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This paper presents an algorithm for 3-D motion and shape recovery using
two perspective views and their relative 2-D displacement field. The 2-D displace-
ment vectors are estimated as parameters of a 2-D affine model that generalizes
standard block matching by allowing affine shape deformations of image blocks
and affine intensity transformations. The matching block size is effectively found
via morphological size histograms. The parameters of the rigid body motion are
estimated using a least-squares algorithm that requires solving a system of linear
equations with rank three. Some stabilization of the recovered motion parameters
under noise is achieved through a simple form of maximum a posteriori estimation.
A multi-scale search in the parameter space is also used to improve accuracy
without high computational cost. Experiments on applying this algorithm to
various real world image sequences demonstrate that it can estimate dense dis-
placement fields and recover motion parameters and object shape with relatively
small errors.
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1. INTRODUCTION
1.1 Background

Visual motion analysis can provide rich information about the 3-D motion
and surface structure of moving objects with many applications on vision-guided
robots, video data compression, and remote sensing. There are two major pro-
blems in this area: the first is determination of 2-D motion displacement fields
from time sequences of intensity images. The second problem is to recover the
motion parameters, which include 3-D translations and rotations, and the surface
structure in terms of object depth relative to the camera or retina by using the
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estimated displacement field. There has been much previous and important
work on visual motion analysis as summarized in [1, 15, 21, 23].

The major approaches to estimating 2-D displacement vectors for corre-
sponding pixels in two time-consecutive image frames can be classified as gradient-
based methods, correspondence of motion tokens, and block matching methods.
The gradient methods are based on constraints or relationships among the image
spatial and temporal derivatives, e.g. [14]. Tomasi and Kanade [28] proposed a
point feature detection and tracking algorithm which uses Taylor expansion and
the linearization method and assumes that the displacement is much smaller than
the window size. A broad class of gradient methods is all the pixel-recursive
algorithms, popular among video coding researchers [12, 24, 25]. The corre-
spondence methods consist of extracting important image features and tracking
them over consecutive image frames. Examples of such features include isolated
points, edges, and blobs [1, 2, 6, 29]. In block matching methods, blocks (i.e.,
subframes) in the previous image frame are matched with corresponding blocks
in the current frame via criteria such as minimizing a mean squared (or absolute)
error or maximizing a cross-correlation [16, 24]. Standard block matching does
not perform well when the scenes undergo both shape deformations and illu-
mination changes; thus, various improved or generalized models have been
proposed in [5, 9, 10, 17, 30].

There are also numerous approaches to 3-D motion and shape recovery.
Most of them assume that 2-D velocity data (sparse or dense) have been obtained
in advance. Tsai and Huang [29, 32] used seven correspondence point paits to
determine 3-D motion parameters of curved surfaces from 2-D perspective views.
Heeger and Jepson [13] proposed a method for computing 3-D motion and
depth, but they used the image velocity equations of rigid body and velocity
equations which are only the first-order approximation of rigid body motion
captured in any two image frames. Longuet-Higgins and Prazdny [19] showed
that an observer can, in principle, determine the structure of a rigid scene and his
direction of motion relative to it from the instantaneous retinal velocity field.
Waxman and Ullman [31] introduced a new representation of a local image flow
in terms of the image velocities, strain rates, spin, and image gradients of the
strain rate and spin, evaluated along the line of sight to a moving surface. Harris
[11] explored structure-from-motion algorithms based on matched point-like
features under orthographic projection for use in analyzing image motion from
small rigid moving objects. Tomasi and Kanade [28] achieved very good results
when they assumed orthographic projections and used a stream of real world
images with many points on each image. They decomposed the coordinate matrix
directly into motion parameter and object surface structure matrices without
resorting to depth as an intermediate step. Quan and Mohr [26] recovered the
object surface structure from motion for linear features through referenced
points. '

1.2 Organization

In this paper, we present an integrated system to first determine 2-D motion
displacement fields and then recover the 3-D motion parameters and surface
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structure under perspective projection. Our strength is that 3-D motion and
shape recovery uses real 2-D displacement fields from real world images while
most 2-D algorithms generate displacement fields which are never really tested
in subsequent 3-D motion and shape recovery and most 3-D algorithms simply
input synthetic displacement field. Orthographic projection has the property
that the projection of the centroid of the object points is the centroid of the
projections of the object points and, thus, can be used to separate translation
from rotation. However, orthographic projection is not a good model in the
real world because foreshortening is an important clue to motion recovery.
Perspective projection is more realistic for real world applications but is more .
difficult to analyze.

In Section 2.1, we will review from [5] our 2-D affine model for estimating
the displacement field in spatio-temporal image sequences, which allows for affine
shape deformations of corresponding spatial regions and for affine transformations
of the image intensity range. The model parameters are found by using a least-
squares algorithm. (In a related work [10], an adaptive least-squares correlation
was proposed which allowed for local geometrical image deformations and
intensity corrections (additive bias only), and a gradient descent algorithm was
used to find model parameters.) In [5], we experimentally demonstrated that our
affine block matching algorithm performs better in estimating displacements than
do standard block matching and gradient methods, especially for long-range
motion with possible changes in scene illumination. In Section 2.2, we will
further refine our affine matching algorithm by using morphological size
histograms to find an effective matching block size that, for each image frame
pair, can be chosen to match the various characteristic object sizes present in the
image frame and, thus, minimize displacement estimation errors.

