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ABSTRACT
In this paper we focus on the development of a convolu-
tional recurrent neural network (CRNN) to categorize biosig-
nals collected in the Hellenic Trench, generated by two
cetacean species, sperm whales (Physeter macrocephalus)
and striped dolphins (Stenella coeruleoalba). We convert
audio signals into mel-spectrograms and forward the input
into a deep residual network (ResNet), designed to capture
spectral patterns. Next, ResNet’s output is reshaped into a
time-distributed layer and fed into recurrent network vari-
ants, Long Short-Term Memory (LSTMs) or Gated Recurrent
Units (GRUs), able to recognize long-term time dependencies
on extracted features. The hybrid network perfectly classifies
audio signals into three categories (dolphins, sperm whales,
ambient noise) while it also exhibits high learning ability on
recognising intraclass representations of overlapping acous-
tic patterns (clicks vs whistles and clicks, both emitted by
dolphins). The proposed scheme outperforms traditional Ma-
chine Learning (ML) techniques, baseline ResNet and LSTM
architectures or their deep parallel combinations.

Index Terms— Machine learning, residual networks, pat-
tern recognition, bioacoustic patterns, cetacean vocalization.

1. INTRODUCTION

Classification of cetacean acoustic calls is a fundamental chal-
lenge in the study of marine mammals’ bioacoustics, moti-
vated by the need to build a reliable tool for protection of
endangered species. Moreover, cetaceans’ identification has
been a growing area of research especially since Machine
Learning (ML) algorithms -supported by growing storage ca-
pacity and computational power- emerged, accessing large

The first author was supported by the projects DRESSAGE
(MIS:5045792) and “Monitoring and recording the situation of the marine
sub-regions of Greece /Upgrading and functional updating of the MSFD
monitoring network” (MIS:5010880), under NSRF 2014-2020.

Fig. 1. Raw waveforms (up) and spectrograms (down) of
sperm whale clicks (left) vs striped dolphin clicks and whis-
tles (center) and striped dolphin clicks (right) recorded at Py-
los station, Ionian Sea; sea Section 3.

training databases. Most recently, hybrid networks compris-
ing Convolutional Neural Networks (CNNs) connected in se-
ries or in parallel with recurrent layers are designed to solve
problems on computational bioacoustics [1], acoustic scene
classification [2] and polyphonic sound event detection [3].

CNNs architectures are inspired by studies in modern bi-
ology about how stages are developed in human vision pro-
cessing. In fact, low-level vision representations such as lines
or edges detection are considered to be an early stage in visual
processing [4],[5] followed by a ‘mid-level’ grouping mecha-
nism where virtual cortex recognizes intermediate forms such
as motifs of plaid patterns and curved contours [6]. Finally, on
a ‘high level’ representation, image components are bounded
to form a semantic and coherent perception of objects and
scenes in their environment [7] integrating attention mecha-
nisms too. Hence, a typical CNN, mimicking biological sys-
tems, mainly comprises convolutional layers (CLs) function-
ing as feature extractors of progressively increasing abstrac-
tion level layer after layer, gradually recognizing from data,IC
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depth-dependent patterns critical for discrimination. Follow-
ing pooling layers (PLs) perform sub-sampling, reducing out-
put’s sensitivity to distortions or shifts, providing thus invari-
ance to translations and enhancing selectivity [8].

On the other hand Recurrent Neural Networks (RNNs)
can learn temporal dynamics due to recurrent connections
between layers allowing previous or future inputs to affect
present outputs. Due to their ability to process sequential
information of variable length they have been widely used for
modeling speech recognition, time series prediction, music
improvisation, image captioning, etc. Nevertheless, van-
ishing and exploding gradients prevent RNN from learning
long-term dependencies, that is, correlations between tempo-
rally distant inputs. To overcome this issue, LSTM variant
was proposed, allowing information persistence through time,
utilizing as fundamental units recurrently connected blocks
comprising memory cells acting as accumulators, consisting
of forget, input and output gates the role of which is to decide
information components that will be removed, updated and
forwarded. Finally, GRU networks were developed mainly
differing from LSTMs on simultaneously controlling through
a single gate, forget and input gate mechanisms when updat-
ing the state unit [9].

