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Abstract. This paper begins with analyzing the theoretical connections
between levelings on lattices and scale-space erosions on reference semi-
lattices. They both represent large classes of self-dual morphological op-
erators that exhibit both local computation and global constraints. Such
operators are useful in numerous image analysis and vision tasks rang-
ing from simplification, to geometric feature detection, to segmentation.
Previous definitions and constructions of levelings were either discrete or
continuous using a PDE. We bridge this gap by introducing generalized
levelings based on triphase operators that switch among three phases,
one of which is a global constraint. The triphase operators include as
special cases reference semilattice erosions. Algebraically, levelings are
created as limits of iterated or multiscale triphase operators. The sub-
class of multiscale geodesic triphase operators obeys a semigroup, which
we exploit to find a PDE that generates geodesic levelings. Further, we
develop PDEs that can model and generate continuous-scale semilattice
erosions, as a special case of the leveling PDE. We discuss theoretical
aspects of these PDEs, propose discrete algorithms for their numerical
solution which are proved to converge as iterations of triphase operators,
and provide insights via image experiments.

1 Introduction

Nonlinear scale-space approaches that are based on morphological erosions and
dilations are useful for edge-preserving multiscale smoothing, image enhance-
ment and simplification, geometric feature detection, shape analysis, segmen-
tation, motion analysis, and object recognition. Openings and closings are the
basic morphological smoothing filters. The simplest openings/closings, which are
compositions of Minkowski erosions and dilations, preserve well vertical image
edges but may shift and blur horizontal edges/boundaries. A much more pow-
erful class of filters are the reconstruction openings and closings which, starting
from a reference signal consisting of several parts and a marker (initial seed) in-
side some of these parts, can reconstruct whole objects with exact preservation of
their boundaries and edges [13,15]. In this reconstruction process they simplify

M. Kerckhove (Ed.): Scale-Space 2001, LNCS 2106, pp. 137–148, 2001.
c© Springer-Verlag and IEEE/CS 2001



138 Petros Maragos

the original image by completely eliminating smaller objects inside which the
marker cannot fit. The reference signal plays the role of a global constraint. One
disadvantage of both the simple as well as the reconstruction openings/closings
is that they are not self-dual and hence they treat asymmetrically the image fore-
ground and background. A recent solution to this asymmetry problem came from
the development of a more general powerful class of morphological filters, the
levelings introduced in [8] and further studied in [7,14], which include as special
cases the reconstruction openings and closings. The levelings possess many use-
ful algebraic and scale-space properties, as explored in [9], and can be generated
by a nonlinear PDE introduced in [6].

A relatively new algebraic approach to self-dual morphology is based not on
complete lattices but on inf-semillatices [5]. By using self-dual partial orderings
the signal space becomes an inf-semilattice on which self-dual erosion operators
can be defined [3,4] that have many interesting properties and applications.

In this paper we develop theoretical connections between levelings on lattices
and erosions on semilattices, both from an algebraic and a PDE viewpoint. We
begin in Section 2 with a brief background discussion on multiscale operators
defined on complete lattices and inf-semilattices. In Section 3 we introduce and
analyze algebraically multiscale triphase operators (which switch among 3 differ-
ent states, one state being a global constraint) whose special cases are semilattice
erosions and whose limits are levelings. The semigroup of geodesic triphase op-
erators is discovered. Afterwards, in Section 4 we model both geodesic levelings
and semilattice erosions using PDEs. The main ingredient here is the leveling
PDE which we prove it can generate the multiscale geodesic operators and (as
a special case) multiscale semilattice self-dual erosions. Section 5 extends the
PDE ideas to 2D images signals. In both Sections 4,5 we also propose discrete
numerical algorithms for solving the PDEs, prove their convergence using the
semilattice operators of previous sections, and provide insights via experiments.