In Section 3, we will present an algorithm that uses a least-squares method
to recover the 3-D rigid body motion parameters and surface structure based
on two perspective views and the given 2-D displacement data estimated by
2-D affine block matching. Our approach not only uses the redundancy inherent
in the over-determined linear system to combat noise, but also uses maximum a
posteriori (MAP) estimation to include prior information and to stabilize the
parameters. Although the rigid body motion equation is the same as that used
in [32], our approach for finding its parameters has the attractive feature of
using a system of linear equations that has only rank three. In addition, our
algorithm performs a multi-scale search of the discretized and bounded
parameter space to avoid high computational cost and to achieve better ac-
curacy. In the time domain, the recovered motion parameters can be smoothed
by vector median filtering to reduce noise when the motion remains constant or
varies smoothly.

Our contribution includes a novel least-squares algorithm to estimate the
2-D displacement field, a new approach to guide selection of the block size, and
an original least-squares algorithm with MAP estimation and multi-scale
searching for 3-D motion and shape recovery. The proposed algorithm is applied
to time sequences of real world images and is shown to give displacement
vectors, motion parameters, and surface structure with small relative error.
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2. AFFINE BLOCK MATCHING MODEL
2.1 2-D Affine Model and a Least-Squared Algorithm

This section reviews a 2-D affine model and its associated least-squared
algorithm for image matching and motion detection [5]. Let I(x, y, t) be a
spatio-temporal intensity image signal due to a moving object, where p = (x, y) is
the (spatial) pixel vector. Let a planar region R be the projection of the moving
object at time ¢ = ;. At a future time ¢ = #, R will correspond to another region
R’ with deformed shape due to foreshortening or rotations of the object surface
regions as viewed at two different time instances. We assume that the region R’
at t = t, has resulted from the region R at ¢ = ¢, via an affine shape deformation
p > Mp + d, where

[ s.cos 6, —s,sin8,\rxy |4,
Mp+d= s, sin 6, sycosey][}’]+ d,|’ @)

The vector d = (d,, d,) accounts for spatial translations whereas the 2 x 2
real matrix M accounts for rotations and scalings. That is, s,, s, are the scaling
ratios in the x, y directions, and 6,, 6, are the corresponding rotation angles.
Translation, rotation, and scaling are region deformations that often occur ina
moving image sequence. In addition, we allow the image intensities to undergo an
affine transformation I |- rI + ¢, where the ratio r adjusts the image amplitude
dynamic range, and c is a brightness offset. These intensity changes can be caused
by different lighting and viewing geometries at times #; and f,.

Given I(p, t) at t = 1, t; and at various image locations, we select a small
analysis region R and find the optimal parameters M, d, r, ¢ that minimize the error
functional

EM, d, r, ¢)= ZR|I(p, 1)-rMp+d, t,)—c|*. )
pe

The optimum d provides us with the displacement vector. As by-products,
we also obtain the optimal M, r, ¢ which provide information about rotation,
scaling, and intensity changes. We call this approach the affine model for image
matching. Note that the standard block matching method is a special case of our
affine model, corresponding to an identity matrix M, r = 1, ¢ = 0. Although d is
a displacement vector representative of the whole region R, we can obtain dense
displacement estimates by repeating this minimization procedure at each pixel,
with R being a small surrounding region. Although we expect a certain variation
of the affinities over the area of the image of an object such as a sphere, we hope
that the 2-D affine model, where the spatial transformation may or may not be
coupled with the intensity transformation, will be a reasonable approximation in
that situation.

Finding the optimal M, d, r, ¢ is a nonlinear optimization problem. While it
can be solved iteratively by gradient steepest descent in an 8-D parameter space,
this approach cannot guarantee convergence to a global minimum. Alternatively,
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we proposed in [5] the following algorithm that provides a closed-form solution
for the optimal r, ¢ and iteratively searches a quantized parameter space for the
optimal M, d. We find first the optimal r, ¢ by setting %fri ={ and %—f = (0. Solving
these two linear equations yields the optimal #* and ¢* as functional of M and d.
Replacing the optimal r*, c* into E yields a modified error functional E*(M, d).
Now, by discretizing the 6-D parameter space M, d and exhaustively searching a
bounded region, we find the optimal M*, d* that minimize E*(M, d). The transla-
tion is restricted to be L pixels in each direction, i.e., | d;l,ld,|< L, and the region

R at t = 1; is assumed to be a square of B x B pixels. In our implementation, we

assume s, = s, and 6, = 6,, so the computational complexity is O(L? x B> x S x ©),
where § and © are the numbers of search samples in scaling and rotation angles,
respectively. After having found the optimal M* and d*, we can obtain the optimal
r* and c* [5].