In this paper we attempt to develop a combined Convolu-
tional and Recurrent Neural Network (CRNN) algorithm i.e.
a consecutive structure of a deep Residual Network, followed
by special types of recurrent networks, such as LSTMs and
GRUs to recognize cetacean bioacoustic calls collected in
the Hellenic Trench across a diverse range of environmental
and noise conditions. Constructing a hybrid network able
to extract spectro-temporal features is justified by the fact
that vocalisation calls -echolocation clicks or/and continu-
ous whistles [Fig.1]- form specific patterns characteristic of
species both on frequency (bandwidth, predominate frequen-
cies) and time domain (call duration, inter-click intervals).
Our study focuses on the development of deep learning (DL)
techniques, attempting to extract appropriate feature vectors
optimally capturing information from cetacean biosignals. In
this framework, we have tested several candidate input spaces
(spectrograms and scalograms) to evaluate methodological
aspects on NN architectural design, visualizing subsequently
extracted features on low dimensional space using Princi-
pal Component Analysis (PCA) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) techniques. Finally, we com-
pare alternative ML and DL models in terms of performance,
in contrast to most research works in cetacean bioacoustics
which are specialized either on the development of sophis-
ticated DL models or the utilization of traditional ML Net-
works.

2. RELATED WORK

Various approaches have been followed in the design of al-
gorithms aiming to classify cetaceans’ biosignals including

both traditional ML techniques trained on extracted features
and modern deep learning methods. Thus, Gaussian Mix-
ture Models (GMMs) and Support Vector Machines (SVM)
algorithms attempting to model boundaries between species’
cepstral feature distribution, have been used to construct a
classifier in [10] from the following species: Blainville’s
beaked whales (Mesoplodon densirostris), short-finned pilot
whales (Globicephala macrorhynchus), and Risso’s dolphins
(Grampus griseus). As demonstrated in [11], Hidden Markov
Models (HMMs) treating data as sequence of separate GMM
states -taking thus into account both spectral and temporal
structure- can automatically identify killer whales (Orcinus
orca) calls from a sample of known individuals. In recent
studies it has also been demonstrated that deep Convolutional
Neural Networks (CNN) trained on spectrograms generated
from cetacean calls are capable to detect and classify sperm
whale clicks [12] or humpback whale songs [13]. Moreover,
Siamese Neural Networks (SNN) used to measure feature
vectors’ similarities in the input space were found to out-
perform CNNs when utilized to categorize different types of
blue whale songs [14]. In addition, self-supervised learn-
ing approaches implemented by LSTM and GRU networks
have been also successfully utilized to classify sperm whale
coda types, categorize different vocal dialects, and identify
individual whales [12].

3. MATERIALS AND METHODS

Origin and characteristics of cetacean data - Experimen-
tal Design - Data preprocessing

The data examined were provided from three different sources:
i) a Passive Aquatic Listener (PAL) with a sampling fre-
quency of 100 kHz was deployed at Pylos station of the
POSEIDON buoy network in the Ionian Sea at 500 m depth
from November 2008 to March 2009, approximately 10 km
off the West Peloponnese coast [15]; ii) acoustic data were
collected through a towed array during cetacean surveys of
the Pelagos Cetacean Research Institute along the Hellenic
Trench during the period 2001-2020 with a sampling fre-
quency 48 kHz [16]; iii) acoustic recordings were carried out
at frequencies up to 100 kHz in summer 2020 and 2021 from
the ‘SAvE Whales observatory’ (System for the Avoidance
of Collisions with Endangered Whales), consisting of three
acoustics stations with one hydrophone each suspended at a
depth of 100 m, and deployed in the Bay of Sougia, Southern
Crete, about 2 km offshore and 1-2 km apart in an area of
500 m depth [17].