2 Signal Operators on Lattices and Inf-Semilattices

A poset is any set equipped with a partial ordering ≤. The supremum (
∨

) and
infimum (

∧
) of any subset of a poset is its lowest upper bound and greatest lower

bound, respectively; both are unique if they exist. A poset is called a sup-(inf-)
semilattice if the supremum (infimum) of any finite collection of its elements
exists. A (sup-) inf-semilattice is called complete if the (supremum) infimum of
arbitrary collections of its elements exist. A poset is called a (complete) lattice
if it is simultaneously a (complete) sup- and an inf-semilattice. An operator ψ
on a complete lattice is called: increasing if it preserves the partial ordering
[f ≤ g =⇒ ψ(f) ≤ ψ(g)]; idempotent if ψ2 = ψ; antiextensive (extensive) if
ψ(f) ≤ f (f ≤ ψ(f)). An operator ε (δ) on a complete inf- (sup-) semilattice
is called an erosion (dilation) if it distributes over the infimum (supremum) of
any collection of lattice elements. A negation ν is a bijective operator such that
both ν and ν−1 are either decreasing or increasing and ν2 = id, where id is the
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identity and ν 6= id. An operator ψ is called self-dual if it commutes with a
negation ν.

In this paper, the signal space is the collection V
E of all signals/images defined

on E and assuming values in V, where E = R
d or Z

d, d = 1, 2, ...,, and V ⊆ R =
R ∪ {−∞,+∞}. The value set V is equipped with some partial ordering that
makes it a complete lattice or inf-semilattice. This lattice structure is inherited
by the signal space by extending the partial order of V to signals pointwise.
Classical lattice-based mathematical morphology [2] uses as signal space the
complete lattice L(E,V) = (VE,∨,∧) of signals f : E → V with values in V = R

or Z. In L the signal ordering is defined by f ≤ g ⇔ f(x) ≤ g(x), ∀x, and
the signal infimum and supremum are defined by (

∧
i fi)(x) = supi fi(x) and∨

i fi)(x) = infi fi(x). Let B denote henceforth the d-dimensional unit-radius
ball of E, assuming the Euclidean metric, and let tB = {tb : b ∈ B}, t ≥ 0, be its
scaled version. The simplest multiscale dilation/erosion on L are the Minkowski
flat dilation/erosion of a signal f by the sets tB:

δt
B(f)(x) = (f⊕tB)(x) =

∨
a∈tB

f(x−a), εt
B(f)(x) = (f	tB)(x) =

∧
a∈tB

f(x+a)

(1)
We shall also need the multiscale conditional dilation and erosion of a marker

(‘seed’) signal f within a reference (‘mask’) signal r:

δtB(f |r) := (f ⊕ tB) ∧ r, εtB(f |r) := (f 	 tB) ∨ r (2)

Iterating the conditional dilation (erosion) by a unit-scale B yields the condi-
tional reconstruction opening (closing) of r from f .

Another important pair is the geodesic dilation and erosion. First we define
them for sets X ⊆ E (binary images). Let M ⊆ E a mask set and consider
its geodesic metric dM (x, y) equal to the length of the geodesic path connecting
the points x, y inside M . If BM (x, t) = {p ∈ M : dM (x, p) ≤ t} is the geodesic
closed ball with center x and radius t ≥ 0, then the multiscale geodesic dilation
and erosion of X within M are defined by δt(X |M) :=

⋃
p∈X BM (p, t) and

εt(X |M) := [δt(Xc|M c)]c. By using threshold decomposition and synthesis
of a signal f from its threshold sets Θh(f) := {x ∈ E : f(x) ≥ h} we can
synthesize flat geodesic operators for signals by using as generators their set
counterparts. The resulting multiscale geodesic dilation and erosion of f within
a mask signal r are δt(f |r)(x) := sup{h ∈ R : x ∈ δt(Θh(f)|Θh(r))} and
εt(f |r)(x) := −δt(−f | − r). An equivalent expression is

δt(f |r)(x) = r(x) ∧
∨

dM− (x,p)≤t

f(p), εt(f |r)(x) = r(x) ∨
∧

dM+ (x,p)≤t

f(p) (3)

where M− := {x ∈ E : f(x) ≤ r(x)} and M+ := {x ∈ E : f(x) ≥ r(x)}. By
letting t → ∞ the geodesic dilation (erosion) yields the geodesic reconstruction
opening (closing) of f within r:

ρ−(f |r) :=
∨
t≥0

δt(f |r), ρ+(f |r) :=
∧
t≥0

εt(f |r) (4)
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In [5,3,4] a recent approach for a self-dual morphology was developed based
on inf-semilattices. Now, the signal space is the collection of all signals f : E → V,
where V = R or Z. The value set V becomes a complete inf-semilattice (cisl) if
equipped with the following partial ordering and infimum:

a �r b⇐⇒
{
r ∧ b ≤ r ∧ a
r ∨ b ≥ r ∨ a ,

r

f
i

ai = (r ∧
∨
i

ai) ∨
∧
i

ai

for some fixed r ∈ V. The ordering � coincides with the activity ordering in
Boolean lattices [10,2].