Figs. 1(a), (b) show an original “Poster” image and a synthetically trans-

(b)

¢
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Fig. 1. Simulation result of the affine block model. (a) An affine transformed version of the
image in (b) with translation d = (5,5), rotation 8= 6°, scaling s = 1.2, intensity ratio r =
0.7, and intensity bias ¢ = 20. (b) The original “Poster” image. (242x242 pixels, 8-bit/
pixel). (c) Displacement vectors between the images in (a) and (b) obtained from

standard block matching. (d) Displacement vectors from the affine matching algorithm
(L =40 pixels).
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formed image according to the affine model with a global translation of d = (5,5)
pixels, rotation by 6 = 6°, scaling s, = sy = 1.2, intensity ratio r = 0.7, and intensity
bias ¢ = 20. The center of the synthesized rotation and scaling is at the global
center of the image. Fig. 1(c) shows the displacement field estimated via the
standard block matching where the error %, |I(p 1) - I(p + d, 1,) |? is minimized.
The standard block matching performs poorly because it assumes only transla-
tion and has difficulty dealing with scaling or rotation. The standard block
matching also assumes constant intensity and results in poor matching under
intensity scaling and intensity bias. Fig. 1(d) shows the displacement field es-
timated via the affine matching algorithm. In this experiment, the searchmg range
for the scaling was s, = s, € [0.8, 1.2] and for the rotation 6, = 6, € [-6°, 67; also
we had set B =19 and L = 40. The experiment clearly shows the superior perfor-
mance of the affine model for image matching to the standard block matching;
however, the superior performance comes at higher computational cost.

Our affine matching algorithm not only performs well on rigid objects under-
going short- or long-range motion and/or changes in scene lighting, but also has
satisfactory performance on nonrigid objects such as moving clouds or hurricane
where the interframe changes of object shapes could be very large. Figs. 2(a)
and (b) show two time frames from a satellite infrared hurricane i image sequence
where the intensity represents the altitude of the cloud top. Fig. 2(c) shows the
centers of the matching blocks and the scale of the block size. In this experiment,
there are no displacement estimates for blocks whose standard deviations of
intensity are less than 5 because in such cases there is insufficient texture infor-
mation in the analysis region to perform a successful matching. There are also no
estimates for blocks which correspond to multiple blocks in the next image frame
with the same minimum matching error. Fig. 2(d) shows the motion displace-
ment field d that results by applying the above affine matching algorithm and
smoothing the raw estimates by using a spatio-temporal vector median filter [7].
The motion is quite rapid and inhomogeneous across the image.

2.2 Block Size Selection for 2-D Affine Matching

The selection of the block size B is important because, if B is too small,
there is insufficient information in the analysis region to determine the affine
model parameters; hence, mismatches can occur. If the block size is too large, the
matching is unnecessarily computationally expensive, and the affine model
cannot resolve small objects undergoing disparate motions within the region.
Fig. 3 shows the relationship between the block size and the performance of
the 2-D affine matching. Since the whole image in Fig. 1(a) is an affine trans-
formation of the image in Fig. 1(b), Figs. 3(a), (b), and (c) illustratively show that
as the block size increases, the block contains more information for determining
the affine model parameters; thus, the error in d, and d, decreases. Table 1 and
Fig. 3(d) numerically show that as the block size increases, the number of misma-
tches decreases and vice-versa.

The size and shape of the objects in the image are natural criteria for the
selection of the optimal block size B. Our approach is to obtain a binarized
version X for the gray-level image frame and determine an optimum block size
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Fig. 2. Affineblock model on ahurricane image sequence. () First frame of asatellite infrared
cloud image sequence from a hurricane (240x320 pixels, 4-bit/pixel). (b) Second frame
of the hurricane sequence (30 minutes between frames). (c) The scale of size and centers
of the blocks used for affine matching. The block size is 19x19 as shown on upper left
corner with the block center. The horizontal and vertical spacings are 8 and 6 pixels,
respectively. (d) Displacement vectors (magnified 1.5 times) from the affine matching
algorithm, smoothed by a vector median filter. (B =19, L=15pixels.)

based on the shapes and sizes of the binary objects in X. The morphological
shape-size histogram [20, 27], based on multiscale openings/closings and
granulometries [22] and also called the ‘pattern spectrum’ in [20], offers a good

description of the shape and size information of the objects in the binary image X
and is defined as follows:

SHx(+n) = A[XonS] — A[Xo(n + 1)S], n > 0
SHy(-n) = A[XenS] — A[Xe(n - 1)S], n > 1 3)

where A[] denotes the area, and XonS and XenS denote the opening and
closing of X by a structuring element S of size . The opening of image X by the
structuring element K is denoted by XoK = (XOK)®K. The closing of image X
by the structuring element X is denoted by XeK = (X®K)OK. In turn, the dilation
of the binary image X by the structuring element K is defined by
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Fig3. Selection of block size B. Result of matching Figs. 1(a) and 1(b) where the block size

is: (a)3x3, (b) 7x7, (c) 23x23. (d) Erros of d, an d, (in pixels) with respect to varying

block size. (e) Binarized image of (b). (f) Size histogram of (e) using a 3x3 square
structuring element.

