 25.6 ± 3.1
Geriatric Depression Scale, score 2 [1–3]
Falls Efficacy Scale-International, score 28.8 ± 10.0
Recent history of falls 14 (56.0)
Barthel Index 85.4 ± 11.4
Short Physical Performance Battery, score 6.1 ± 2.9

Technology Acceptance, scorea

Attitudes towards technology (max. 20 pt.) 14.6 ± 5.0
Perceived usefulness (max. 30 pt.) 19.9 ± 8.4
Ease of use (max. 20 pt.) 10.8 ± 5.0
Gerontechnology self-efficacy (max. 20 pt.) 12.2 ± 5.2
Gerontechnology anxiety (max. 20 pt.) 12.5 ± 6.1
Facilitating conditions (max. 50 pt.) 30.3 ± 10.5

Living situation
Community-dwelling 18 (72.0)
Institutionalized 7 (28.0)

Data are presented as mean ± SD, n (%), and median [IQR].
a Higher scores indicates better attitudes towards technology, higher per-

ceived usefulness, greater ease of use, higher gerontechnology self-efficacy,
lower gerontechnology anxiety, and more facilitating conditions.

Table 3
Training effects on the gestural performance of the participants and the performance of the robot-integrated gesture recognition system.

Variables T1 T2 % change p-value Effect size

Gestural performance
Observation-based performance scores [pt.]
Wash back 2.3 ± 1.4

2.0 [1.0–4.0]
3.0 ± 1.7
4.0 [2.0–4.0]

.026 0.45

Higher temperature 2.2 ± 1.2
2.0 [1.0–3.5]

3.4 ± 1.2
4.0 [2.0–4.0]

.001 0.66

Lower temperature 2.9 ± 1.3
4.0 [2.0–4.0]

3.6 ± 1.3
4.0 [3.5–4.0]

.017 0.48

Scrub back 2.1 ± 1.9
1.0 [0.5–4.0]

3.6 ± 1.6
4.0 [2.5–5.0]

.002 0.63

Repeat 1.4 ± 1.0
1.0 [1.0–2.0]

2.3 ± 1.2
2.0 [2.0–3.0]

.001 0.64

Stop 2.2 ± 1.3
2.0 [1.0–3.5]

3.2 ± 1.2
4.0 [2.0–4.0]

.005 0.57

Halt 3.1 ± 1.4
3.0 [2.0–4.0]

4.2 ± 1.3
5.0 [4.0–5.0]

.001 0.69

Total performance 2.3 ± 0.8
2.4 [1.8–2.9]

3.3 ± 0.8
3.6 [2.9–3.9]

+57.1 ± 56.2
38.1 [18.9–82.1]

< .001 0.84

Sensor-based performance scores [pt.]
Wash back 0.45 ± 0.33

0.43 [0.06–0.76]
0.54 ± 0.33
0.63 [0.21–0.84]

.069 0.36

Higher temperature 0.56 ± 0.33
0.63 [0.18-0.88]

0.77 ± 0.32
0.95 [0.72-0.98]

.003 0.59

Lower temperature 0.68 ± 0.36
0.83 [0.32–0.98]

0.80 ± 0.27
0.94 [0.60–0.98]

.034 0.42

Scrub back 0.35 ± 0.32
0.23 [0.04–0.66]

0.69 ± 0.30
0.83 [0.58–0.90]

< .001 0.79

Repeat 0.40 ± 0.40
0.24 [0.02–0.91]

0.68 ± 0.41
0.92 [0.24–0.98]

.022 0.53

Stop 0.66 ± 0.38
0.86 [0.33–0.98]

0.81 ± 0.31
0.98 [0.82–1.00]

.010 0.51

Halt 0.67 ± 0.33
0.85 [0.39–0.96]

0.79 ± 0.29
0.92 [0.78–0.96]

.211 0.25

Total performance 0.56 ± 0.21
0.60 [0.47–0.67]

0.73 ± 0.18
0.80 [0.60–0.87]

+51.1 ± 74.4
27.6 [13.2–47.0]

< .001 0.79

GRS performance
CRR [%] 70.3 ± 24.0

85.7 [50.0–85.7]
84.6 ± 21.8
100 [71.4–100]

+31.9 ± 51.2
16.7 [0–40.0]

.003 0.59

Data are presented as mean ± SD and median [IQR]. P-values were given for Wilcoxon signed-rank tests. Effect sizes were calculated as Z/√N. GRS, gesture
recognition system; CRR, command recognition rate.
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participant characteristics, there were no significant correlations with
the changes in the overall gestural performance (r= |< .01-.33|,
p= .109-.987).

Very high to extremely high significant correlations were obtained
between the gestural performance and CRR at pre-test (OGPtotal:
r= .94, p < .001; SGPtotal: r= .83, p < .001) and post-test (OGPtotal,
SGPtotal: r=0.81, p < .001) (Table 5). The improvement in the overall
gestural performance of the participants was also significantly and
highly correlated with the improvement in the CRR of the robot-in-
tegrated GRS (OGPtotal, SGPtotal: r=0.80-0.81, p < .001).

