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10.1 Introduction

Morphological image processing has been based traditionally on modeling images
as sets or as points in a complete lattice of functions and viewing morphological
image transformations as set or lattice operators. Thus, so far, the two classic
approaches to analyzing or designing the deterministic systems of mathematical
morphology have been (1) geometry, by viewing them as image set transformations
in Euclidean spaces, and (2) algebra, to analyze their properties using set or lattice
theory. Geometry was used mainly for intuitive understanding, and algebra was
restricted to the space domain. Despite their limitations, these approaches have
produced a powerful and self-contained broad collection of nonlinear image anal-
ysis concepts, operators, and algorithms. In parallel with these directions, there is
a recently growing part of morphological image processing that is based on ideas
from differential calculus and dynamical systems. It combines some early ideas on
using simple morpholological operations to obtain signal gradients with some re-
cent ideas on using differential equations to model nonlinear multiscale processes
or distance propagation in images. In this chapter we present a unified view of the
various interrelated ideas in this area and develop some systems analysis tools in
both the space and a (slope) transform domain.

The main tools of morphological image processing are a broad class of nonlin-
ear image operators, of which the two most fundamental are dilation and erosion.
The space domain in which images are defined can be either continuous, E = R2 or
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292 Chapter 10: Differential Morphology

discrete, E = Z2. For a binary image represented by a set S ⊆ E, its morphological
dilation by another planar set B, denoted by S ⊕ B, and its erosion, denoted by
S # B, are the Minkowski set operations

S ⊕ B $ {x+ b : x ∈ S,b ∈ B}, (10.1)

S # B $ {x : B+x ⊆ S}, (10.2)

where x = (x,y) denotes points on the plane and B+x $ {x+b : b ∈ B} denotes set
translation by a vector. The corresponding signal operations are the Minkowski
dilation and erosion of an image function f : E → R by another (structuring)
function g:

f ⊕ g(x) $
∨

y∈E

f(y)+ g(x− y), (10.3)

f # g(x) $
∧

y∈E

f(y)− g(y− x), (10.4)

where ∨ and ∧ denote supremum and infimum. The signal range is a subset of
R = R ∪ {−∞,+∞}. The scalar addition in R is like addition in R extended by the
rules r ±∞ = ±∞ ∀r ∈ R and (+∞) + (−∞) = −∞. In convex analysis [Roc70]
and optimization, the nonlinear operation ⊕ is called supremal convolution, and
an operation closely related to # is the infimal convolution

f ⊕′ g(x) $
∧

y∈E

f(y)+′ g(x− y) (10.5)

where +′ is like the extended addition in R except that (+∞) +′ (−∞) = +∞. A
simple case of the signal dilation and erosion results when g is flat, that is, equal
to 0 over its support set B and −∞ elsewhere. Then the weighted dilation and
erosion of f by g reduce to the flat dilation and erosion of f by B:

f ⊕ B(x) $
∨

y∈B
f (x− y), f # B(x) $

∧

y∈B
f (x+ y).

Additionally, a wide variety of (simple or complex) parallel and/or serial inter-
connections of the basic morphological operations, called generally “morpholog-
ical systems,” have found a broad range of applications in image processing and
computer vision; examples include problems in nonlinear filtering, noise suppres-
sion, contrast enhancement, geometric feature detection, skeletonization, multi-
scale analysis, size distributions, segmentation, and shape recognition (see [Ser82,
Ser88, Mar90, Hei94, Mar98] for broad surveys and more references).

Among the very few early connections between morphology and calculus were
the morphological gradients. Specifically, given a function f : Rd → R, with d =
1,2, its isotropic morphological sup-derivative at a point x is defined by

Mf(x) $ lim
r↓0

f ⊕ rB(x)− f(x)
r

, (10.6)
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where rB = {rb : b ∈ B} is a d-dimensional disk B scaled to radius r . The
derivative M has been used in morphological image analysis for edge detection.
It actually becomes equal to ‖∇f‖ when f is differentiable.

A more recent application area in which calculus-based ideas have been used
in morphology is that of multiscale image analysis. Detecting features, motion,
and objects as well as modeling many other information extraction tasks in image
processing and computer vision has necessitated the analysis of image signals
at multiple scales. Following the initial formulation of multiscale image analysis
using Gaussian convolutions by Marr and his co-workers [Mar82] were two other
important developments, the continuous Gaussian scale-space by Witkin [Wit83]
and the observation by Koenderink [Koe84] that this scale-space can be modeled
via the heat diffusion partial differential equation (PDE). Specifically, if

u(x,y, t) =
∫∫

R2
f(x − v,y −w)Gt(v,w)dvdw (10.7)

is the multiscale linear convolution of an original image signal f(x,y) with a
Gaussian function Gt(x,y) = exp[−(x2 + y2)/4t]/4πt whose variance (= 2t) is
proportional to scale t, then the scale-space function u can be generated from the
isotropic and homogeneous heat diffusion PDE1:

ut = ∇2u = uxx +uyy, (10.8)

with initial condition u(x,y,0) = f(x,y). The popularity of this approach is
due to its linearity and its relation to the heat PDE, about which much is known
from physics and mathematics. The big disadvantage of the Gaussian scale-space
approach is the fact that linear smoothers blur and shift important image features,
for example, edges. There is, however, a variety of nonlinear smoothing filters
that can smooth while preserving important image features and can provide a
multiscale image ensemble, that is, a nonlinear scale-space. A large class of such
filters consists of the standard morphological openings and closings (which are
serial compositions of erosions and dilations) in a multiscale formulation [Che89,
Mar89, Mat75, Ser82] and their lattice extensions, of which the most notable are
the reconstruction openings and closings [Sal95, Vin93]. These reconstruction
filters, starting from a reference image f consisting of several parts and a marker
g (initial seed) inside some of these parts, can reconstruct whole objects with
exact preservation of their boundaries and edges. In this reconstruction process
they simplify the original image by completely eliminating smaller objects inside
which the marker cannot fit. A detailed discussion of reconstruction filters and
their applications can be found in Chapter 9.

Until recently the vast majority of implementations of multiscale morphologi-
cal filtering had been discrete. In 1992 three teams of researchers independently
published nonlinear PDEs that model the continuous multiscale morphological

1Notation for PDEs: ut = ∂u/∂t, ux = ∂u/∂x, uy = ∂u/∂y , ∇u = (ux,uy), div ((v,w)) =
∇ · (v,w) = vx +wy .
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scale-space. Specifically, Alvarez et al. [Alv92, Alv93] obtained PDEs for multi-
scale flat dilation and erosion by compact convex structuring sets as part of their
general work on developing PDE-based models for multiscale image processing
that satisfy certain axiomatic principles. Brockett and Maragos [Bro92, Bro94]
developed nonlinear PDEs that model multiscale morphological dilation, erosion,
opening, and closing by compact support structuring elements that are either con-
vex sets or concave functions and may have nonsmooth boundaries. Their work
was based on the semigroup structure of the multiscale dilation and erosion op-
erators and the use of morphological derivatives to deal with the development of
shocks. Boomgaard and Smeulders [Boo92, Boo94] obtained PDEs for multiscale
dilation and erosion by studying the propagation of the boundaries of 2D sets and
signal graphs under multiscale dilation and erosion. Their work applies to convex
structuring elements whose boundaries contain no linear segments, are smooth,
and possess a unique normal at each point.

To illustrate the basic idea behind morphological PDEs, we consider a 1D ex-
ample, for which we define the multiscale flat dilation and erosion of a 1D signal
f(x) by the set [−t, t] as the scale-space functions

δ(x, t) =
∨

|y|≤t
f (x −y), ε(x, t) =

∧

|y|≤t
f (x +y).

An example is shown in Fig. 10.1. The PDEs generating these multiscale flat dila-
tions and erosions are

δt = |δx|, εt = −|εx|,
δ(x,0) = ε(x,0) = f(x). (10.9)

In parallel to the development of the above ideas, there have been some advances
in the field of differential geometry for evolving curves or surfaces using level
set methods. Specifically, Osher and Sethian [Osh88, Set96] have developed PDEs
of the Hamilton-Jacobi type to model the propagation of curves embedded as
level curves (isoheight contours) of functions evolving in scale-space. Further,
to solve these PDEs they developed robust numerical algorithms based on stable
and shock-capturing schemes that had been formulated to solve similar shock-
producing nonlinear wave PDEs [Lax73]. Kimia et al. [Kim90, Tek98] have applied
and extended these curve evolution ideas to shape analysis in computer vision.
Arehart et al. [Are93] and Sapiro et al. [Sap93] implemented continuous-scale
morphological dilations and erosions using the numerical algorithms of curve
evolution to solve the PDEs for multiscale dilation and erosion.

Multiscale dilations and erosions of binary images can also be obtained via
distance transforms, that is, the distance function from the original image set.
Discrete distance transforms can be implemented quickly via 2D min-sum dif-
ference equations, which are special cases of recursive erosions, developed by
Rosenfeld and Pfaltz [Ros66] and Borgefors [Bor86]. Using Huygen’s construction,
the boundaries of multiscale dilations–erosions by disks can also be viewed as the
wavefronts of a wave initiating from the original image boundary and propagating
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Figure 10.1: (a) Original 1D signal f(x) at scale t = 0, (b) multiscale erosion ε(x, t) =
f # tB(x), and (c) multiscale dilation δ(x, t) = f ⊕ tB(x) of f(x) by a set B = [−1,1] for
scales t = [0,30].

with constant normal speed in a homogeneous medium [Blu73]. This idea can
also be extended to heterogeneous media by using a weighted distance function,
in which the weights are inversely proportional to the propagation speeds [Lev70].
In geometrical optics, the distance wavefronts are obtained from the isolevel con-
tours of the solution of the eikonal PDE. This ubiquitous PDE has been applied to
solving various problems in image analysis and computer vision such as shape-
from-shading, gridless halftoning, and image segmentation.