Given a reference signal r(x), a valid signal cisl ordering is given by

f �r g ⇐⇒ f(x) �r(x) g(x) ∀x ⇐⇒ |f(x) − r(x) ≤ |g(x) − r(x)| ∀x

and the corresponding signal cisl infimum becomes
 r

f
i

fi


 (x) = [r(x) ∧

∨
i

fi(x)] ∨
∧
i

fi(x) = [r(x) ∨
∧
i

fi(x)] ∧
∨
i

fi(x)

Under the above cisl infimum, the signal space becomes a cisl denoted henceforth
by Fr(E,V), or simply Fr. Among all possible reference cisl’s Fr that result from
various choices of the reference signal r(x), the cisl F0 with r(x) = 0 is of primary
importance because it is isomorphic to any other Fr. Specifically, the bijection
ξ : F0 → Fr, given by ξ(f) = f + r, is a cisl isomorphism. Thus, if ψ0 is an
operator on F0, then its corresponding operator on Fr is given by

ψr(f) = ξψ0ξ
−1(f) = r + ψ0(f − r) (5)

If ψ0 is an erosion on F0 that is translation-invariant (TI) and self-dual, then
ψr is also a self-dual TI erosion on Fr. Note: the infimum, translation operator
and negation operator on F0 are different from those on Fr. For example, if
ν0(f) = −f is the negation on F0, then self-duality of ψ0 means ψ0ν0 = ν0ψ0,
whereas self-duality on Fr means ψrνr = νrψr where νr(f) = 2r − f .

The simplest multiscale TI self-dual erosion on the cisl Fr is the operator

ψt
r(f)(x) = r(x)+

(
[0 ∧

∨
a∈tB

(f(x− a) − r(x − a))] ∨
∧

a∈tB

(f(x− a) − r(x − a))

)

(6)

3 Lattice Levelings and Multiscale Semilattice Erosions

Defining levelings in L as in [8,7] requires a reference signal r, an input marker
signal f , and a parallel triphase operator λp defined by:
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(PT1) λp(f, r, αp, βp) := (r ∧ βp(f)) ∨ αp(f) = (r ∨ αp(f)) ∧ βp(f),
(PT2) αp, βp are increasing and αp(f) ≤ f ≤ βp(f), ∀f

where subscript ‘p’ denotes ‘parallel’. In this paper we also define a more general
triphase operator, the serial triphase operator λs, as follows:

(ST1) λs(f |r, αs, βs) := αs(f |βs(f |r)),
(ST2) αs, βs are increasing, r ≤ αs(f |r) ≤ f ∨ r and r ≥ βs(f |r) ≥ f ∧ r

where the subscript ‘s’ refers to ‘serial’ and the operators αs and βs have two
arguments (f, r), written as (f |r) to emphasize their different roles and provide
a slightly different notation from the parallel case. Any parallel triphase operator
becomes a serial one by setting αs(f |r) = αp(f) ∨ r and βs(f |r) = βp(f) ∧ r.
(However, the converse is not always true.) Thus, we henceforth drop the sub-
scripts ‘s’ and ‘p’ from α, β,λ (the difference will be clear from the context) and
focus more on the serial case. The triphase operators depend on four parameters;
if some of them are known and fixed, we shall omit them. Thus we may write
λ(f |r) or simply λ(f). A signal f is a called a parallel (serial) leveling of r iff it
is a fixed point of the parallel (serial) triphase operator, i.e. if f = λ(f |r). The
original definition in [8,7] corresponds to what we call here parallel leveling.

The definition of the serial triphase operator implies the following.

Proposition 1 For a serial triphase operator λ(f |r) = α(f |β(f |r)):
(a) α(r|r) = β(r|r) = r.
(b) α(f |r) = α(f ∨ r|r) and β(f |r) = β(f ∧ r|r).
(c) At points where f ≥ r, f ≥ λ(f |r) = α(f |r) ≥ r.
(d) At points where f ≤ r, f ≤ λ(f |r) = β(f |r) ≤ r.
(e) α and β commute, i.e. α(f |β(f |r)) = β(f |α(f |r)).
(f) r ∧ λ = β(f |r) and r ∨ λ = α(f |r).
Thus, the operator α (β) affects only points where f ≥ r (f ≤ r). Some general
properties of triphase operators follow next.