4. Discussion

The present study aimed to provide a more in-depth understanding
of the human side of the gesture-based HRI between an assistive
bathing robot and potential end-users. Being representative of the po-
tential user group of the bathing robot, we recruited older people with
bathing disability and evaluated the effects on the HRI of a user training
specifically designed and tailored to the needs and requirements of this
population to improve their performance in interacting with the robot
using GCs. In addition, we investigated whether the gestural perfor-
mance and training response were associated with individual

differences in participant characteristics and whether training-induced
improvements in the gestural performance would lead to a better per-
formance of the GRS in recognizing the participant’s GCs.

Our results clearly indicate that the user training was highly bene-
ficial for improving the gesture-based HRI between the assistive bathing
robot and the participants. Lower cognitive performance and higher
gerontechnology anxiety were identified to negatively affect the parti-
cipants’ initial gestural performance. However, lower cognitive per-
formance did not influence their training response, and higher initial
gerontechnology anxiety was associated with even greater benefits in
the gestural performance over the training phase. The participants who
benefited the most from the user training were those with the lowest
initial gestural performance at baseline. For both testing sessions, as
well as for the changes between pre- and post-test, the performance of
the robot-integrated GRS was found to be closely related to the gestural
performance of the participants.

4.1. Training effects on human-robot interaction

Due to the common lack of experience of older adults in interacting
with a robot (Smarr et al., 2012, 2014), potential age-related limita-
tions in cognitive abilities relevant for gesture-based HRI, and previous
findings on gesture-based HRI for an assistive mobility robot in a si-
milar population (Efthimiou et al., 2016), the initial gestural perfor-
mance of the participants at pre-test was expected to be rather low. Our
results confirmed this expectation, with only low to moderate gestural
performance scores and a very small number of participants (3 out of
25) performing any GC without errors after the brief introduction be-
fore pre-test. This finding indicates that a single, brief introduction in
gesture-based HRI with an assistive robot does not seem to be sufficient
to ensure adequate quality of a user’s input for such interaction in frail
older adults with some levels of cognitive impairment. As the robot-
integrated GRS depend on an adequate quality of the user’s input, the
low to moderate gestural performance was directly translated into an
only moderate CRR, leading to an overall rather unsatisfying HRI at
pre-test. To overcome these user-related issues of the HRI and to im-
prove the gestural performance of the participants, a user training on
HRI was implemented including teaching methods that have already
been demonstrated to be effective for learning motor tasks in older
people with cognitive impairment (van Halteren-van Tilborg et al.,
2007; Werner et al., 2017). Significant improvements in almost all
outcome measures – with predominantly large effect sizes – confirmed
our primary study hypothesis that such training improves the partici-
pants’ movement execution of the GCs, leading to an improved CRR of
the robot-integrated GRS, and thus also to an overall improved HRI.

Improvements in the gestural performance were documented by
different outcome measures. We developed and used a standardized
clinical observation measure for which the scoring method was derived
from an established and valid clinical test for gesture production
(TULIA) (Vanbellingen et al., 2010), as well as sensor-based perfor-
mance scores recorded by the robot-integrated GRS. The latter was
chosen to substantiate the training effects documented by observation-
based outcomes by technically measured, more objective outcomes.
Further, this approach of using the already existing data flow of the
robot-integrated sensing technique for assessment purposes has been
recommended for the evaluation of HRI with assistive robots, allowing
for highly specific assessments exactly tuned to the robot’s functionality
to be evaluated (Werner, Ullrich, Geravand, Peer, & Hauer, 2016).

4.2. Correlational results

Consistent with our hypothesis, lower initial gestural performance
was significantly associated with lower cognitive status and more ne-
gative feelings toward technology, highlighting the relevance of the
user’s cognitive abilities for gesture-based HRI as well as the previously
reported relationship between a user’s emotions toward the robot and

Table 4
Correlations of participant characteristics with pre-test gestural performance
(T1) and relative pre-post changes in gestural performance (T1-T2).

Participant characteristics T1 T1-T2: % change

OGPtotal SGPtotal OGPtotal SGPtotal

Age .07 −.01 −.17 .01
Sexa .21 .26 −.18 −.22
Mini-Mental State Examination .68*** .68*** −.28 −.24
Geriatric Depression Scale −.29 −.26 −.02 .05
Falls Efficacy Scale-International −.06 −.04 −.02 −.01
Short Physical Performance Battery −.17 −.33 .19 .33
Technology Acceptance
Attitudes towards technology .22 .15 .09 .08
Perceived usefulness .28 .32 .04 .06
Ease of use .07 .18 −.09 −.16
Gerontechnology self-efficacy .16 .24 −.13 −.19
Gerontechnology anxiety .59** .41* −.41* -.37+

Facilitating conditions .23 .35+ −.03 −.09
Baseline gestural performance
OGPtotal −.67***
SGPtotal −.52**

Correlations were given as Pearson’s, Spearman rank or point-biserial correla-
tion coefficients (r) as appropriate.