X@K:{cevEN|c=x+kforsomexeXandkeK}, 4)
where EV is the Euclidean N-space. The erosion of the image X by the structuring
element K is defined by

XO© K=|{ce EN|c + ke X for every k € K}, 5)
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Large isolated spikes or narrow peaks in the size histogram, located at
some positive (or negative) size n, indicate the existence of separate objects or
protrusions in the foreground (or background) of the image X at that size n. In
our experiments, we used square analysis regions for image matching, so we fixed
S to be a 3 x 3-pixel square.

We convert a gray-tone image frame into a binary image X by thresholding
at the median of the intensity values so as to obtain approximately equal
numbers of dark and bright pixels. Note that opening and closing are dual
operations on bright and dark pixels; hence, the size the histogram will be more
symmetrical if the binary image has approximately equal numbers of dark and
bright pixels. The binary image thus generated is shown in Fig. 3(e), and its
size histogram is shown in Fig. 3(f). Note that we did not use any edge operator
to convert a gray-tone image into a binary image because good edge detection
requires pre-smoothing of the image, and the size of the smoothing kernel affects
the size histogram.

By using the size histogram and a heuristic rule for the selection of block
size B, we can avoid expensive multi-scale analysis in choosing an “optimal” block
size B, that minimizes the average displacement error. Since we have six parame-
ters in our 2-D affine model, (v, ¢, 6, s, d,, d,) the block size B,p; cannot be less
than a minimum size in order to have enough information in the analysis region;
through experiments on various image sequences of synthetic translation and ro-
tation, we found a reasonable minimum to be about 11. After some experimenta-
tion on various images, we found strong correlation between N and the
optimal block size B,,,, where n,,,, is the size at which the size histogram assumes
its maximum value over all sizes > 11. As an example, Table 1 shows that the
estimation errors in the displacements d, and d, (between the images in Figs.
1(a), (b)) achieve an asymptotic value of 0.3 pixels when B > 15. From the size
histogram, the size which is not less than the minimum and which gives the maxi-
mum value of the size histogram is 7. Therefore, since the structuring element is
a 3 x 3 square, the most common pattern size is #,,,, = 2 X 7 + 1 = 15, which
coincides with the optimum block size. Despite their strong correlation, an exact
relationship between By and ny,,, is difficult to find. In practice, we propose the
following general heuristic rule for block size selection: Bopt = gy + 4. We add
this small constant (4) to #,,,, because the most common patterns will be smaller
than the corresponding analysis region R and lie entirely inside R. Thus, for the
example in Fig. 3, we finally selected B = 19. We have applied this heuristic rule
to various images to approximately select the optimal block size B, and found
that it performs well. Our experiments on various images show strong corre-
lation between n,,,, and B, but not a dead sure relationship; thus, #,,, is a good
heuristic indicator of B, Experimental details about #,,,, and B, are abundant

Table 1. Displacement estimation errors with respect to block size (in pixels)

B xB Ix1 [3x3|5x5]7x7 [11 x11[15 x 15[19 x 19] 23 x 23
d, error | 464 21.3 7.1 1.6 0.5 03 0.3 0.3
d, error | 45.3 33.5 6.1 0.9 0.5 0.3 0.3 0.3
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and would make this paper unduly long; thus, they will be presented in another
paper now in preparation.

Overall, we have applied the affine block matching algorithm to various
indoor and outdoor image sequences, and the experimental results show that the
algorithm is robust and gives dense and reliable displacement fields.

3. 3-D MOTION AND SHAPE RECOVERY

After the 2-D displacement vector field is estimated, the next step is to use
it to recover the rigid-body motion parameters and object shape. This section gives
the details and experimental results of recovering 3-D motion parameters and
surface structure under perspective projection via a rigid body motion equation
whose parameters are found using a least-squares algorithm, maximum a posteriori
parameter estimation, and multi-scale parameter searching.

3.1 Rigid Body Motion and Least-Squares Algorithm

Assume a perspective projection, where the origin is the center of projection,
and the image plane is the Z = 1 plane, as shown in Fig. 4. Let (X, Y, Z) and (X
Y’, Z’) be the 3-D world coordinates of a point on objects before and after rigid
motion. Let (x, y) and (x y’) be the coordinates of the projections of the point
on the 2-D image plane before and after the motion; thus we have

Y
y_Z/' (6)

X o X
x_Zx_Z' y=

N~

Rigid motion includes rotation by angles 6,, 6,, 6, around their respective
axes X, Z, Y in the given order (other orders can be solved similarly), followed
by translation (7, T,, T,), where the subscript denotes the corresponding axis
along which the translation component is measured. Thus, we have the rigid
body motion equation:

x1[C 0 s ][c.-s,0][1 0o o]x1 [
vI=lo 1 olls, ¢, oflo c -S| Y|+T, (7)
Z]-s, 0 ¢, |0 0 1] 0 s cZl T

X

A ] ®Y,2)

X,Y’,7%)