Sperm whale calls are mainly made up of broadband and
highly directional impulsive signals named clicks, involved
in echolocation and characterized by a centroid frequency of
approximately 15 kHz [18], in contrast to also emitted stereo-
typed calls termed ‘codas’ [19], consisting of repetitive se-
ries of clicks of lower centroid frequency ranging of approx-
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Fig. 2. General architecture of the proposed hybrid network

imately 5 kHz [20]. On the other hand, sounds generated by
delphinids have in generally been classified into three distinct
categories comprising echolocation clicks, burst pulse clicks
or whistles. Dolphin’s clicks are broadband signals of vary-
ing frequency from few tens of kHz to well over 100 kHz
[21], while burst pulse clicks are closely spaced broadband
click trains. Finally, whistles are continuous narrowband sig-
nals of fundamental frequency ranging from 2 to 30 kHz [21]
of duration’s range between 100ms and just over 4 s [22].

The dataset in this study is composed of audio signals be-
longing into three different groups: 291 recordings of sperm
whale calls, 90 ambient-noise audio signals characterized by
absence of clicks or whistles and a class consisting of 284
striped dolphin calls for the first between species experiment.
Latterly a second experiment was designed dividing dolphin’s
class into two discrete -partially overlapping- subclasses (135
files representing clicks and 149 recordings composed of
whistles and clicks). We have proceeded with this more
detailed categorization increasing complexity of the input
space, in order to better evaluate efficiency among various
architectures, given that on -between species- experiments
consisting of classifying dolphins’ or sperm whales’ vocal-
izations against ambient noise, accuracies exceeding 99%
have been achieved for the majority of models.

Part of the challenge on solving bioacoustic classification
problems comes from the wide range of anthropogenic and
environmental noise incorporated into the audio signals. We
have applied on audio files a Butterworth filter with cutoff at
1 kHz to remove low-frequency noise. Every audio clip has
been then transformed into its mel-spectrogram representa-
tion applying the windowed Fourier transform, using a Han-
ning window with a size of 512 (corresponding to a window
of 0.5ms duration) and an overlap of 50%. In contrast to
normal spectrograms, mel-spectrograms have unequal spac-
ing in the frequency bands, utilizing a logarithmic spacing
above 1 kHz and linear frequency spacing below 1 kHz [23].
Next, Per Channel Energy Normalization (PCEN) has been
applied to suppress stationary, narrowband electronic noise
caused by the equipment itself leading to horizontal lines in
mel-spectrograms and has successfully managed to enhance

Fig. 3. Accuracy and Loss of a Residual-BiLSTM model on
a between species -three classes- categorization problem

contrast between background and foreground transient events
as in [24] such as cetacean clicks.

4. EXPERIMENTS AND DISCUSSION

Convolutional Recurrent Neural Networks - Parameter
Optimization - Traditional ML techniques - Results

In this paper the proposed architecture consists of a con-
secutive structure of a Residual Network followed by an
LSTM or GRU variant based network. In particular, we use
a residual network (ResNet-101) as a baseline model, pre-
trained on ImageNet dataset, consisting of multiple blocks
that are connected to each other in series while the added
layers perform identity mapping, allowing signal’s info to
flow without losses through layers. We employ on different
experiments several variants of RNNs such as LSTMs, GRUs
or their bidirectional versions (BiLSTMs, BiGRUs) able to
capture temporal dependencies in both the previous as well
the next time steps. Figure 2 illustrates the proposed hybrid
classification network. The first block of the network utilizes
a ResNet101 architecture processing mel-spectrograms as in-
puts of shape 256x256x3 and produces spectral feature maps
the output of which are of shape 8x8x2048. Feature maps
are reshaped on a time-distributed layer in order to obtain
appropriate dimensions 16x8192, and are subsequently fed
into a second block comprising a recurrent network based
variant with 256 units extracting temporal features which
can be finally transferred to an attention mechanism layer
(weighting important parts of the sequence) followed by a
fully connected and a soft-max layer on the top for classifica-
tion purposes.