+ p<0.10.
* p<0.05.
** p<0.01.
*** p<0.001.

Table 5
Correlations between the performance of the robot-integrated gesture re-
cognition system and the gestural performance of the participants.

CRR OGPtotal SGPtotal

T1 T2 T1-T2: %
change

T1 T2 T1-T2: %
change

T1 .94*** .83***
T2 .81*** .81***
T1-T2: %

change
.81*** .80***

Correlations were given as Pearson’s or Spearman rank correlation coefficients
(r) as appropriate.
*** p<0.001. CRR, command recognition rate; OGP, observation-based

gestural performance; SGP, sensor-based gestural performance.
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the quality of HRI (Broadbent et al., 2010). According to that, training
programs to improve the quality of a user’s input for HRI seem to be of
particular importance in older adults with lower cognitive status and
higher technology anxiety.

Higher gerontechnology anxiety was identified to be significantly
associated with higher training gains in the gestural performance. This
might be related to the fact that participants with a general higher
anxiety towards technology may have been initially also more anxious
toward the assistive bathing robot; however, as emotions toward a
robot have been shown to improve with increasing user experience
(Engelhardt & Edwards, 1992; Louie et al., 2014), the experience with
the robot at pre-test may have reduced the anxiety in these participants,
which in turn may have had a beneficial side effect on the gestural
performance in participants with higher technology anxiety in addition
to the specific training effect.

As hypothesized, the lower initial gestural performance was also a
significant factor for higher training gains in the gestural performance,
which is in accordance with the rate-dependency phenomenon and
general training principles (Dews, 1977; Haskell, 1994; Snider et al.,
2016). This suggests that the participants with the lowest initial ges-
tural performance could also be successfully trained in the GCs and
even represented those that benefitted most from the user training.

In contrast, improvements in the gestural performance over the
training phase were not significantly associated with the participants’
cognitive status in our study, suggesting that a positive training re-
sponse can also be achieved in older adults with mild-to-moderate
cognitive impairment. This might especially be explained by the fact
that we applied specific teaching methods and practice conditions in
the user training which have been shown to be effective for learning
other motor tasks in older adults with cognitive impairment (van
Halteren-van Tilborg et al., 2007; Werner et al., 2017).

Finally, higher gestural performances were closely related to higher
CRRs at pre- and post-test, supporting our hypothesis and highlighting
the high dependence of the robot-integrated GRS on the quality of a
user’s input for successful gesture recognition. The high extent by which
improvements in the gestural performance parallel improvements in the
CRR further emphasizes this dependence and suggest that improving
the gestural performance of the users is directly translated into im-
provements in the CRR, leading to an overall improved HRI.

5. Limitations

This study has some limitations. First, the sample size was rather
small, limiting the statistical power and generalizability of the results
and the ability to perform multiple regression analyses. Second,
training effects might not be generalizable to gesture-based HRI with
another assistive robot. However, the predefined set of GCs for the
assistive bathing robot included various GCs, suggesting that our
training approach might be beneficial to improve the gestural perfor-
mance of older users also for gesture-based HRI with other assistive
robots. Third, as a quasi-experimental pretest-posttest study with no
control was performed, training effects cannot unequivocally be at-
tributed to the user training. Improvements in the CRR were, however,
highly associated with those in the gestural performance, suggesting at
least a causal relationship between improving the quality of a user’s
GCs and improving the CRR and overall HRI, respectively, which was
the starting point of this study. Fourth, the study did not include a
follow-up, and therefore the sustainability of training effects remains
unclear. Future studies should investigate whether potential users are
able to remember and correctly perform the GCs also after long periods
of time or whether recurrent training sessions are necessary to ensure
an adequate gestural performance for long-term successful HRI.

6. Conclusions

The present study reveals that providing a user training specifically

tailored to the needs of potential robot users to improve their GCs is
highly beneficial for gesture-based HRI with an assistive bathing robot.
Our results demonstrated that improved gestural performance is di-
rectly translated into better technical performance of the robot-in-
tegrated GRS, leading to an overall improved gesture-based HRI.
Training benefits can also be achieved in persons with mild-to-mod-
erate cognitive impairment. Older users with low initial gestural per-
formance and more negative feelings toward technology may even
benefit the most from a tailored user training. Current findings high-
light that for improving gesture-based HRI between assistive robots and
older users, future developments and studies in this field should focus
not only on refining technical aspects of the robot but also on improving
the quality of a user’s input by training. Training procedures may be
particularly effective when considering the individual resources and
limitations of potential users. The presented user training may re-
present a model for training older adults in gesture-based HRI with an
assistive robot.
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