Y
\/mage plane Z=1

Fig. 4. Camera setup and the perspective projection.
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X'= C,CX + (S8, - C,CS)Y + (S, + $,C,8)Z + T,
Y'=8.X+ CCY-SCZ+ T,
Z'==8,C.X + (C,S, + C,S,S)Y + (C,C, - $,8,5,)Z + T, (8)

where C, = cosé,, C, = cos®,, C, = cosf,, S, = siné,, Sy = sinb,, S, = siné,.
We assume that the angles of rotation are sufficiently small such as to arrive
at a first-order approximation:

cosf, ~ 1, cos6, = 1, cosf, ~ 1, sinb, = 6, sinf, ~ 6,, sin6, =~ 0, )
sin; sinb, ~ 0, sinf, sing, = 0, siné, sinb, = 0. (10)

For example, if (-10°< @, 0,, 8, < 10°), the errors in cos@ = 1 and sinf ~
are at most 2% and 1%, respectively. Under this small angle assumption, Eq. (8)
becomes the velocity equation

X'=X+6Z-6Y+T,
Y'=Y+6X-0Z+T,
Z'=Z+6Y-6X+T, (11)

Note that Heeger and Jepson [13] computed 3-D motion and depth with
this velocity equation, which is only a first-order approximation of the rigid body
motion equation. -

If we divide X" and Y’by Z”in Eq. (11), we obtain

6,-06, %
X _X402-0y+T, x+0-6y+7 12)
7 Z+0,Y-0,X+T, T,
Y 1+60y—0,x+F
Z
I
r Y+0X-60,Z+T, Y+0x-6.+—
y’:L: b y= Z . (13)
Z Z+6,Y-0,X+T, T,
£ l+6xy—9yx+7

Cancelling Z from the above two equations, assuming T, # 0, dividing both

T
sides with T, and letting L =7, and M = TY, we have
Z

Z

6OYL + L — x" = xyM) + 6,(—=xy’L + xx'M + M - y))
+ 0,(xx" - xL — yM + yy")
=Mx"— Mx + xy’— Ly’ + yL — x%. (14)

Here, the known data are the n corresponding beginning points (x, y) and
ending points (x7, y’), and the unknowns are the five motion parameters (L, M, 0,,
0,, 6,). We further constrain the range of L and M by assuming that —10.0 < L,
M < 10.0, which corresponds to assuming that 7, and T, are not more than an




12 CHIOU-SHANN FUH AND PETROS MARAGOS

order of magnitude larger than T,. Thus, we search a discretized and bounded
parameter space of (L, M) e [-10, 10]? with a step size of 0.05 in each direction.
For each (L, M), we set up an overdetermined system of equations:
¥ o =
(nx3) (3x1)  (mx1), (15)

where ¥ and J consist of n rows of
(yilyiL"'L_x;_xz"yiM’_xiY;'L*'xile'M+M—yi”xix; _xiL_yiM"'yiyi,)! (16)
(Mx,—Mx,+x;y;— Ly, +yL—xy;), 1<i<n an

and a = (6,, 6,, 6,)7, where (-)7 denotes the vector transpose. For each pair of
translation parameters (L, M), we can solve Eq. (14) for a least-squares solution
of the corresponding rotation parameters (6;, 6,, 6;) as follows:

ors = (FT¥) PP, (18)

The quintuple (L, M, 6,, 6,, 8,) which minimizes the squared error (Yo — BT
(¥o — P) is the set of recovered motion parameters. This least-squares algorithm
has a computational complexity of O(n x #L x #M), where #L and #M are the
numbers of search points in L and M, respectively.

3.2 MAP Estimation

This section explains how our algorithm can use statistical methods to
include prior information and, thus, “stabilize” the recovered motion parameters.
Assume that the overall effect of displacement estimation errors is to have the
error model

B=VYo+ €, 19)
where €=(€,, ... €,) T and the random variables €, are zero-mean, independent, and
normally distributed with identical variance 3.

First, if we assume that « is deterministic, its maximum likelihood (ML)
estimate

O, = argm&‘XP(ﬁ! o) (20)

makes use of whatever information we have about the distribution of the observa-
tions (displacement vectors). This ML estimate is equal to [3]:

aML=<Gi/% Py ngﬁﬁ#?’“f’)" B, (21)

Thus, the maximum likelihood estimate is the same as the ordinary least-



MOTION AND SHAPE RECOVERY 13

squares estimate under the above error assumptions.
Further statistical information can be utilized to improve the motion
parameter estimates. Assuming now that « is random, by using Bayes’ formula

i

P(o| p= Pwﬁ# . (22)

it follows that the maximum a posteriori (MAP) estimate for o is

Oysp=argmax P(@| f) = argmax P(B| &) P(0), (23)

which maximizes the product of the likelihood and the prior. Since the camera
field of view is small in real life, rotation angles are usually small; otherwise,
objects would be out of view. We further assume as prior information that 6,, 0,,
0, are independently and normally distributed with zero mean and identical
variance 0% This assumption yields [3]:

| Gz
aMAP=(§ ?”"P+§I)‘% WIB= (¥ 1) . (24)
B a B @

The confidence factor 0}/ 0% reflects the confidence of the prior information
relative to that of the displacement vectors. The larger 6%/ 0% is, the greater is the
confidence about the prior information; on the other hand, if 6%/ 0% is small, we
are more confident in the displacement vectors. Note that if 63/ 0% = 0, then the
least-squares estimate, ML estimate, and MAP estimate become the same. The
advantage of MAP estimators is that they can include prior information and are
flexible because the confidence level can be controlled; hence, the solutions can
be “stabilized” when the matrix W is ill-conditioned due to noise. The disadvan-
tage is that when the mean values of the parameters assumed by the prior infor-
mation are different from the actual values (e.g. nonzero rotation angles) and there
is no noise in the displacement vectors (e.g. in synthetic simulations), the MAP
estimates are shifted toward those mean values (i.e., toward zero rotation angles).
The MAP estimate has the same computational complexity as the least-squares
algorithm in Section 3.1 because we only add the confidence factor to each diagonal
element of YT before matrix inversion.