Proposition 2 (a) Both parallel and serial triphase operators are antiextensive
in the cisl Fr; i.e., λ(f |r) �r f .
(b) Let (α1, β1) and (α2, β2) create two (parallel or serial) triphase operators λ1

and λ2, respectively. If α1 ≥ α2 and β1 ≤ β2, then λ2(f) �r λ1(f), ∀f .
(c) If α and β are dual of each other, then λ is self-dual; i.e., if α(−f | − r) =
−β(f |r), then λ(−f | − r) = −λ(f |r).

Thus, a leveling of r from the marker f can be obtained by iterating any (par-
allel or serial) triphase operator λ to infinity, or equivalently by taking the cisl
infimum f of all iterations of λ. Specifically, if ψn(f) := ψ(· · ·ψ(f)) denotes
the n-fold composition of an operator ψ with itself, then

Λ(f |r) := λ∞(f |r) =
r

f
n ≥ 1

λn(f) �r · · · �r λ2(f) �r λ(f) �r f (7)

The map r 7→ Λ(·|r) is called the leveling operator and is increasing and idempo-
tent. The signal g = Λ(f |r) is obviously a leveling of r from the marker f since
λ(g|r) = g.
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If we replace the operators α and β with the multiscale flat erosion and
dilation by B of (1) we obtain a multiscale conditional triphase operator

λtB(f |r)(x) := [r(x) ∧ δtB(f)(x)] ∨ εtB(f)(x) =
r

f
a ∈ tB

f(x− a) (8)

It is called ‘conditional’ because it can be written as a serial triphase operator,
i.e., as a composition of conditional dilation and erosion:

λtB(f |r) = εtB(f |δtB(f |r)) = δtB(f |εtB(f |r)) (9)

Comparing (8) with (6) reveals that λtB becomes a multiscale TI semilattice
erosion on Fr if r is constant. In particular, if r = 0, then λtB becomes a
multiscale TI self-dual erosion on F0. For non-constant r, λtB is generally neither
TI nor an erosion.

By replacing the conditional dilation and erosion in (9) with their geodesic
counterparts from (3) we obtain a multiscale serial geodesic triphase operator

λt(f |r) = εt(f |δt(f |r)) = δt(f |εt(f |r)) (10)

This is the most important triphase operator because it obeys a semigroup. This
will allow us later to find its PDE generator.

Proposition 3 (a) As t→ ∞, λt(f |r) yields the geodesic leveling which is the
composition of the geodesic reconstruction opening and closing:

Λ(f |r) := λ∞(f |r) = ρ−(f |ρ+(f |r)) = ρ+(f |ρ−(f |r)) (11)

(b) The multiscale family {λt(·|r) : t ≥ 0} forms an additive semigroup:

λt(·|r)λs(·|r) = λt+s(·|r), ∀t, s ≥ 0. (12)

(c) For a zero reference (r = 0), the multiscale geodesic triphase operator becomes
identical to its conditional counterpart and the multiscale semilattice erosion:

r = 0 =⇒ ψt
0(f) = λt(f |0) = λtB(f |0) (13)

(d) For any r, the multiscale semilattice erosion ψt
r = ξψt

0ξ
−1 obeys a semigroup:

ψt
rψ

s
r = ψt+s

r ∀t, s ≥ 0. (14)

The above result establishes that, for any positive integer n, the n-th iteration
of the unit-scale geodesic triphase operator coincides with its multiscale version
at scale t = n. The same is true for the multiscale semilattice erosions. It is not
generally true, however, for the conditional triphase operator λB(f |r), which
does not obey a semigroup. Further, its iterations converge to the conditional
leveling ΛB(f |r) = λ∞

B (f |r) which is smaller w.r.t. �r than the geodesic leveling
Λ(f |r) = λ∞(f |r) of (11). Namely, r �r ΛB(f |r) �r Λ(f |r).
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4 PDEs for 1D Levelings and Semilattice Erosions

Consider a 1D reference signal r(x) and a marker signal f(x), both real-valued
and defined on R. We start evolving the marker signal by producing the mul-
tiscale geodesic triphase evolutions u(x, t) = λt(f |r)(x) of f(x) at scales t ≥ 0.
The initial value is u0(x) = u(x, 0) = f(x). In the limit we obtain the final result
u∞(x) = u(x,∞) which will be the leveling Λ(f |r). The mapping u0 7→ u∞ is a
leveling filter. In [6,9] it was explained that, if f ≤ r (f ≥ r), the leveling Λ(f |r)
is a reconstruction opening (closing).