In this chapter we discuss some close relationships between the morphological
derivatives, the PDEs for multiscale morphology, the eikonal PDE of optics, and
the difference equations used to implement distance transforms. The unifying
theme is a collection of nonlinear differential–difference equations modeling the
scale or space dynamics of morphological systems. We call this area differential
morphology. Whereas classical morphological image processing is based on set
and lattice theory, differential morphology offers calculus-based tools and some
exciting connections to the physics of wave propagation. Some additional material
on nonlinear PDEs and curve evolution as applied to image processing can be found
in Chapter 8.

We also present analysis tools for the nonlinear systems used in differential
morphology, which have many similarities with the tools used to analyze linear
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differential schemes. These tools apply either to the space domain or to a new
transform domain, the slope domain. To understand their behavior in the slope
domain, we discuss some nonlinear signal transforms, called slope transforms,
whose properties and applications to morphological systems have some interest-
ing conceptual similarities with Fourier transforms and their application to linear
systems.

The chapter is organized as follows. We begin in Sec. 10.2 by presenting ana-
lytic methods for 2D morphological systems both in the spatial domain, using their
impulse response and generating 2D nonlinear difference equations, as well as in
the slope domain, using slope transforms. In Sec. 10.3 we discuss the basic PDEs
for multiscale dilations and erosions, refine them using morphological derivatives,
give their slope domain interpretation, describe PDEs for opening filters, and out-
line numerical algorithms for their implementation. Section 10.4 summarizes the
main ideas from curve evolution as they apply to differential morphology. Sec-
tion 10.5 deals with distance transforms for binary images and the analysis of
their computation methods based on min-sum difference equations and slope fil-
ters. Finally, the eikonal PDE, its solution via weighted distance transforms, and
some of its applications to image processing are discussed in Sec. 10.6.

10.2 2D Morphological Systems and Slope Transforms

10.2.1 2D Morphological Systems

A 2D signal operator or system Ψ is generally called

dilation if Ψ(
∨

i fi) =
∨

i Ψ(fi) for any signal collection {fi};
erosion if Ψ(

∧

i fi) =
∧

i Ψ(fi);

shift-invariant if Ψ[f (x− y)] = Ψ(f )(x− y) for any signal f(x) and shift y;

translation-invariant if Ψ[c + f(x− y)] = c +Ψ(f )(x− y), for any f ,y and any
constant c.

Of particular interest in this chapter are operatorsE that are erosion and translation-
invariant (ETI) systems. Such systems are shift-invariant and obey an infimum-of-
sums superposition:

E




∧

i
ci + fi(x)



 =
∧

i
ci +E[fi(x)]. (10.10)

Similarly, dilation and translation-invariant (DTI) systems are shift-invariant and
obey a supremum-of-sums superposition as in Eq. (10.10) but with

∧

replaced by
∨

. Two elementary signals useful for analyzing such systems are the zero impulse
ξ(x) and the zero step ζ(x):

ξ(x) $
{

0, for x = 0,
−∞, for x ≠ 0,

ζ(x) $
{

0, for x ≥ 0,
−∞ for x < 0,
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where x = (x,y) ≥ 0 means that both x, and y are greater than or equal to 0.
Occasionally we shall refer to ξ as an “upper” impulse and to its negated version
−ξ as a “lower” impulse. A signal can be represented as a sup or inf of weighted
upper or lower impulses; for example,

f(x) =
∧

y
f(y)+′ [−ξ(x− y)]. (10.11)

If we define the lower impulse response of an ETI system E as its output g∧ =
E(−ξ) when the input is the zero lower impulse, we find that the system’s action
is equivalent to the infimal convolution of the input with its lower impulse response
[Mar94]:

E is ETI ⇐⇒ E(f ) = f ⊕′ g∧, g∧ $ E(−ξ).
Similarly, a system D is DTI iff D(f ) = f ⊕ g∨, where g∨ $ D(ξ) is the system’s
upper impulse response. Thus, DTI and ETI systems are uniquely determined in
the spatial domain by their impulse responses, which also control their causality
and stability [Mar94].

To create a transform domain for morphological systems, we first note that the
planes f(x) = s · x + c are eigenfunctions of any DTI system D or ETI system E
since

D[s · x+ c] = s · x+ c +G∨(s),
E[s · x+ c] = s · x+ c +G∧(s)

where s · x $ s1x + s2y for s = (s1, s2) and x = (x,y) in R2 and where

G∨(s) $
∨

x
g∨(x)− s · x, G∧(s) $

∧

x
g∧(x)− s · x

are the corresponding eigenvalues, called, respectively, the upper and lower slope
responses of the DTI and ETI systems. They measure the amount of shift in the
intercept of the input hyperplanes with slope vector s. They are also conceptually
similar to the frequency response of linear systems.

10.2.2 Slope Transforms

Viewing the 2D slope response as a signal transform with variable slope vector,
we define for any 2D signal f(x) its upper slope transform as the 2D function
F∨ : R2 → R, defined by

F∨(s) $
∨

x∈R2

f(x)− s · x (10.12)

and as its lower slope transform2 the function

F∧(s) $
∧

x∈R2

f(x)− s · x. (10.13)

2In convex analysis [Roc70], given a convex function h there uniquely corresponds another convex
function h∗(s) =

∨

x s · x− h(x), called the Fenchel conjugate of h. The lower slope transform of h
and its conjugate function are closely related since h∗(s) = −H∧(s).
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Figure 10.2: Convex signal f , its tangent with slope s, and a line parallel to the tangent.
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Figure 10.3: (a) Convex parabola signal f(x) = x2/2 (dashed line) and its morphological
closing (solid line) by a flat structuring element [−5,5]. (b) Lower slope transform F∧(s) =
−s2/2 of the parabola (dashed line) and of its closing (solid line).

As shown in Fig. 10.2 for a 1D signal f(x), f(x) − sx is the intercept of a line
with slope s passing from the point (x, f (x)) on the signal’s graph. Hence, for
each s, the lower slope transform of f is the minimum value of this intercept.
For differentiable3 1D signals, this minimum occurs when the above line becomes
a tangent; for 2D signals the tangent line becomes a tangent plane. Examples of
lower slope transforms are shown in Fig. 10.3.

3For differentiable signals, the maximization or minimization of the intercept f(x)−s ·x involved
in both slope transforms can also be done, for a fixed s, by finding its value at the stationary point
x∗ such that ∇f(x∗) = s. This extreme value of the intercept (as a function of the slope s) is the
Legendre transform [Cou62] of the signal f . If f is convex (or concave) and has an invertible gradient,
its Legendre transform is single-valued and equal to the lower (or upper) transform; otherwise, the
Legendre transform is multivalued. This possibly multivalued transform has been defined as a “slope
transform” [Dor94] and its properties are similar to those of the upper–lower slope transforms, but
there are also some important differences [Mar94].
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Figure 10.4: Signals f (solid lines) and their lower envelopes f̌ (dashed lines) obtained via
the composition of the lower slope transform and its inverse. (a) Cosine whose amplitude
has been modulated by a slower cosine pulse. (b) Impulse response f of a discrete ETI
system generated by the min-sum difference equation f[n] = min(−ξ[n],

∧

1≤k≤20 f[n−
k]+ ak), where ak = sin(πk/21).

In general, a 2D signal f(x) is covered from above by all planes F∨(s) + s · x
whose infimum creates an upper envelope,

f̂ (x) $
∧

s∈R2

F∨(s)+ s · x, (10.14)

and from below by planes F∧(s)+s·x whose supremum creates the lower envelope

f̌ (x) $
∨

s∈R2

F∧(s)+ s · x. (10.15)

We view the signal envelopes f̂ (x) and f̌ (x) as the “inverse” upper and lower
slope transforms of f(x), respectively. Examples are shown in Fig. 10.4. The
upper (lower) slope transform is always a convex (concave) function. Similarly, the
upper (lower) envelope created by the “inverse” upper (lower) slope transform is
always a concave (convex) function. Further, for any signal f ,

f̌ ≤ f ≤ f̂ . (10.16)

Tables 10.1 and 10.2 list several properties and examples of the 2D upper slope
transform. The most striking is that supremal convolution in the time–space do-
main corresponds to addition in the slope domain. Note the analogy with linear
systems, in which linearly convolving two signals in space corresponds to multi-
plying their Fourier transforms. Very similar properties also hold for the 2D lower
slope transform, the only differences being the interchange of suprema with in-
fima, concave with convex, and the supremal ⊕ with the infimal convolution ⊕′.