In our experimental setup, the dataset was divided into
two subsets of training and validation data with the propor-
tions of 80%, 20% respectively. We have used K-Fold cross
validation methods consisting of training on K-1 folds of data
and using rest for validation purposes. The final result is cal-
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Table 1. Performance of different NN architectures
Models Results on a test set (Mean values)

Parameters Accuracy Precision
MFCC-SVM (RBF) - 83.0% 73.4%

MFCC-kNN - 75.45% 73.4%

ResNet 1.0M 87.0% 84.7%

ResNet-LSTM 9.77M 91.3% 89.9%

ResNet-BiLSTM 18.5M 90.1% 89.1%

ResNet-GRU 7.6M 90.9% 89.8%

ResNet-BiGRU 14.2M 88.7% 88.0%

ResNet-LSTM-Attention 9.8M 90.4% 89.9%

Parallel ResNet-LSTM 8.2M 89.2% 88.7%

culated as the average accuracy and precision of the K exper-
iments. For this study, we set K = 5 and the model is trained
for 150 epochs with a batch size of 64. An Adam optimizer
was used with a learning rate of 10−3 while categorical cross
entropy for loss function was preferred during the optimiza-
tion process. A dropout regularization of 0.4 was applied to
the neural classifier to prevent from potential overfitting.

For comparison purposes we also developed a traditional
ML network based on Mel Frequency Cepstral Coefficients
(MFCCs), a feature vector widely used on traditional ML
methods followed by an SVM or KNN classifier. MFCCs’
extraction has been realized, applying on a frame-by-frame
basis the Discrete Cosine Transform (DCT) on the log-Mel
spectrogram of every audio clip. We have selected to retain
the first 13 cepstral coefficients per frame incorporating most
of the signal information, then excluded the zeroth coefficient
representing the average log-energy of the signal, augmenting
the feature vector by calculating their first derivatives. Next,
we have calculated the average of MFCC features across all
frames to build a feature vector composed of 24x1 (MFCC
and ∆MFCC) coefficients for every vocalization.

Figure 3 illustrates performance evaluation of a ResNet-
BiLSTM model during training and validation phase for a
three groups classification problem. Table 1 shows accuracy
scores for different utilized architectures on a 4-classes exper-
iment with respect to the number of the training parameters of
each model, corresponding to different computational com-
plexity. We have repeated the analysis replacing LSTM with
GRU layers comparing performances. We conclude that: (a)
baseline DL models outperform traditional ML methods; (b)
hybrid networks can achieve higher accuracies than baseline
ResNets (91.3% vs 87.0% respectively); (c) bidirectional net-
works do not increase performance; (d) all architectures have
succeeded to solve a -between species- classification problem
while hybrid architectures have demonstrated a comparative
advantage on differentiating intraclass overlapping patterns.

In terms of architectural design, the multiplicity of hyper-
parameters or layers to use, makes often hard to argue about
the appropriate selected model in terms other than accuracy

(a) Cepstral features (b) CRNN features

Fig. 4. Implementation of PCA and t-SNE visualization of
an MFCC feature vector vs an extracted deep feature vector
with the four class representing: SW: Sperm whale clicks,
NC: No Clicks, SD-C: Striped dolphins clicks, SD-W: Striped
dolphins whistles.

metrics or computational complexity. This is why we attempt
through this study to emphasize on the visualization of ex-
tracted features on low dimensional spaces as relative intuitive
measure of different architectures efficiency. In the frame of
the proposed CRNN architecture we remove the classifica-
tion head and extract deep features, then employ PCA to re-
duce feature’s space dimensionality from 256 to 10, followed
by t-SNE to further decrease dimensionality from 10 to 2 as
in [12] and plot extracted features on the Euclidean plane.
Above presented Fig.4 reveals DLs approach improved ca-
pacity to shatter feature space relatively to MLs method re-
spective results. In the frame of realized ablation studies, we
have extensively utilized t-SNE visualization on features ex-
tracted from various architectures as a qualitative mechanism
enhancing model selectivity before validating the architecture
here mentioned.

5. CONCLUSION

In this paper, a hybrid network consisting of consecutive
ResNet and RNN variants has been proposed for classifica-
tion of cetacean bioacoustic calls collected in the Hellenic
Trench. Each of the architectures we experiment with, solves
quite successfully a -between species- categorization task
confirming findings from recent studies on supervised learn-
ing ability to recognize patterns of bioacoustic events in time-
frequency representations. Additionally, our study shows that
networks’ generalization ability is more accurately evaluated
on spaces of higher complexity, where performance of differ-
ent architectures deviates significantly. In fact, when dividing
collection of dolphins’ biosignals into partially overlapping
subclasses, advantages in utilizing structures of hybrid net-
works versus both traditional ML techniques or baseline
ResNet and LSTM networks have been observed.
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