In an effort to find a generator PDE for the function u, we shall attempt to
analyze the following evolution rule: ∂u(x, t)/∂t = lims↓0[u(x, t+ s)− u(x, t)]/s.
Since u satisfies the semigroup (12), the evolution rule becomes

∂u

∂t
(x, t) = lim

s↓0
1
s


 r

f
|a| ≤ s

u(x− a, t) − u(x, t)


 (15)

We shall show later that, at points where the partial derivatives exist this rule
becomes the following PDE: ut = −sign(u − r)|ux|. However, even if the initial
signal f is differentiable, at finite scales t > 0, the above switched-erosion evolu-
tion may create shocks (i.e., discontinuities in the derivatives). One way to deal
with shocks is to replace the standard derivatives with morphological sup/inf
derivatives as in [1]. For example, let

Mxu(x, t) := lim
s↓0

[
∨

|a|≤s

u(x+ a, t) − u(x, t)]/s

be the sup-derivative of u(x, t) along the x-direction, if the limit exists. If the
right ux(x+, t) and left derivative ux(x−, t) of u along the x-direction exist, then
its sup-derivative also exists and is equal to

Mxu(x, t) = max[0, ux(x+, t),−ux(x−, t)] (16)

Obviously, if the left and right derivatives exist and are equal, then the sup-
derivative becomes equal to the magnitude |ux(x, t)| of the standard derivative.
The nonlinear derivative M leads next to a more general PDE that can handle
discontinuities in ∂u/∂x.

Theorem 1. 1 Let u(x, t) = λt(f |r)(x) be the scale-space function of multiscale
geodesic triphase operations with initial condition u(x, 0) = f(x). Assume that f
is continuous and possesses left and right derivatives at all x. (a) If the partial
sup-derivative Mxu exists at some (x, t), then

∂u

∂t
(x, t) =




Mx(u)(x, t), if u(x, t) < r(x)
−Mx(−u)(x, t), if u(x, t) > r(x)
0, if u(x, t) = r(x)

(17)

1 Due to space limitations, the proofs of all theorems and propositions will be given
in a forthcoming longer paper.
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(b) If the partial left and right derivatives ux(x±, t) exist at some (x, t), then

∂u

∂t
(x, t) =




max[0, ux(x+, t),−ux(x−, t)], if u(x, t) < r(x)
min[0, ux(x+, t),−ux(x−, t)], if u(x, t) > r(x)
0, if u(x, t) = r(x)

(18)

(c) If the partial derivative ∂u/∂x exists at some (x, t), then u satisfies

∂u

∂t
(x, t) = −sign[u(x, t) − r(x)]

∣∣∣∣∂u∂x(x, t)
∣∣∣∣ (19)

Thus, assuming that ∂u/∂x exists and is continuous, the nonlinear PDE (19)
can generate the multiscale evolution of the initial signal u(x, 0) = f(x) under
the action of the triphase operator. However, even if f is differentiable, as the
scale t increases, this evolution can create shocks. In such cases, the more general
PDE (18) that uses morphological derivatives still holds and can propagate the
shocks provided the equation evolves in such a way as to give solutions that are
piecewise differentiable with left and right limits at each point.

Consider now on the cisl F0 the multiscale TI semilattice erosions of a 1D
signal f(x) by 1D disks tB = [−t, t]:

v(x, t) = ψt
0(f)(x) = [0 ∧

∨
|a|≤t

f(x− a)] ∨
∧

|a|≤t

f(x− a) (20)

This new scale-space function v(x, t) becomes a special case of the corresponding
function u(x, t) for multiscale geodesic triphase operations when the reference r
is zero. Thus, we can use the leveling PDE (19) with r(x) = 0 to generate the
evolutions v(x, t):

∂v/∂t = −sign(v)|∂v/∂x|
v(x, 0) = f(x) (21)