Given a discrete-domain 2D signal f(i, j), we define its lower slope transform
by

F∧(s1, s2) =
∞
∧

i=−∞

∞
∧

j=−∞
f(i, j)− (is1 + js2), (10.17)
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Table 10.1: Properties of 2D Upper Slope Transform
Signal f(x) a Transform F∨(s) b
∨

i ci + fi(x)
∨

i ci + Fi(s)
f (x− x0) F(s)− s · x0

f(x)+ s0 · x F(s− s0)
f (rx), r ∈ R F(s/r)
rf(x), r > 0 rF(s/r)
(f ⊕ g)(x) (F +G)(s)

f (x) ≤ g(x) ∀x F(s) ≤ G(s) ∀s

g(x) =
{

f(x), ‖x‖p ≤ r
−∞, ‖x‖p > r G(s) = F(s)⊕′ r‖s‖q, 1

p +
1
q = 1

a x = (x,y) ∈ R2 b s = (s1, s2) ∈ R2

Table 10.2: Examples of 2D Upper Slope Transforms
Signal f(x) Transform F∨(s)

s0 · x −ξ(s− s0)
s0 · x+ ζ(x) −ζ(s− s0)
ξ(x− x0) −s · x0

ζ(x− x0) −s · x0 − ζ(s)
{

0, ‖x‖p ≤ r ,
−∞, ‖x‖p > r , p ≥ 1 r‖s‖q, 1

p +
1
q = 1

−s0‖x‖p, s0 > 0

{

0, ‖s‖q ≤ s0
+∞, ‖s‖q > s0

√

1− x2 −y2, x2 +y2 ≤ 1
√

1+ s2
1 + s2

2

−(x2 +y2)/2 (s2
1 + s2

2)/2
−(|x|p + |y|p)/p, p > 1 (|s1|q + |s2|q)/q

and likewise for its upper slope transform using
∨

. The properties of these slope
transforms for signals defined on the discrete plane are almost identical to the
ones for signals defined on R2 (see [Mar94] for details).

A more general treatment of upper and lower slope transforms on complete
lattices can be found in Heijmans and Maragos [Hei97].

10.2.3 Min-Sum Difference Equations and Discrete Slope Filters

The space dynamics of a large class of 2D discrete ETI systems can be described
by the following general 2D min-sum difference equation:

u(i, j) =




∧

(k,')∈Mo

ak' +u(i− k, j − ')


∧




∧

(k,')∈Mi

bk' + f(i− k, j − ')


 ,

(10.18)
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which we view as a 2D discrete nonlinear system, mapping the input signal f to the
output u. The masksMo,Mi are pixel coordinate sets that determine which output
and input samples will be added with constant weights to form the current output
sample. Similarly, the dynamics of DTI systems can be described by max-sum
difference equations as in Eq. (10.18) but with

∧

replaced by
∨

.
As explained by Dudgeon and Mersereau [Dud84], for 2D linear difference equa-

tions the recursive computability of Eq. (10.18) depends on (1) the shape of the
output maskMo = {(k,') : ak' < +∞} determining which past output samples are
involved in the recursion, (2) the boundary conditions, that is, the locations and
values of the output samples u(i, j) that are prespecified as initial conditions, and
(3) the scanning order in which the output samples should be computed. We as-
sume boundary conditions of value +∞ and of a shape (dependent on Mo and the
scanning order) appropriate so that the difference equation is an ETI system recur-
sively computable. Obviously, (0,0) 6∈ Mo. The nonrecursive part of Eq. (10.18)
represents an infimal convolution of the input array f(i, j) with the 2D finite-
support structuring function b(i, j) = bij , which is well understood. Thus, we
henceforth focus only on the recursive version of Eq. (10.18) by setting bk' = +∞,
except for b00 = 0. This yields the autoregressive 2D min-sum difference equation,

u(i, j) =




∧

(k,')∈Mo

ak' +u(i− k, j − ')


∧ f(i, j). (10.19)

If g = E(−ξ) is the impulse response of the corresponding ETI system E : f " u,
then u = f ⊕′ g. Finding a closed-formula expression for g is generally not possi-
ble. However, we can first find the slope responseG and then, via the inverse lower
slope transform, find the impulse response g or its envelope ǧ. (For notational
simplicity, we have dropped here the subscript ∧ from g and G.) Let us consider
the 2D finite-support signal of the mask coefficients,

a(i, j) $
{aij for (i, j) ∈ Mo

+∞ otherwise,
(10.20)

and its lower slope transform,

A∧(s1, s2) =
∧

(i,j)∈Mo

aij − is1 − js2. (10.21)

Then, rewriting Eq. (10.19) as

u = (u⊕′ a)∧ f (10.22)

and applying lower slope transforms to both sides yields

U∧(s) = [U∧(s)+A∧(s)]∧ F∧(s). (10.23)

Since U∧(s) = G(s)+ F∧(s), assuming that F∧(s) is finite yields

G(s) = min[0, G(s)+A∧(s)]. (10.24)
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The largest nontrivial solution of Eq. (10.24) is [Mar96]

G(s) =
{

0 for s ∈ P ,
−∞ for s 6∈ P ,

(10.25)

where P is the convex planar region,

P = {(s1, s2) : is1 + js2 ≤ aij ∀(i, j) ∈ Mo}. (10.26)

Thus, the system acts as an ideal-cutoff spatial slope filter, passing all input lower
slope vectors s in the planar region P unchanged but rejecting the rest. The inverse
slope transform on G yields the lower envelope ǧ of the impulse response g.
Over short-scale periods, g has the shape induced by the sequence {aij}, but over
scales much longer than the size of the output coefficient mask Mo, g behaves
like its lower envelope ǧ (see the 1D example of Fig. 10.4b). Together G and ǧ can
describe the long-scale dynamics of the system. In addition, if g = ǧ, then the
above analysis is also exact for the short-scale behavior.

As an example let Mo = {(0,1), (0,1)} and consider the min-sum difference
equation,

u(i, j) = min
(

u(i− 1, j)+ a10, u(i, j − 1)+ a01, f (i, j)
)

, (10.27)

which can model the forward pass of the sequential computation of the cityblock
distance transform. Assuming boundary conditions u(i, j) = +∞ if i < 0 or j < 0
and a bottom-left to top-right scanning order, the impulse response (found by
induction) and slope response (shown in Fig. 10.5a for a10 = a01 = 1) are

g(i, j) = a10i+ a01j − ζ(i, j),
G(s1, s2) = ζ(a10 − s1, a01 − s2). (10.28)

Thus, this system acts as a 2D lowpass spatial slope filter, passing all input lower
slopes s1 ≤ a10 and s2 ≤ a01, but rejecting the rest. In this case, g = ǧ is convex.
This example demonstrates that the impulse response of ETI systems described
by min-sum difference equations with a recursive part has an infinite support.

10.3 PDEs for Morphological Image Analysis

10.3.1 PDEs Generating Dilations and Erosions

Let k : R2 → R be a unit-scale upper-semicontinuous concave structuring function,
to be used as the kernel for morphological dilations and erosions. Scaling both its
values and its support by a scale parameter t ≥ 0 yields a parameterized family
of multiscale structuring functions:

kt(x,y) $
{ tk(x/t,y/t) for t > 0,
ξ(0,0), for t = 0,

(10.29)
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Figure 10.5: Regions of support of binary slope responses of discrete ETI systems, repre-
senting: (a) the forward pass of the cityblock distance transform, (b) the forward pass of
the chamfer (3,4) distance transform, and (c) the chamfer (3,4) distance transform.

which satisfies the semigroup property ks ⊕ kt = ks+t . Using kt in place of g as
the kernel in the basic morphological operations leads to defining the multiscale
dilation and erosion of f : R2 → R by kt as the scale-space functions

δ(x,y, t) $ f ⊕ kt(x,y), ε(x,y, t) $ f # kt(x,y), (10.30)

where δ(x,y,0) = ε(x,y,0) = f(x,y).
In practice, a useful class of functions k consists of flat structuring functions,

k(x,y) =
{

0 for (x,y) ∈ B,
−∞ for (x,y) 6∈ B,

(10.31)

that are the 0/ − ∞ indicator functions of compact convex planar sets B. The
general PDE generating the multiscale flat dilations of f by a general compact
convex symmetric B is [Alv93, Bro94, Hei97]

δt = sptf(B)(δx,δy), (10.32)
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where sptf(B) is the support function of B,

sptf(B)(x,y) $
∨

(a,b)∈B
ax + by. (10.33)

Useful cases of structuring sets B are obtained by the unit balls

Bp = {(x,y) ∈ R2 : ‖(x,y)‖p ≤ 1}

of the metrics induced by the Lp norms ‖ · ‖p, for p = 1,2, . . . ,∞. The PDEs
generating the multiscale flat dilations of f by Bp for three special cases of norms
‖ · ‖p are as follows:

B = rhombus (p = 1) #⇒ δt = max(|δx|, |δy |) = ‖∇δ‖∞, (10.34)

B = disk (p = 2) #⇒ δt =
√

(δx)2 + (δy)2 = ‖∇δ‖2, (10.35)

B = square (p =∞) #⇒ δt = |δx| + |δy | = ‖∇δ‖1, (10.36)

with δ(x,y,0) = f(x,y). The corresponding PDEs generating mutliscale flat
erosions are

B = rhombus #⇒ εt = −‖∇ε‖∞, (10.37)

B = disk #⇒ εt = −‖∇ε‖2, (10.38)

B = square #⇒ εt = −‖∇ε‖1, (10.39)

with ε(x,y,0) = f(x,y).
These simple but nonlinear PDEs are satisfied at points where the data are

smooth, that is, the partial derivatives exist. However, even if the initial image or
signal f is smooth, at finite scales t > 0 the above dilation or erosion evolution
may create discontinuities in the derivatives, called shocks, which then continue
propagating in scale-space. Thus, the multiscale dilations δ or erosions ε are weak
solutions of the corresponding PDEs, in the sense put forth by Lax [Lax73]. Ways to
deal with these shocks include replacing standard derivatives with morphological
derivatives [Bro94] or replacing the PDEs with differential inclusions [Mat93]. For
example, let

Mxf(x,y) $ lim
r↓0

sup{f(x + v,y) : |v| ≤ r}− f(x,y)
r

be the sup-derivative of f along the x-direction. If the right [fx(x+, y)] and left
[fx(x−, y)] derivatives of f along the x-direction exist, then

Mxf(x,y) = max[0, fx(x+, y),−fx(x−, y)]. (10.40)

The sup-derivative Myf along the y-direction can be treated similarly. Then, a
generalized PDE generating flat dilations by a compact convex symmetric B is

δt = sptf(B)(Mxδ,Myδ). (10.41)
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This new PDE can handle discontinuities (i.e., shocks) in the partial derivatives of
δ, provided that its left and right derivatives exist everywhere.