Synthetic simulations [7, 8] show that when no noise is added and 6%/ 0% =
0, the recovered motion parameters depend only on displacement vectors. In this
case, there is almost no error in the recovered motion parameters; a small error
occurs only because we search a bounded and discrete space for the translational
direction (T,/T,, T,/T,, 1). In our synthetic simulations, the noise added to the
beginning points (x, y) and ending points (x’, y) was white Gaussian noise. If the
synthetic rotation angles are the same as the mean rotation angles assumed by the
prior information (6, = 0°, 6, = 0°, 6, = 0°), increasing 0%/ 6% always improves
the motion parameter estimates. When the synthetic rotation angles are nonzero,
as the confidence factor 03/ 0% increases, we are more confident in the prior infor-
mation; thus, the average error of the motion parameter estimates increases.
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Similar results are achieved when the noise level is low, such as, SNR' > 50dB.
Hence, synthetic simulations indicate that more confidence should be placed on
displacement vectors when no or low noise is present.

When the noise in displacement vectors increases, more confidence should
be put on the prior information to stabilize the estimates. In [7, 8], it was found
via simulations that the optimal confidence factor increases as the noise increases
for cases where the signal-to-noise ratio was < 40dB. However, the relationship
between these two amounts of increase is difficult to quantify and depends on the
actual parameter values. Various simulations show that MAP estimation indeed
improves motion parameter estimates compared to least-squares estimates or maxi-
mum likelihood estimates when there is noise in the displacement vectors.

The MAP estimate and parameter search reported here are heuristic because
we only assume the most general case of white Gaussian noise on the elements of
the linear systems of equations. If more statistical information about noise is
available in advance, the information can be utilized in a similar way.

3.3 Multi-Scale Parameter Searching and Time-Domain Smoothing

In this section, we will discuss how multi-scale searching of motion parameter
space can improve accuracy and how time-domain smoothing of recovered motion
parameters can reduce noise. Since the velocity equation is valid only instanta-
neously, each snapshot of a scene shows rigid body motion and is described more
accurately by Eq. (7). The first-order approximation estimate of motion parameters
(L, M, 6,, 6, 6,) is computed as described in Sections 3.1 and 3.2 and is used as
the initial estimate. More accurate motion parameter estimates can be achieved
by further refining this initial estimate through multi-scale searching (i.e., locally
searching) of the bounded and discretized motion parameter space around the
initial estimate on a finer scale. This will be explained next.

We next return to the true motion equations of a rigid body, define the error
term, and locally search the bounded and discretized motion parameter space
around the initial estimate on a finer scale. Using Eq. (8) and dividing X”and Y’
by Z’ yields

T,
GG+, -COSy+(CS+8CS)r 7

¥=%= 2 25)
—Sysz+(Cny+ CxSySZ)y+(CXCy—SxSySZ)+7Z
T,
’ Szx+ Cszy_SxC + =
,_ Y =7
== T (26)
—§,Cx+ (CySX +C.S,8)y+ (CXCy—SXSySZ) + 71‘

By cancelling Z from the above two equations, assuming T, # 0, dividing

1 The noise added to the beginning points (x,y) and ending points (x%y’) is white Gaussian noise, and
the signal-to-noise ratio is defined as SNR = 20log___ Onoise .
o(x, y, x, y)
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T

both sizes with T, and letting L = 22, M = Ty, we define the error for each
Z

corresponding pair as

NN

Error(L, M, 8,6y, 0,) = (C,C; + LS, C)xy"+ (8,5, - C.G,S, ~ LC,S, S, - LS.C,)yy’
+(CSy + S.G,8, ~ LC,C, + LS,S,S,)y’ — (MS,C, + S,)xx’
+ (MGS,S, + MS,C, ~ C,C)yx" + (MC,C, - MS,S,S, + 5,C.)x"
+ (LS, = MC,C)x + (LC,C, — MS,S, + MC,C,S,)y
— (MC,S, + MS,C,S, + LS,C,). 27)

Ideally (in the noise-free case) Error =0. However, in practical experiments,
Error # 0, and we find the optimal (L, M, 6,, 6,, 6,) which minimize Z(Error)?
over all corresponding pairs. Multi-scale searching is done by locally searching
around the initial estimates on a finer scale. We search the discretized and
bounded parameter space of [, — 1°, 6; +1°, [6, - 17, 6, + 19, [6, — 1°, 6, +1°]
with a step size of 0.1° and search that of [L - 0.05, L + 0.05], [M - 0.05, M +
0.05] with a step size of 0.005. The quintuple (L, M, 6,, 6,, 8,) which yields the
minimum sum of squares of Error is the set of recovered motion parameters.
Multi-scale searching improves the accuracy of the motion parameter estimates
and avoids high computational cost since searching the complete motion pa-
rameter space with such a fine scale would be computationally expensive. This
multi-scale searching has a computational complexity of O(#L x #M x ©, x 0, X
©,), where #L, #M, 0,, ©), ©, are the numbers of fine scale search points in L, M,
6., 6,, 6, respectively.