If r(x) is not zero, then from the rule (5) that builds operators in Fr from
operators in F0, we can generate multiscale TI semilattice erosions ψt

r(f) =
r + ψt

0(f − r) of f , defined explicitly in (6), by the following PDE system

ψt
r(f)(x) = r(x) + v(x, t),

∂v/∂t = −sign(v)|vx|
v(x, 0) = f(x) − r(x) (22)

To find a numerical algorithm for solving the previous PDEs, let Un
i be the

approximation of u(x, t) on a grid (i∆x, n∆t)). Similarly, define Ri := r(i∆x)
and Fi := f(i∆x). Consider the forward and backward difference operators:

D+xUn
i := (Un

i+1 − Un
i )/∆x, D−xUn

i := (Un
i − Un

i−1)/∆x (23)

To produce a shock-capturing and entropy-satisfying numerical method for solv-
ing the leveling PDE (19) we approximate the more general PDE (18) by replac-
ing time derivatives with forward differences and left/right spatial derivatives
with backward/forward differences. This yields the following algorithm:

Un+1
i = Un

i −∆t[ (Pn
i )+ max(0, D−xUn

i ,−D+xUn
i )

+(Pn
i )− max(0,−D−xUn

i , D
+xUn

i )]
sign(Un+1

i −Ri) = sign(Fi −Ri)
(24)
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where Pn
i = sign(Un

i − Ri), q+ = max(0, q), and q− = min(0, q). We iterate
the above scheme for n = 1, 2, , ... starting from the initial data U0

i = Fi. For
stability, (∆t/∆x) ≤ 0.5 is required. The above scheme can be expressed as
iteration of a conditional triphase operator Φ acting on the cisl FR(Z,R):

Un+1
i = Φ(Un

i ), Φ(Fi) := [Ri ∧ β(Fi)] ∨ α(Fi),
α(Fi) = min[Fi, θFi−1 + (1 − θ)Fi, θFi+1 + (1 − θ)Fi],
β(Fi) = max[Fi, θFi−1 + (1 − θ)Fi, θFi+1 + (1 − θ)Fi], θ = ∆t/∆x.

(25)

By using ideas from methods of solving PDEs corresponding to hyperbolic con-
servation laws [12], we can easily show that this scheme is conservative and
monotone increasing (for ∆t/∆x < 1), and hence satisfies the entropy condition.

There are also other possible approximation schemes such as the conservative
and monotone scheme proposed in [11] to solve the edge-sharpening PDE ut =
−sign(uxx)|ux|. In order to solve the leveling PDE, we have modified this scheme
to enforce the sign consistency condition sign(Un

i − Ri) = sign(Fi − Ri). The
final algorithm can be expressed via the iteration of a discrete operator Φ as in
(25) but with different α and β:

α(Fi) = Fi − θ
√

[max(Fi − Fi−1, 0)]2 + [min(Fi+1 − Fi, 0)]2,
β(Fi) = Fi + θ

√
[min(Fi − Fi−1, 0)]2 + [max(Fi+1 − Fi, 0)]2

(26)

This second approximation scheme is more diffusive and requires more compu-
tation per iteration than the first scheme (25). Thus, as the main numerical
algorithm to solve the leveling PDE, we henceforth adopt the first scheme (25),
which is based on discretizing the morphological derivatives. Examples of run-
ning this algorithm are shown in Fig. 1. An important question is whether the
two above algorithms converge. The answer is affirmative as proved next.

Proposition 4 If Φ(·) = [R ∧ β(·)] ∨ α(·) and (α, β) are either as in (25) or
as in (26), the sequence Un+1 = Φ(Un), U0 = F , converges to a unique limit
U∞ = Φ∞(F ) which is a leveling of R from F .

If ∆t = ∆x, then Φ of (25) becomes a discrete conditional triphase operator
with a unit-scale window B = {−1, 0, 1}, the PDE numerical algorithm coincides
with the iterative discrete algorithm of [8], and the limit of the algorithm is the
conditional leveling of R from F .