The above PDEs for dilations–erosions of graylevel images by flat structuring
elements directly apply to binary images, since flat dilations–erosions commute
with thresholding, and hence when the graylevel image is dilated–eroded, each of
its thresholded versions representing a binary image is simultaneously dilated–
eroded by the same element and at the same scale. However, this is not the case
with graylevel structuring functions. We provide two examples of PDEs generating
multiscale dilations by graylevel structuring functions: If k is the compact-support
spherical function

k(x,y) =
{√

1+ x2 +y2 for x2 +y2 ≤ 1,
−∞ for x2 +y2 > 1,

(10.42)

the dilation PDE becomes

δt =
√

1+ (δx)2 + (δy)2. (10.43)

For the infinite-support parabolic structuring function

k(x,y) = −r(x2 +y2), r > 0, (10.44)

the dilation PDE becomes

δt = [(δx)2 + (δy)2]/4r . (10.45)

10.3.2 Slope Transforms and Dilation PDEs

All of the above dilation (and erosion) PDEs can be unified using slope transforms.
Specifically, let the unit-scale kernel k(x,y) be a general upper-semicontinuous
concave function and consider its upper slope transform,

K∨(s1, s2) $
∨

(x,y)∈R2

k(x,y)− (s1x + s2y) (10.46)

Then, as discussed elsewhere [Hei97, Mat93], the PDE generating multiscale signal
dilations by k is

δt = K∨(δx,δy) (10.47)

Thus, the rate of change of δ in the scale (t) direction is equal to the upper slope
transform of the structuring function evaluated at the spatial gradient of δ. Simi-
larly, the PDE generating the multiscale erosion by k is

εt = −K∨(εx, εy). (10.48)

All of the dilation and erosion PDEs examined are special cases of Hamilton-
Jacobi equations, which are of paramount importance in physics. Such equations
usually do not admit classic (i.e., everywhere differentiable) solutions. Viscosity
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solutions of Hamilton-Jacobi PDEs have been extensively studied by Crandall et al.
[Cra92]. Based on the theory of viscosity solutions, Heijmans and Maragos [Hei97]
have shown via slope transforms that the multiscale dilation by a general upper-
semicontinuous concave function is the viscosity solution of the Hamilton-Jacobi
dilation PDE of Eq. (10.47).

10.3.3 Numerical Algorithm for Dilation PDEs

The PDEs generating flat dilation and erosion by disks are special cases of Hamilton-
Jacobi PDEs of the type

φt = β‖∇φ‖2

where φ = φ(x,y, t) and where β = β(x,y) has constant sign for all (x,y). An
efficient algorithm for numerically solving such PDEs for applications of curve evo-
lution has been developed by Osher and Sethian [Osh88] by adapting the technol-
ogy of conservative monotone discretization schemes for shock-producing PDEs
of hyperbolic conservation laws [Lax73]. The main steps of such a first-order al-
gorithm are

Φni,j = approximation of φ(i∆x, j∆y,n∆t) on a grid,
Vij = β(i∆x, j∆y),

D+xΦni,j = (Φni+1,j − Φni,j)/∆x, D−xΦni,j = (Φni,j − Φni−1,j)/∆x,
D+yΦni,j = (Φni,j+1 − Φni,j)/∆y, D−yΦni,j = (Φni,j − Φni,j−1)/∆y,

H = [max(0,D−xΦni,j)]
2 + [min(0,D+xΦni,j)]

2 + [max(0,D−yΦni,j)]
2

+[min(0,D+yΦni,j)]
2,

Φn+1
i,j = Φni,j +∆tVij

√
H n = 0,1,2, ..., (Tmax/∆t), (10.49)

where Tmax is the maximum time (or scale) of interest, ∆x, and ∆y are the spatial
grid spacings, and ∆t is the time (scale) step. For stability, the space/time steps
must satisfy (∆t/∆x +∆t/∆y)Vij ≤ 0.5.

By choosing fine grids (and possibly higher-order terms) an arbitrarily low er-
ror (between signal values on the continuous plane and the discrete grid) can be
achieved in implementing morphological operations involving disks as structur-
ing elements. This is a significant advantage of the PDE approach, as observed
elsewhere [Are93, Sap93]. Thus, curve evolution provides a geometrically bet-
ter implementation of multiscale morphological operations with the disk-shaped
structuring element. Figure 10.6 shows the results of a simulation to compare
the traditional dilation of digital images via discrete max-sum convolution of the
image by digital approximations to disks (e.g., squares) versus a dilation that is the
solution δ(x,y, t) of the dilation PDE numerically solved using algorithm (10.49).
Comparing the graylevel images to their binary versions (from thresholding at
level = 0), it is evident that the PDE approach to multiscale dilations can give much
better approximations to Euclidean disks and hence avoid the abrupt shape dis-
cretization inherent in modeling digital multiscale dilations using discrete disks.
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(a) (b)

(c) (d)

(e) (f)

Figure 10.6: (a) Original digital graylevel image f and its contour at level = 0. (b) Binary
image S from thresholding f at level = 0. (c) Flat dilation f ⊕B of f by a discrete disk, that
is, a square of (2t+1)×(2t+1) pixels, with t = 5. (d) Binary image S⊕B from thresholding
f ⊕B at level = 0. (e) Dilation of f by running the PDE ∂δ/∂t = ‖∇δ‖2 for scales t ∈ [0,5]
with initial condition δ(x,y,0) = f(x,y). (f) Binary image from thresholding the image
in (e) at level = 0.

10.3.4 PDEs Generating Openings and Closings

Let u(x,y, t) = [f (x,y) # tB] ⊕ tB be the multiscale flat opening of an image
f by the disk B. This standard opening can be generated at any scale r > 0 by
running the following PDE [Alv93]

ut = −max (sgn(r − t),0)‖∇u‖2 +max (sgn(t − r),0)‖∇u‖2, (10.50)

from time t = 0 until time t = 2r with initial condition u(x,y,0) = f(x,y),
where sgn(·) denotes the signum function. This PDE has time-dependent switch-
ing coefficients that make it act as an erosion PDE during t ∈ [0, r ] but as a dilation
PDE during t ∈ [r ,2r]. The discontinuities that this PDE exhibits at the instants
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it switches can be dealt with by making appropriate changes to the time scale, as
suggested by Alvarez et al. [Alv93].

Recently, the reconstruction openings have found many more applications than
the standard openings in a large variety of problems. We next present a nonlinear
PDE, introduced by Maragos and Meyer [Mar99], that can model and generate open-
ings and closings by reconstruction. Consider a 2D reference signal f(x,y) and a
marker signal g(x,y). If g ≤ f everywhere and we start iteratively growing g via
incremental flat dilations with an infinitesimally small disk ∆tB but without ever
growing the result above the graph of f , then in the limit we shall have produced
the reconstruction opening of f (with respect to the marker g). The infinitesimal
generator of this signal evolution can be modeled via a dilation PDE that has a
mechanism to stop the growth whenever the intermediate result attempts to cre-
ate a function larger than f . Specifically, let u(x,y, t) represent the evolutions of
f with initial value u0(x,y) = u(x,y,0) = g(x,y). Then, u is a weak solution
of the PDE

ut(x,y, t) = ‖∇u(x,y, t)‖sgn[f (x,y)−u(x,y, t)],
u(x,y,0) = g(x,y). (10.51)

This PDE models a conditional dilation that grows the intermediate result as long
as it does not exceed f . In the limit we obtain the final result u∞(x,y) = limt→∞
u(x,y, t). The mapping u0 " u∞ is the reconstruction opening filter.

If in the PDE of (10.51) we reverse the order between f and g (i.e., assume
that g ≥ f ), then the positive growth (dilation) of g is replaced with negative
growth (erosion) because now sgn(f − u) ≤ 0. This negative growth stops when
the intermediate result attempts to become smaller than f ; in the limit we obtain
the reconstruction closing of f with respect to the marker g.

The following shock-capturing and entropy-satisfying numerical algorithm has
been used to solve the PDE of (10.51) in [Mar99]. Let Uni,j be the approximation
of u(x,y, t) on a computational grid (i∆x, j∆y,n∆t). We then approximate PDE
(10.51) by the following 2D nonlinear difference equation:

Un+1
i,j = Uni,j −∆t [· · · (10.52)

(Sni,j)
+
√

((D−xUni,j)+)2 + ((D+xUni,j)−)2 + ((D−yUni,j)+)2 + ((D+yUni,j)−)2 +

(Sni,j)
−
√

((D+xUni,j)+)2 + ((D−xUni,j)−)2 + ((D+yUni,j)+)2 + ((D−yUni,j)−)2
]

,

where Sni,j = sgn
(

f(i∆x, j∆y)−Uni,j
)

and we denote r+ $ max(r ,0), r− $
min(r ,0). For stability, (∆t/∆x + ∆t/∆y) ≤ 0.5 is required. Also, a sign con-
sistency is enforced at each iteration: sgn(Un − f) = sgn(g − f). Examples of
simulating this numerical algorithm are shown in Fig. 10.7.