After multi-scale searching to compute more accurate motion parameters,

we can substitute the parameters back into Eq. (25) or (26) to compute Z, i.e. the

depth of the object surface up to a scaling factor by: ‘
Z = . x—L . (28)
T, §,Cxx— (C.S,8,+8,C)x'y— (C,C,~S5.8,85)x + CCx+(S,.S,— CC,S,)y+¢

- M
Z_ — _ , (29)
L 5Cxy—(C.S,S,+ Gy = (CC,-5,8,8,)y +S,x+ C,C,y-S.C,

where & = (C,S, + 8:CyS;). The choice of which of the above equations or com-
bination of equations to use depends on the numerical considerations and
motion. For example, when T, is dominant (the motion is mainly horizontal trans-
lation), Eq. (29) is better than Eq. (28) because the situation is similar to stereo
vision in recovering an object shape, where y”and y carry depth information, but
x”and x are almost constant. Similarly, when T, is dominant (the motion is mainly
vertical translation), Eq. (28) is better than Eq. (29).

If we know T, = 0 in advance, we can still recover the motion parameters and
object shape using a similar method only with a much simpler set of equations.

Although the least-squares algorithm with MAP estimation and multi-scale
searching has been found to be robust in many cases, motion and shape recovery
of real world images is sometimes sensitive to noise, and the estimated motion
parameters have errors due to ambiguity where very different motion can induce
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similar displacement fields. We treat the errorsin the recovered motion parameters
as noise, and additional improvement can be achieved by smoothing the motion
parameters in the time domain when the motion remains constant or varies smo-
othly between image frames. We choose median filtering because of its relative
robustness compared to a linear averager. Thus, the smoothed motion parameter
0, at time j is the scalar median of the 2m + 1 estimates of 6, centered at time j:

0,(j) = med{0,G) :i=j-m,j-m+1, ...] v ] + M) (30)

We have found this time-domain median smoothing to perform well in re-
ducing errors of estimated motion parameters, as shown in experiments which will
be described in Section 3.4. ‘

3.4 Experiments and Discussion

It is well known that different motions can induce similar displacement
vector fields; thus, motion and shape recovery algorithms rely on the consistency
of d, and d, to clarify any ambiguity. In our algorithm, we use only displacement
vectors and achieve satisfactory performance; however, the rotation, scaling, and
intensity ratio and bias contain rich motion information and should further
improve the performance. Thus, their use to avoid motion ambiguity is a good
subject for future research. To smooth? the estimated displacement field and
eliminate some errors, we introduce a nonlinear outlier removal filter which leaves

the displacement vector unchanged if it “agrees” with more than % of its neighbors

and removes the displacement vector if it “agrees” with fewer than % of its
neighboring displacement vectors. We say that a displacement vector d; = {dyxsr

dy;} “agrees” with its neighbor d; = {d., dy} if and only if

|dyi— dy;1< 0.1 - max(| el ,1d;1) and |d,;— dy;| <01 - max( ld,l,] dy( ; |1)).

The two sides of an object with large depth difference can have very dif-
ferent displacement vector patterns; we choose “% ” because if “% ” of the neigh-

bors are consistent, then the displacement vectors of both sides stay unchanged.
The proportional parameter, “0.17, constrains how stringently two displacement
vectors must “agree.” Both parameters can be changed depending on the image
sequence and applications. The nonlinear outlier removal filter has been demon-
strated experimentally to be suitable for motion and shape recovery on various
real world image sequences.

Fig. 5 shows three frames from a 6-frame toy truck image sequence with

Z As an alternative smoothing of the displacement vectors, we have also used component-wise median
filtering. However, we found that the small variations introduced to d, and d,, by vector median smoothing
can affect the accuracy of the 3-D motion and shape recovery algorithm.
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no rotation (6, = 6, = 6, = 0°) and an equal amount of translation (7, = T,=T,
=-5mm = T,/T, = T,/T, = 1) between each image frame. Here, the camera yaw
was 0, pitch is 6, and roll is 6, all in degrees. The translation direction was T,
points upward, 7, points rightward, and T, points toward the objects. The lower
left truck was the closest (170mm away), the lower right truck was in the middle
(220mm away), and the upper tractor truck was the farthest (360mm away).