5 PDEs for 2D Levelings and Semilattice Erosions

A straightforward extension of the leveling PDE from 1D to 2D signals is to
replace the 1D dilation PDE with the PDE generating multiscale dilations by a
disk. Then the 2D leveling PDE becomes:

ut(x, y, t) = −sign[u(x, y, t) − r(x, y)]||∇u(x, y, t)||
u(x, y, 0) = f(x, y) (27)
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Fig. 1. (a) A reference signal r (dash line), a marker signal m (thin solid
line) and its evolutions u(x, t) (thin dash line) generated by the leveling PDE
ut = −sign(u − r)|ux|, at t = n25∆t, n = 1, 2, 3, 4. (b) Multiscale semi-
lattice erosions v(x, t) of m(x) w.r.t. zero reference, generated by the PDE
vt = −sign(v)|vx|, v(x, 0) = m(x), at t = n25∆t, n = 1, 2, 3, 4. (c) Multi-
scale semilattice erosions v(x, t) + r(x) of m(x) w.r.t. reference r(x), generated
by the PDE vt = −sign(v)|vx|, v(x, 0) = m(x) − r(x), at t = n25∆t, n = 1, 2.
(∆x = 0.001, ∆t = 0.0005.)

Of course, we could select any other PDE modeling erosions by shapes other
than the disk, but the disk has the advantage of creating an isotropic growth.

For discretization, let Un
i,j be the approximation of u(x, y, t) on a computa-

tional grid (i∆x, j∆y, n∆t) and set the initial condition U0
ij =Fij =f(i∆x, j∆y).

Then, by replacing the magnitudes of standard derivatives with morphological
derivatives and by expressing the latter with left and right derivatives which are
approximated with backward and forward differences, we have developed the
following entropy-satisfying scheme for solving the 2D leveling PDE (27):

Un+1
i,j = Φ(Un

i,j), Φ(Fij) := [Rij ∧ β(Fij)] ∨ α(Fij),
α(Fij) = Fij −∆t

√
max2[0, D−xFij ,−D+xFij ] + max2[0, D−yFij ,−D+yFij ]

β(Fij) = Fij +∆t
√

max2[0,−D−xFij , D+xFij ] + max2[0,−D−yFij , D+yFij ]
(28)

For stability, (∆t/∆x +∆t/∆y) ≤ 0.5 is required. This scheme is theoretically
guaranteed to converge to a leveling. Examples of running the above 2D algorithm
are shown in Fig. 2.

Why use PDEs for levelings and semilattice erosions? In addition to the well-
known advantages of the PDE approach (such as more insightful mathematical
modeling, more connections with physics, better approximation of Euclidean
geometry, and subpixel accuracy), there are also some advantages over the dis-
crete modeling that are specific for the operators examined in this paper. For
levelings the desired result is mainly the final limit. The PDE numerical algo-
rithms converge to a leveling Λnum. The discrete (algebraic) algorithm of [8]
converges to the conditional leveling Λcon. If Λ is the sampled true (geodesic)
leveling, then r �r Λcon �r Λnum �r Λ. Hence, the discrete algorithm result
has a larger absolute deviation from the true solution than the PDE algorithm.
Further, the discrete algorithm uses ∆t = ∆x and hence it is unstable (ampli-
fies small errors). In the 2D case we have an additional comparison issue: In
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Reference Marker (t = 0)

(a) (b)
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Semilatt. Erosion(t = 3∆t) Semilatt. Erosion (t = 6∆t) Semilatt. Erosion (t = ∞)

(f) (g) (h)

Fig. 2. Multiscale semilattice erosions and levelings of soilsection images gener-
ated by PDEs. (a) Reference image r(x, y). (b) Marker image m(x, y) obtained
from a 2D convolution of r with a 2D Gaussian of σ = 4. Images (c),(d),(e) show
evolutions u(x, y, t) generated by the leveling PDE ut = −sign(u − r)||∇u||.
Images (f),(g),(h) show multiscale semilattice erosions v(x, y, t) + r(x, y) gen-
erated by the PDE vt = −sign(v)||∇v|| with v(x, y, 0) = m(x, y) − r(x, y).
(∆x = ∆y = 1, ∆t = 0.25.)

some applications we may need to stop the marker growth before convergence.
In such cases, the isotropy of the partially grown marker offered by the PDE is
an advantage.

For multiscale semilattice operators the final limit is not interesting since
it coincides with the reference; i.e., ψ∞

r (f) = r, ∀f . What is more interesting
in this case are the intermediate results. In this case producing 2D semilattice
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erosions via the following PDE system yields isotropic results

ψt
r(f)(x, y) = r(x, y) + v(x, y, t), ∂v/∂t = −sign(v)||∇v||

v(x, y, 0) = f(x, y) − r(x, y) (29)
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