What happens if we now use the PDE of (10.51) when there is no specific order
between f and g? In such a case, the PDE has a sign-varying coefficient sgn(f −u)
with spatiotemporal dependence, which controls the instantaneous growth and
stops it whenever f = u. (Of course, there also is no growth at stationary points,
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 10.7: Morphological reconstruction filtering generated by the PDE (10.51) using two
markers. (a) Reference image Cameraman, 256×256 pixels. Second row: (b) the marker
(t = 0) was a standard opening by a 7×7 square of pixels, (c) the evolution at t = 20∆t,
and (d) the final reconstruction opening (after convergence). Third row: (e) the marker
(t = 0) was a standard closing by a square of 7×7 pixels, (f) the evolution at t = 20∆t, and
(g) the final reconstruction closing (after convergence). (∆x = ∆y = 1, ∆t = 0.25.)

where ux = uy = 0.) The control mechanism is of a switching type: For each t,
at points (x,y) where u(x,y, t) < f(x,y), it acts as a dilation PDE, whereas if
u(x,y, t) > f(x,y), it acts as an erosion PDE and reverses the direction of prop-
agation. The final result u∞(x,y) = limt→∞u(x,y, t) is equal to the output from
a general class of morphological filters, called levelings, which were introduced
by Meyer [Mey98], have many useful properties, and contain as special cases the
reconstruction openings and closings.
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10.4 Curve Evolution

Consider at time t = 0 an initial simple, smooth, closed planar curve γ(0) that is
propagated along its normal vector field at speed V for t > 0. Let this evolving
curve (front) γ(t) be represented by its position vector +C(p, t) =

(

x(p, t),y(p, t)
)

and be parameterized by p ∈ [0, J] so that it has its interior on the left in the
direction of increasing p and +C(0, t) = +C(J, t). The curvature along the curve is

κ = κ(p, t) $ yppxp −ypxpp
(x2

p +y2
p)3/2

. (10.53)

A general front propagation law (flow) is

∂ +C(p, t)
∂t

= V +N(p, t), (10.54)

with initial condition γ(0) = { +C(p,0) : p ∈ J}, where +N(p, t) is the instantaneous
unit outward normal vector at points on the evolving curve and V = +Ct · +N is
the normal speed, with +Ct = ∂ +C/∂t. This speed may depend on local geometri-
cal information such as the curvature, global image properties, or other factors
independent of the curve. If V = 1 or V = −1, then γ(t) is the boundary of the
dilation or erosion of the initial curve γ(0) by a disk of radius t. In general, if B is
an arbitrary compact, convex, symmetric planar set of unit scale and if we dilate
the initial curve γ(0) with tB and set the new curve γ(t) equal to the outward
boundary of γ(0)⊕ tB, then this curve evolution can also be generated by the PDE
of Eq. (10.54) using a speed [Are93, Sap93]

V = sptf(B)( +N), (10.55)

where sptf(B) is the support function of B.
Another important speed model has been studied extensively by Osher and

Sethian [Osh88, Set96] for general evolution of interfaces and by Kimia et al.
[Kim90] for shape analysis in computer vision:

V = 1− εκ, ε ≥ 0. (10.56)

As analyzed by Sethian [Set96], when V = 1 the front’s curvature will develop
singularities, and the front will develop corners (i.e., the curve derivatives will
develop shocks—discontinuities) at finite time if the initial curvature is anywhere
negative. Two ways to continue the front beyond the corners are as follows: (1) If
the front is viewed as a geometric curve, then each point is advanced along the
normal by a distance t, and hence a “swallowtail” is formed beyond the corners by
allowing the front to pass through itself. 2) If the front is viewed as the boundary
separating two regions, an entropy condition is imposed to disallow the front to
pass through itself. In other words, if the front is a propagating flame, then “once
a particle is burnt it stays burnt” [Set96]. The same idea has also been used to
model grassfire propagation leading to the medial axis of a shape [Blu73]. It is
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equivalent to using Huygen’s principle to construct the front as the set of points
at distance t from the initial front. This can also be obtained from multiscale
dilations of the initial front by disks of radii t > 0. Both the swallowtail and the
entropy solutions are weak solutions. The examples in Fig. 10.8 show that, when
ε > 0, motion with curvature-dependent speed has a smoothing effect. Further,
the limit of the solution for the V = 1−εκ case as ε ↓ 0 is the entropy solution for
the V = 1 case [Set96].
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Figure 10.8: Evolution of the curve (signal graph)
(

−p, cos(6πp)/10
)

, p ∈ [0,1]. Evolved
curves are plotted from t = 0 to t = 0.14 at increments of 0.02. The numerical simulation
for (b), (c), and (d) is based on the Osher and Sethian algorithm with ∆x = 0.005 and ∆t
chosen small enough for stability. (a)V = 1, “swallowtail” weak solution. (b)V = 1, entropy
weak solution with ∆t = 0.002. (c) V = 1− 0.05κ with ∆t = 0.0002. (d) V = 1− 0.1κ with
∆t = 0.0001.

To overcome the topological problem of splitting and merging and numerical
problems with the Lagrangian formulation of Eq. (10.54), an Eulerian formulation
was proposed by Osher and Sethian [Osh88] in which the original curve γ(0) is
first embedded in the surface of an arbitrary 2D Lipschitz continuous function
φ0(x,y) as its level set (contour line) at zero level. For example, we can select
φ0(x,y) to be equal to the signed distance function from the boundary of γ(0),
positive (negative) in the interior (exterior) of γ(0). Then, the evolving planar curve
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is embedded as the zero-level set of an evolving space-time function φ(x,y, t):

γ(t) = {(x,y) : φ(x,y, t) = 0} (10.57)

γ(0) = {(x,y) : φ0(x,y,0) = φ(x,y) = 0}. (10.58)

Geometrical properties of the evolving curve can be obtained from spatial deriva-
tives of the level function. Thus, at any point on the front the curvature and
outward normal of the level sets can be found from φ:

+N = − ∇φ
‖∇φ‖ , κ = −div

(

∇φ
‖∇φ‖

)

. (10.59)

The curve evolution PDE of Eq. (10.54) induces a PDE generating its level function:

φt = V‖∇φ‖,
φ(x,y,0) = φ0(x,y). (10.60)

If V = 1, the above function evolution PDE is identical to the flat circular dilation
PDE of Eq. (10.35) by equating scale with time. Thus, we can view this specific
dilation PDE as a special case of the general function evolution PDE of Eq. (10.60)
in which all level sets expand in a homogeneous medium with V = 1. Propagation
in a heterogeneous medium with V = V(x,y) > 0 will lead later to the eikonal
PDE.

10.5 Distance Transforms

10.5.1 Distance Transforms and Wave Propagation

For binary images, the distance transform is a compact way to represent their
multiscale dilations and erosions by convex polygonal structuring elements whose
shape depends upon the norm used to measure distances. Specifically, a binary
image can be divided into the foreground set S ⊆ R2 and the background set
Sc = {(x,y) : (x,y) 6∈ S}. For shape analysis of an image object S, it is often
more useful to consider its inner distance transform by using S as the domain to
measure distances from its background. However, for the applications discussed
herein, we need to view S as a region marker or a source emanating a wave that will
propagate away from it into the domain of Sc . Thus, we define the outer distance
transform of a set S with respect to the metric induced by some norm ‖ · ‖p,
p = 1,2, . . . ,∞, as the distance function:

Dp(S)(x,y) $
∧

(v,w)∈S
‖(x − v,y −w)‖p. (10.61)

If Bp is the unit ball induced by the norm ‖ · ‖p, thresholding the distance
transform at level r > 0 and obtaining the corresponding level set yields the mor-
phological dilation of S by the ball Bp at scale r :

S ⊕ rBp = {(x,y) : Dp(S)(x,y) ≥ r}. (10.62)

Nonlinear Image Processing 2000/07/12:18:32 Page 312



Petros Maragos 313

The boundaries of these dilations are the wavefronts of the distance propagation.
Multiscale erosions of S can be obtained from the outer distance transform of Sc .

In addition to being a compact representation for multiscale erosions and di-
lations, the distance transform has found many applications in image analysis
and computer vision. Examples include smoothing, skeletonization, size distribu-
tions, shape description, object detection and recognition, segmentation, and path
finding [Blu73, Bor86, Nac96, Pre93, Ros66, Ros68, Ver91, Vin91b]. Thus, many
algorithms have been developed for its computation.

Using Huygen’s construction, the boundaries of multiscale dilations–erosions
by disks can also be viewed as the wavefronts of a wave initiating from the origi-
nal image boundary and propagating with constant normal speed, that is, in a ho-
mogeneous medium. Thus, the distance function has a minimum time-of-arrival
interpretation [Blu73], and its isolevel contours coincide with those of the wave
phase function. Points at which these wavefronts intersect and extinguish them-
selves (according to Blum’s grassfire propagation principle) are the points of the
Euclidean skeleton axis of S [Blu73]. Overall, the Euclidean distance function D2(S)
is the weak solution of the following nonlinear PDE:

‖∇E(x,y)‖2 = 1, (x,y) ∈ Sc,
E(x,y) = 0, (x,y) ∈ ∂S. (10.63)

This is a special case of the eikonal PDE ‖∇E(x,y)‖2 = η(x,y) that corresponds
to wave propagation in heterogeneous media and whose solution E is a weighted
distance function, whose weights η(x,y) are inversely proportional to the varying
propagation speed [Lev70, Rou92, Ver90].