ALPALLS
000000500
7 A
1’ i 27,

7 7

ASALLL L2
10000000 Sh

s LA
s
s 7 //5 A

5

(e)

(©) (£)

Fig. 5. Toy truck image sequence, 6, = 6,= 6,=0°, T, = T\, = T, =—~Smm. (a) Frame 3 (386x386
pixels, 8 bit/pixel). (b) Frame 4. (c) Frame 5 of the image sequence. (d) Result of
2-D affine block matching of (a) and (b). (e) Result of nonlinear outlier removal on (d).
(f) Range image of the recovered object depth of (a). (Brighter is closer; darker is
farther away.)
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We used the 2-D displacement vectors estimated by the 2-D affine model
because the estimates were dense and accurate as shown in Fig. 5(d). As shown
in Fig. 5(¢), the nonlinear outlier removal algorithm performs well in removing
the mismatches around the occlusion boundaries. We used 03/ 0% = 0.01 in the
MAP estimation because the displacement vector field has low noise after
nonlinear outlier removal. Table 2 shows the recovered motion parameters of
the image sequence. The rotation angles were almost zero (compared to 40
degrees of FOV), and the translation direction (7,/T,, T,/T, , 1) had at most
20% error. Because the motion was constant, we could apply time-domain
median smoothing on motion parameters and have 6, = 0.349°, 6, = —0.305°,
9, = 0.009°, T,/T, = 0.950, and T,/T, = 0.950; this shows an improvement over
most individual estimates. We used the above motion parameters to compute
the object shape in the form of depth map. The average error for the depth
map in Fig. 5(f) was 15%. There is one depth estimate at each center of 19 x 19
block and these centers are 7 pixels apart horizontally and vertically. We re-
peated the depth estimate for the 7 x 7 pixels around the block center. The two
black stripes on the right side of the range image are not errors but indicate that
there is no depth information because the mismatches caused by occlusion bound-
aries were removed by nonlinear outlier removal.

Fig. 6 shows three frames from a 21-frame mountain image sequence. As
shown in this figure, the non-linear outlier removal algorithm performed well in
removing mismatches around occlusion (the boundary between the mountain top
and cloud). We used 0%/0% = 0.01 in the MAP estimation because the
displacement vector field had low noise after nonlinear outlier removal. Table
3 shows the typical measured and recovered motion parameters. The rotation
angles have, on average, 15% error, L has 20% average error, and M is almost
zero. The following are several possible causes for the large estimation errors.
This was a “move and shoot” image sequence; the vehicle did not stop to
stabilize, and the road surface was unpaved. The motion between image frames
was quite abrupt, and time-domain smoothing of motion parameters was not
suitable. The translation was also mainly along the optical axis, so the depth
estimates were more sensitive to noise. We suspect that the cloud moved
relative to the mountain; thus, this relative motion violated the rigid body con-
straint. The relative motion might have caused the cloud to appear to be closer
than the mountain as shown in the range image.

Table 2. Recovered motion parameters of the toy truck image squence.
The measured values are 6, = 6, =6, =0°and L =M =1.

frames 0, 0, 0, L=TJT, M =T,/T,
1,2 0.037 | -0.008 | 0.007 1.200 1.200
2,3 0.180 | -0.133 | 0.009 1.100 1.100
3,4 0.349 | -0.305 | 0.013 0.950 0.950
4,5 0.469 | -0406 | 0.007 0.900 0.900
5,6 0.453 | -0.396 | 0.011 0.900 0.900
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Table 3. Measured and recovered motion parameters of the mountain image
sequence. (The field of view was approximately 509).

frames data 6, 6, 6, L=TJT, | M= T,/T,
12, 13 | measured | 2.181 0.192 | -2.137 -0.258 0.000
recovered | 2.513 0.094 -0.819 -0.320 0.000
13, 14 | measured | 3.417 4.603 -5.477 -0.254 0.000
recovered | 4.927 4.978 -3.492 -0.255 0.070
14,15 | measured | 2.357 | -2.620 | -1.549 -0.170 0.000
recovered | 2.223 -3.024 | -0.947 -0.235 0.045

" (a) (d)

SONSSS

() (5)

Fig.6. A mountain image sequence from the University of Massachusetts at Amherst
motion dataset [4]. (a) Frame 12 (386x386 pixels, 8 bit/pixel). (b) Frame 13. (c) Frame
14 of the image sequence. (d) Result of 2-D affine block matching of (a) and (b). (¢)
Result of nonlinear outlier removal on (d). (f) Range image of the recovered object
depth of (a).
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4. CONCLUSION

We have presented a visual motion analysis system which includes a 2-D
affine model to determine 2-D motion displacement fields and an algorithm to
recover 3-D motion parameters and surface structure under perspective projec-
tion. The parameters of the 2-D affine model and velocity equation are found
using least-squares algorithms and limited searching in a bounded parameter
space. In the 3-D motion and shape recovery algorithm, a simple form of MAP
estimation has been added to stabilize the recovered motion parameters in the
presence of noise in the displacement vector field. Multi-scale searching
improves accuracy without high computational cost. Time-domain smoothing
improves motion parameter estimates when the motion remains constant or
varies slowly. The results of many synthetic simulations as well as experiments
on real world image squences have indicated that the proposed affine models
and related algorithms are effective and can robustly recover motion parameters
and object shape with relativety small errors.
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