10.5.2 Distance Transforms as Infimal Convolutions and Slope
Filters

If we consider the 0/∞ indicator function of S,

I(S)(x,y) $
{

0 for (x,y) ∈ S,
+∞ for (x,y) 6∈ S,

(10.64)

and the Lp norm structuring function,

gp(x,y) = ‖(x,y)‖p, (10.65)

it follows that the distance transform can be obtained from the infimal convolution
of the indicator function of the set with the norm function:

Dp(S) = I(S)⊕′ gp. (10.66)

Further, since the relative ordering of distance values does not change if we raise
them to a positive power m > 0, it follows that we can obtain powers of the
distance function by convolving with the respective powers of the norm function:

[Dp(S)]m = I(S)⊕′ (gp)m. (10.67)
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The infimal convolution in Eq. (10.66) is equivalent to passing the input signal,
that is, the set’s indicator function, through an ETI system with slope response
[Mar96]

G∧(s) =
{

0 for ‖s‖q ≤ 1,
−∞ for ‖s‖q > 1, (10.68)

where q is the conjugate exponent of p (1/p + 1/q = 1). That is, the distance
transform is the output of an ideal-cutoff slope-selective filter that rejects all input
planes whose slope vector falls outside the unit ball with respect to the ‖·‖q norm
but passes all the rest unchanged.

10.5.3 Euclidean Distance Transforms of Binary Images and
Approximations

To obtain isotropic distance propagation, we want to employ the Euclidean distance
transform, that is, using the norm ‖ · ‖2 in Eq. (10.61), since it gives multiscale
morphology with the disk as the structuring element. However, computing the
Euclidean distance transform of discrete images has a significant computational
complexity. Thus, various techniques have been used to obtain an approximate
or the exact Euclidean distance transform at a lower complexity. Four types of
approaches that deal with this problem are as follows:

(1) Discrete metrics on grids that yield approximations to the Euclidean dis-
tance. Their early theory was developed by Rosenfeld and Pfaltz [Ros66, Ros68],
based on either sequential or parallel operations. This was followed later by a
generalization developed by Borgefors [Bor86] and based on chamfer metrics that
yielded improved approximations to the Euclidean distance.

(2) Fast algorithmic techniques that can obtain the exact Euclidean distances
by operating on complex data structures (e.g., [Dan80, Vin91a]).

(3) Infimal convolutions of binary images with a parabolic structuring function,
which yield the exact squared Euclidean distance transform [Ste80, Boo92, Hua94].
This follows from Eq. (10.67) by using m = 2 with the Euclidean norm (p = 2):

[D2(S)]2 = I(S)⊕′ (g2)2. (10.69)

The kernel in the above infimal convolution is a convex parabola [g2(x,y)]2 =
‖(x,y)‖2

2 = x2 + y2. Note that the above result holds for images and kernels
defined both on the continuous and on the discrete plane. Of course, convolution
of the image with an infinite-extent kernel is not possible, and hence truncation
of the parabola is used, which incurs an approximation error. The complexity
of this convolution approach can be reduced significantly by using dimensional
decomposition of the 2D parabolic structuring function by expressing it either as
the dilation of two 1D quadratic structuring functions [Boo92] or as the dilation
of several 3×3 kernels that yields a truncation of the 2D parabola [Hua94, Shi91].

(4) Efficient numerical algorithms for solving the nonlinear PDE (10.63) that
yield arbitrarily close approximations to the Euclidean distance function.
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Approach (4) yields the best approximations and will be discussed later. Of
the other three approaches, (1) and (3) are more general than (2), have significant
theoretical structure, and can be used with even the simplest data structures,
such as rectangularly or hexagonally sampled image signals. Next we elaborate on
approach (1), which has been studied the most.

10.5.4 Chamfer Distance Transforms

The general chamfer distance transform is obtained by propagating local distance
steps within a small neighborhood. For each such neighborhood the distance
steps form a mask of weights that is infimally convolved with the image. For
a 3×3-pixel neighborhood, if a and b are the horizontal and diagonal distance
steps, respectively, the outer (a, b) chamfer distance transform of a planar set S
can also be obtained directly from the general definition in Eq. (10.61) by replacing
the general Lp norm ‖ · ‖p with the (a, b) chamfer norm

‖(x,y)‖a,b $ max(|x|, |y|)a+min(|x|, |y|)(b − a). (10.70)

The unit ball corresponding to this chamfer norm is a symmetric octagon, and the
resulting distance transform is

Da,b(S)(x,y) =
∧

(v,w)∈S
‖(x − v,y −w)‖a,b. (10.71)

Note that the above two equations apply to sets S and points (x,y) both in the
continuous plane R2 as well as in the discrete plane Z2.

For a 3×3-pixel neighborhood, the outer (a, b) chamfer distance transform of
a discrete set S ⊆ Z2 can be obtained via the following sequential computation
[Bor86, Ros66]:

un(i, j) = min
(

un(i− 1, j)+ a, un(i, j − 1)+ a,
un(i− 1, j − 1)+ b, un(i+ 1, j − 1)+ b, un−1(i, j)

)

. (10.72)

Starting from u0 = I(S) as the 0/∞ indicator function of S, two passes (n = 1,2)
of the 2D recursive erosion of Eq. (10.72) suffice to compute the chamfer distance
transform of S if Sc is bounded and simply connected. During the first pass the
image is scanned from top-left to bottom-right using the four-point nonsymmetric
half-plane submask of the 3×3 neighborhood. During the second pass the image is
scanned in the reverse direction using the reflected submask of distance steps. The
final resultu2(i, j) is the outer (a, b) chamfer distance transform of S evaluated at
points of Z2. An example of the three images, u0, u1, and u2, is shown in Fig. 10.9.

Thus, the sequential implementation of the local distance propagation is done
via simple recursive min-sum difference equations. We shall show that these equa-
tions correspond to ETI systems with infinite impulse responses and binary slope
responses. The distance propagation can also be implemented in parallel via non-
recursive min-sum equations, which correspond to ETI systems with finite impulse
responses, as explained next.
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(a) (b) (c)

Figure 10.9: Sequential computation of the chamfer distance transform with optimal dis-
tance steps in a 3×3 mask. (a) Original binary image, 450×450 pixels, (b) result after
forward scan, and (c) final result after backward scan. [In (b) and (c) the distances are
displayed as intensity values modulo a constant.]

Sequential Computation and IIR Slope Filters

Consider a 2D min-sum autoregressive difference equation with output mask and
coefficients as in Fig. 10.10c:

u(i, j) = min(u(i− 1, j)+ a, u(i, j − 1)+ a,
u(i− 1, j − 1)+ b, u(i+ 1, j − 1)+ b, f (i, j)), (10.73)

where f = I(S) is the 0/∞ indicator function of a set S representing a discrete
binary image. Then consider the following distance transformation of f obtained
in two passes: During the forward pass Eq. (10.73) is recursively run over f(i, j)
in a bottom-to-top, left-to-right scanning order. The forward pass mapping f " u
is an ETI system with an infinite impulse response (found via induction):

gf (i, j) =
{‖(i, j)‖a,b for i+ j ≥ 0, j ≥ 0,
+∞ otherwise.

(10.74)

A truncated version of gf is shown in Fig. 10.10d. The slope response Gf (s) of
this ETI system is equal to the 0/−∞ indicator function of the region shown (for
a = 3, b = 4) in Fig. 10.5(b).

During the backward pass a recursion similar to Eq. (10.73) but in the opposite
scanning order and using as output mask the reflected version of Fig. 10.10c is
run over the previous resultu(i, j) to yield a signal d(i, j) that is the final distance
transform of f(i, j). The backward pass mapping u " d is an ETI system with
an infinite impulse response gb(i, j) = gf (−i,−j) and a slope response Gb(s) =
Gf (−s).

Since infimal convolution is an associative operation, the distance transform
mapping f " d is an ETI system with an infinite impulse response g = gf ⊕′ gb:

d = (f ⊕′ gf )⊕′ gb = f ⊕′ (gf ⊕′ gb) = f ⊕′ g. (10.75)

The overall slope response,

G(s) = Gf (s)+Gb(s) = Gf (s)+Gf (−s), (10.76)
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b a b

→ (b)

↑
3b a+ 2b 2a+ b 3a 2a+ b a+ 2b 3b
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∞ ∞ ∞ ∞ ∞ ∞ ∞

→

Figure 10.10: Coefficient masks and impulse responses of ETI systems associated with
computing the (a, b) chamfer distance transform. (a) Local distances within the 3×3-
pixel unit “disk.” (b) Distances from origin by propagating three times the local distances
in (a); also equal to a 7×7-pixel central portion of the infinite impulse response of the
overall system associated with the distance transform. (c) Coefficient mask for the min-
sum difference equation computing the forward pass for the chamfer distance. (d) A 7×7-
pixel portion of the infinite impulse response of the system corresponding to the min-sum
difference equation computing the forward pass.

of this distance transform ETI system is the 0/−∞ indicator function of a bounded
convex region shown in Fig. 10.5c for a = 3, b = 4. Further, by using induction
on (i, j) and symmetry, we find that g = gf ⊕′ gb is equal to the (a, b) chamfer
distance function

g(i, j) = ‖(i, j)‖a,b (10.77)

A truncated version of g is shown in Fig. 10.10b. Thus, our analysis has proved
using ETI systems theory that the two-pass computation via recursive min-sum
difference equations whose coefficients are the local chamfer distances yields the
(a, b) chamfer distance transform:

[I(S)⊕′ gf ]⊕′ gb = Da,b(S). (10.78)

Two special cases are the well-known cityblock and chessboard discrete dis-
tances [Ros66]. The cityblock distance transform is obtained using a = 1 and
b = +∞, that is, using the five-pixel rhombus as the unit “disk.” It is an ETI sys-
tem with impulse response g(i, j) = |i| + |j| and the slope response being the
indicator function of the unit square {s : ‖s‖∞ = 1}. Similarly, the chessboard
distance transform is obtained using a = b = 1. It is an ETI system with im-
pulse response g(i, j) = max(|i|, |j|) and the slope response being the indicator
function of the unit rhombus {s : ‖s‖1 = 1}.
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Parallel Computation and FIR Slope Filters

The (a, b) chamfer distance transform can be implemented alternatively using
parallel operations. Namely, let

g0(i, j) $
{g(i, j) for |i|, |j| ≤ 1,
+∞ otherwise,

(10.79)

be the 3×3-pixel central portion of g defined in Eq. (10.77). It can be shown via
induction that the nth-fold infimal convolution of g0 with itself yields g in the
limit:

g = lim
n→∞

(g0 ⊕′ g0)...⊕′ g0
︸ ︷︷ ︸

n times

. (10.80)

Figure 10.10b shows the intermediate result for n = 3 iterations. Similar finite
decompositions of discrete conical functions into infimal convolutions of smaller
kernels have been studied elsewhere [Shi91]. Consider now the nonautoregressive
min-sum difference equation

dn(i, j) =
1
∧

k=−1

1
∧

'=−1

g0(i, j)+ dn−1(i− k, j − '), (10.81)

run iteratively forn = 1,2, . . . , starting from d0 = f . Each iteration is equivalent to
the infimal convolution of the previous result with a finite impulse response equal
to g0. By iterating these local distances to the limit, the final distance transform is
obtained: d = limn→∞ dn. In practice, when the input image f has finite support,
the number of required iterations is finite and bounded by the image diameter.

Optimal Chamfer Distance Transforms

Selecting the steps a,b under certain constraints leads to an infinite variety of
chamfer metrics based on a 3×3 mask. The two well-known and easily computable
special cases of the cityblock metric with (a, b) = (1,∞) and the chessboard
metric with (a, b) = (1,1) give the poorest discrete approximations to Euclidean
distance (and to multiscale morphology with a disk structuring element), with
errors reaching 41.4% and 29.3%, respectively. Using Euclidean steps (a, b) =
(1,
√

2) yields a 7.61% maximum error. Thus, a major design goal is to reduce
the approximation error between the chamfer distances and the corresponding
Euclidean distances [Bor86]. A suitable error criterion is the maximum absolute
error (MAE) between a unit chamfer ball and the corresponding unit disk [But98,
Ver91]. The optimal steps obtained by Butt and Maragos [But98] for minimizing
this MAE are a = 0.9619 and b = 1.3604, which give a 3.957% maximum error.
In practice, for faster implementation, integer-valued distance steps A and B are
used, and the computed distance transform is divided by a normalizing constant
k, which can be real-valued. We refer to such a metric as (a, b) = (A, B)/k. Using
two decimal digits for truncating optimal values and optimizing the triple (A, B, k)
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(a) (b) (c)

(d) (e) (f)

Figure 10.11: Top row: distance transforms of a binary image obtained via (a) a (1,1) cham-
fer metric, (b) the optimal 3×3 chamfer metric, and (c) curve evolution. These distances are
displayed as intensities modulo a constant h = 20. Bottom row: the multiscale dilations
(at scales t = nh, n = 1,2,3, . . . ,) of the original set (filled black regions) were obtained by
thresholding the three distance transforms at isolevel contours whose levels are multiples
of h using the following structuring elements: (d) and (e) the unit-scale polygons corre-
sponding to the metrics used in (a) and (b) and (f) the disk. All images have a resolution
450×600 pixels.

as done by Butt and Maragos [But98] for the smallest possible error yields A = 70,
B = 99, and k = 72.77. The corresponding steps are

(a, b) = (70,99)/72.77,

yielding a 3.959% MAE. See Fig. 10.11 for an example. By working as above, optimal
steps that yield an even lower error can also be found for chamfer distances with
a 5×5 mask or larger neighborhood [But98].

10.6 Eikonal PDE and Distance Propagation

The main postulate of geometrical optics [Bor59] is Fermat’s principle of least time.
Let us assume a 2D (i.e., planar) medium with (possibly space-varying) refractive
index η(x,y) = c0/c(x,y), defined as the ratio of the speed c0 of light in free
space divided by its speed c(x,y) in the medium. Given two points A and B in
such a medium, the optical path length along a ray trajectory ΓAB (parameterized
by ') between points A and B is

optical path length =
∫

ΓAB
η
(

ΓAB(')
)

d' = c0T(ΓAB), (10.82)
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(a) (b)

Figure 10.12: (a) Image of an optical medium consisting of two areas of different refractive
indexes (whose ratio is 5/3) and the correct path of the light ray (from Snell’s law) between
two points. (b) Path found using the weighted distance function (numerically estimated
via curve evolution); the thin light contours show the wavefronts propagating from the two
source points.

where d' is the differential length element along this trajectory and T(ΓAB) is the
time required for the light to travel this path. Fermat’s principle states that light
will choose a path between A and B that minimizes the optical path length.

An alternative viewpoint of geometrical optics is to consider the scalar function
E(x,y), called the eikonal, whose isolevel contours are normal to the rays. Thus,
the eikonal’s gradient ‖∇E‖ is parallel to the rays. It can be shown [Bor59] using
calculus of variations that Fermat’s principle is equivalent to the following PDE:

‖∇E(x,y)‖ =

√
√
√
√

( ∂E
∂x

)2

+
(

∂E
∂y

)2

= η(x,y), (10.83)

called the eikonal equation. Thus, the minimal optical path length between two
points located at A and B is

E(B)− E(A) = inf
ΓAB

∫

ΓAB
η(ΓAB('))d'. (10.84)

Assume an optical wave propagating in a 2D medium of index η(x,y) at wave-
lengths much smaller than the image objects, so that ray optics can approximate
wave optics. Then, the eikonal E of ray optics is proportional to the phase of the
wavefunction. Hence, the isolevel contour lines of E are the wavefronts. Assuming
that at time t = 0 there is an initial wavefront at a set of source points Si, we can
trace the wavefront propagation using Huygen’s envelope construction: Namely, if
we dilate the points P = (x,y) of the wavefront curve at a certain time t with
circles of infinitesimal radius c(x,y)dt, the envelope of these circles yields the
wavefront at time t + dt. If T(P) is the time required for the wavefront to arrive
at P from the sources, then

E(P) = c0T(P) = inf
i

{

inf
ΓSiP

∫

ΓSiP
η
(

ΓSiP (')
)

d' + E(Si)
}

. (10.85)
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Thus, we can equate the eikonal E(x,y) to the weighted distance function between
a point (x,y) and the sources along a path of minimal optical length and also view
E as proportional to the wavefront arrival time T(x,y) (see also [Bor59, Kim96,
Lev70, Rou92, Ver90]). An example is shown in Fig. 10.12.

Many tasks for extracting information from visible images have been related to
optics and wave propagation via the eikonal PDE. Its solution E(x,y) can provide
shape from shading, analog contour-based halftoning, and topographic segmenta-
tion of an image by choosing the refractive index field η(x,y) to be an appropriate
function of the image brightness [Hor86, Kim96, Naj94, Pnu94, Sch83, Ver90]. Fur-
ther, in the context of curve evolution, the eikonal PDE can be seen as a stationary
formulation of the embedding level function evolution PDE of Eq. (10.60) with
positive speed V = β(x,y) = β0/η(x,y) > 0. Namely, as explained elsewhere
[Bar90, Fal94, Osh88]), if

T(x,y) = inf{t : φ(x,y, t) = 0} (10.86)

is the minimum time at which the zero-level curve of φ(x,y, t) crosses (x,y),
then

‖∇T(x,y)‖ = 1
β(x,y)

. (10.87)

Setting E = β0T leads to the eikonal.
In short, we can view the solution E(x,y) of the eikonal as a weighted dis-

tance transform (WDT) whose values at each pixel give the minimum distance
from the light sources weighted by the gray values of the refractive index field.
On a computational grid this solution is numerically approximated using discrete
WDTs, which can be implemented either via 2D recursive min-sum difference equa-
tions or via numerical algorithms of curve evolution. The former implementation
employs adaptive 2D recursive erosions and is a stationary approach to solving
the eikonal, whereas the latter involves a time-dependent formulation and evolves
curves based on a dilation-type PDE at a speed varying according to the gray val-
ues. Next we outline these two ways of solving the eikonal PDE and discuss some
of its applications.

WDT Based on Chamfer Metrics

Let f(i, j) ≥ 1 be a sampled nonnegative graylevel image and let us view it as
a discrete refractive index field. Also let S be a set of reference points or the
“sources” of some wave or the location of the wavefront at time t = 0. The discrete
WDT finds at each pixel P = (i, j) the smallest sum of values of f over all possible
discrete paths connecting P to the sources S. It can also be viewed as a procedure
for finding paths of minimal “cost” among nodes of a weighted graph or as discrete
dynamic programming. It has been used extensively in image analysis problems
such as minimal path finding, weighted distance propagation, and graylevel image
skeletonization; for example, see [Lev70, Mey92, Rut68, Ver91].

The above discrete WDT can be computed by running a 2D min-sum difference
equation like Eq. (10.72) that implements the chamfer distance transform of binary
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images but with spatially varying coefficients proportional to the gray image values
[Rut68, Ver90]:

un(i, j) = min{un(i− 1, j)+ af(i, j),
un(i, j − 1)+ af(i, j), un(i− 1, j − 1)+ bf(i, j),
un(i+ 1, j − 1)+ bf(i, j), un−1(i, j)}, (10.88)

where u0 = I(S) is the 0/∞ indicator function of the source set S. Starting from
u0, a sequence of functions un is iteratively computed by running Eq. (10.88) over
the image domain in a forward scan for even n, whereas for odd n an equation
similar to Eq. (10.88) but with a reflected coefficient mask is run in a backward
scan. In the limit n → ∞ the final WDT u∞ is obtained. In practice, this limit is
reached after a finite number of passes. The number of iterations required for con-
vergence depends on both the sources and the gray values. There are also other,
faster implementations using queues (see [Mey92, Ver90]). The final transform is
a function of the source set S, the index field, and the norm used for horizontal
distances.

The above WDT based on discrete chamfer metrics is a discrete approximate
solution of the eikonal PDE. The rationale for such a solution is that, away from
the sources, this difference equation mapping f " u corresponds to

∨

(k,')∈B

u(i, j)−u(i− k, j − ')
aij

= f(i, j) (10.89)

where B is equal to the union of the output mask and its reflection and aij are
the chamfer steps inside B. The left side of Eq. (10.89) is a weighted discrete
approximation to the morphological derivative M(−u) with horizontal distances
weighted by aij . Thus, since in the continuous case M(−u) = ‖∇u‖, Eq. (10.89)
is an approximation of the eikonal. In fact, as established elsewhere [Mey92], it is
possible to recover a digital imageu from its half morphological gradientu−u#B
using the discrete weighted distance transform if one uses 1-pixel sources in each
regional minimum of u.

The constants a and b in Eq. (10.88) are the distance steps by which the planar
chamfer distances are propagated within a 3×3 neighborhood. The propagation
of the local distances (a, b) starts at the points of sources S and moves with speed
V = β(i, j) = β0/f(i, j). If f is a binary image, then the propagation speed is con-
stant and the solution of the above difference equation (after convergence) yields
the discrete chamfer distance transform of S. To improve the WDT approximation
to the eikonal’s solution, one can optimize (a, b) so that the error is minimized
between the planar chamfer distances and the Euclidean distances. Using a neigh-
borhood larger than 5×5 can further reduce the approximation error but at the
cost of an even slower implementation. However, larger neighborhood masks can-
not be used with WDTs because they give erroneous results since the large masks
can bridge over a thin line that separates two segmentation regions. Overall, this
chamfer metric approach to WDT is fast and easy to implement but due to the
required small neighborhoods is not isotropic and cannot achieve high accuracy.
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WDT Based on Curve Evolution

In this approach, at time t = 0 the boundary of each source is modeled as a curve
γ(0) which is then propagated with normal speed V = β(x,y) = β0/η(x,y).
The propagating curve γ(t) is embedded as the zero-level curve of a function
φ(x,y, t), where φ(x,y,0) = φ0(x,y) is the signed (positive in the curve inte-
rior) distance from γ(0). The function φ evolves according to the PDE

φt = β(x,y)‖∇φ‖, (10.90)

which corresponds to curve evolution in a heterogeneous medium with position-
dependent speed β > 0, or equivalently to a successive front dilation by disks
with position-varying radii β(x,y)dt. This is a time-dependent formulation of
the eikonal PDE [Fal94, Osh88]. It can be solved via Osher and Sethian’s numer-
ical algorithm given by Eq. (10.49). The value of the resulting WDT at any pixel
(x,y) of the image is the time it takes for the evolving curve to reach this pixel,
that is, the smallest t such that φ(x,y, t) ≥ 0. This continuous approach to the
WDT can achieve subpixel accuracy, as investigated by Kimmel et al. [Kim96]. In
the applications of the eikonal PDE examined herein, the global speed function
β(x,y) is everywhere nonnegative. In such cases the computational complexity
of Osher and Sethian’s level set algorithm (which can handle sign changes in the
speed function) can be significantly reduced by using Sethian’s fast marching algo-
rithm [Set96], which is designed to solve the corresponding stationary formulation
of the eikonal PDE, that is, ‖∇T‖ = 1/β. There are also other types of numeri-
cal algorithms for solving stationary eikonal PDEs; for example, Rouy and Tourin
[Rou92] have proposed an efficient iterative algorithm for solving ‖∇E‖ = η.

All of the numerical image experiments with curve evolution shown herein
were produced using an implementation of fast marching based on a simple data
structure of two queues. This data structure is explained in [Mar00] and has
been used to implement WDTs based on either chamfer metrics or fast marching
for applications both with single sources as well as with multiple sources, where
triple points develop at the collision of several wavefronts.

Gridless Halftoning via the Eikonal PDE

Inspired by the use in Schröder [Sch83] of the eikonal function’s contour lines for
visually perceiving an intensity image I(x,y), Verbeek and Verwer [Ver90] and
especially Pnueli and Bruckstein [Pnu94] attempted to solve the PDE

‖∇E(x,y)‖ = constant − I(x,y) (10.91)

and create a binary gridless halftone version of I(x,y) as the union of the level
curves of the eikonal function E(x,y). The larger the intensity value I(x,y), the
smaller the local density of these contour lines in the vicinity of (x,y). This
eikonal PDE approach to gridless halftoning, which we call eikonal halftoning,
is indeed very promising and can simulate various artistic effects, as shown in
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(a) (b) (c)

(d) (e) (f)

Figure 10.13: Eikonal halftoning of the Cameraman image I from the weighted distance
transform of the “negative” image max(I) − I. Top row: the light source was at the top
left corner, and the WDTs (displayed as intensities modulo a height such that 25 waves
exist per image) were obtained via (a) a (1,1) chamfer metric, (b) the optimal 3×3 chamfer
metric, and (c) curve evolution. Bottom row: 100 contour lines of the WDTs in the top row
give gridless halftoning of the original images.

Fig. 10.13, which also shows that the curve evolution WDT gives a smoother halfton-
ing of the image than the WDTs based on chamfer metrics.

Watershed Segmentation via the Eikonal

A powerful morphological approach to image segmentation is the watershed algo-
rithm [Mey90, Vin91b], which transforms an image f(x,y) to the crest lines sepa-
rating adjacent catchment basins that surround regional minima or other “marker”
sets of feature points. Najman and Schmitt [Naj94] established that (in the con-
tinuous domain and assuming that the image is smooth and has isolated critical
points) the continuous watershed is equivalent to finding a skeleton by influence
zones with respect to a weighted distance function that uses points in the regional
minima of the image as sources and ‖∇f‖ as the field of indices. A similar result
was obtained by Meyer [Mey94] for digital images. In Maragos and Butt [Mar00]
the eikonal PDE modeling the watershed segmentation of an image-related func-
tion f was solved by finding a WDT via the curve evolution PDE of Eq. (10.90)
in which the speed β is proportional to 1/‖∇f‖. Further, the results of this new
segmentation approach [Mar00] have been compared to the digital watershed algo-
rithm via flooding [Vin91b] and to the eikonal approach solved via a discrete WDT
based on chamfer metrics [Mey94, Ver90]. In all three approaches, robust features
are extracted first as markers of the regions, and the original image I is trans-
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(a) (b)

(c) (d)

Figure 10.14: Performance of various segmentation algorithms on a Test image, 250×400
pixels that is the minimum of two potential functions. Its contour plot (thin bright curves)
is superimposed on all segmentation results. Markers are the two source points of the
potential functions. The segmentation results are from (a) the digital watershed flooding
algorithm and from WDTs based on (b) the optimal 3×3 chamfer metric, (c) the optimal
5×5 chamfer metric, and (d) curve evolution. (The thick bright curve shows the correct
segmentation.)

formed to another function f by smoothing via alternating opening–closing by
reconstruction, taking the gradient magnitude of the filtered image, and changing
(via morphological reconstruction) the homotropy of the gradient image so that its
only minima occur at the markers. The segmentation is done on the final outcome
f of the above processing.

In the standard digital watershed algorithm via flooding [Mey90, Vin91b], the
flooding at each level is achieved by a planar distance propagation that uses the
chessboard metric. This kind of distance propagation is not isotropic and could
give wrong results, particularly for images with large plateaus. Eikonal segmen-
tation using WDTs based on chamfer metrics improves this situation a little but
not entirely. In contrast, for images with large plateaus or regions, segmentation
via the eikonal PDE and curve evolution WDT gives results close to ideal. Using a
test image that was difficult (because expanding wavefronts meet watershed lines
at many angles ranging from being perpendicular to almost parallel), Fig. 10.14
shows that the continuous segmentation approach based on the eikonal PDE and
curve evolution outperforms the discrete segmentation results (using either the
digital watershed flooding algorithm or chamfer metric WDTs). In real images,
which may contain a large variety of region sizes and shapes, the digital water-
shed flooding algorithm may give results comparable to the eikonal PDE approach.
Details on comparing the two segmentation approaches can be found in [Mar00].

Nonlinear Image Processing 2000/07/12:18:32 Page 325



326 Chapter 10: Differential Morphology

10.7 Conclusions

We have provided a unified view and some analytic tools for a recently growing
part of morphological image processing that is based on ideas from differential
calculus and dynamic systems, including the use of partial differential equations
or difference equations to model nonlinear multiscale analysis or distance prop-
agation in images. We have discussed general 2D nonlinear difference equations
of the max-sum or min-sum type that model the space dynamics of 2D morpho-
logical systems (including the distance computations) and some nonlinear signal
transforms, called slope transforms, that can analyze these systems in a transform
domain in ways conceptually similar to the application of Fourier transforms to
linear systems. We have used these nonlinear difference equations to model dis-
crete distance transforms and relate them to numerical solutions of the eikonal
PDE of optics. In this context, distance transforms are shown to be bandpass slope
filters. We have also reviewed some nonlinear PDEs that model the evolution of
multiscale morphological operators and use morphological derivatives. Related to
these morphological PDEs is the area of curve evolution, which employs methods
of differential geometry to study the differential equations governing the propa-
gation of time-evolving curves. The PDEs governing multiscale morphology and
most cases of curve evolution are of the Hamilton-Jacobi type and are related to
the eikonal PDE of optics.

We view the analysis of the multiscale morphological PDEs and of the eikonal
PDE solved via weighted distance tranforms as a unified area in nonlinear image
processing that we call differential morphology, and we have briefly discussed some
of its potential applications to image processing.
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