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Abstract. We present a novel multi-attentional convolutional architec-
ture to tackle the problem of real-time RGB-D 6D object pose tracking
of single, known objects. Such a problem poses multiple challenges origi-
nating both from the objects’ nature and their interaction with their en-
vironment, which previous approaches have failed to fully address. The
proposed framework encapsulates methods for background clutter and
occlusion handling by integrating multiple parallel soft spatial attention
modules into a multitask Convolutional Neural Network (CNN) architec-
ture. Moreover, we consider the special geometrical properties of both the
object’s 3D model and the pose space, and we use a more sophisticated
approach for data augmentation during training. The provided experi-
mental results confirm the effectiveness of the proposed multi-attentional
architecture, as it improves the State-of-the-Art (SoA) tracking perfor-
mance by an average score of 34.03 % for translation and 40.01 % for
rotation, when tested on the most complete dataset designed, up to date,
for the problem of RGB-D object tracking. Code will be available in:
https://github.com/ismarou/How to track your Dragon
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1 Introduction

Robust, accurate and fast object pose estimation and tracking, i.e. estimation of
the object’s 3D position and orientation, has been a matter of intense research
for many years. The applications of such an estimation problem can be found
in Robotics, Autonomous Navigation, Augmented Reality, etc. Although the
Computer Vision community has consistently studied the problem of object pose
estimation and tracking for decades, the recent spread of affordable and reliable
RGB-D sensors like Kinect, along with advances in Deep Learning (DL) and
especially the use of CNNs as the new SoA image feature extractors, led to a new
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Fig. 1: Top row:(Left to right) The ”Dragon” model, an estimated pose in the ”Hard
Interaction” scenario for each of the SoA [8] (light blue) and our (pink) approaches and
an example frame pair of Foreground extraction (up) and Occlusion handling (down)
attention maps which are learned by minimizing the two auxiliary binary cross entropy
losses. The following tradeoff occurs: as the occlusion increases, foreground attention,
which focuses on the moving parts of the scene (i.e. the hand and the object), gets
blurrier, while occlusion attention gets sharper and shifts focus from the object center
to its body parts. Bottom row:(Left to right) Translational and Rotational error
plots of the SoA [8] (blue) and (our) approaches, for the “75% Vert. Occlusion”, the
“Rotation Only” and the “Hard Interaction” scenario, respectively. Grey regions stand
for intervals of high occlusion and green ones for rapid movement.

era of research and a re-examination of several problems, with central aim the
generalization over different tasks. CNNs have achieved ground-breaking results
in 2D problems like object classification, object detection and segmentation.
Thus, it has been tempting to the research community to increasingly use them
in the more challenging 3D tasks, renouncing traditional algorithms.

The innate challenges of object pose estimation from RGB-D streams include
background clutter, occlusions (both static, from other objects present in the
scene, and dynamic, due to possible interactions with a human user), illumination
variation, sensor noise, image blurring (due to fast movement) and appearance
changes as the object viewpoint alters. Moreover, one should account for the pose
ambiguity, which is a direct consequence of the object’s own geometry, in possible
symmetries, the challenges of proper parameter representation of rotations and
the inevitable difficulties that an effort of forging a model faces, when extracting
information about the 3D scene geometry from 2D-projected images.

In this paper, we build upon previous works [7,8], in order to face a series
of those challenges that have not been fully resolved, so far. Thus, our main
contributions are:

– An explicit background clutter and occlusion handling mechanism that lever-
ages spatial attentions and provides an intuitive understanding of the tracker’s
region of interest at each frame, while boosting its performance. To the best
of our knowledge, this is the first such strategy, that explicitly handles these
two challenges, is incorporated into a CNN-based architecture, while achiev-
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ing real-time performance. Supervision for this mechanism is extracted by
fully exploiting the synthetic nature of our training data.

– The use of a novel multi-task pose tracking loss function, that respects the
geometry of both the object’s 3D model and the pose space and boosts the
tracking performance by optimizing auxiliary tasks along with the principal
one.

– SoA real-time performance in the hardest scenarios of the benchmark dataset
[8], while achieving lower translation and rotation errors by an average of
34.03% for translation and 40.01% for rotation.

Accordingly, we provide the necessary methodological design details and ex-
perimental results that justify the importance of the proposed method in the
challenging object pose tracking problem.

2 Related Work

Previous works attempt to tackle the problem using DL, focusing on two different
directions: per-frame pose estimation (or, else, “tracking by detection”) and
temporal tracking.

Tracking-by-Detection The first family of proposed approaches in literature
processes each video frame separately, without any feedback from the estimation
of the previous timeframe. In [36], Xiang et al. constructed a CNN architecture
that estimates binary object masks and then predicts the object class and its
translation and rotation separately, while in [19], Kehl et al. extended the Single
Shot Detection (SSD) framework [24] for 2D Object detection by performing
discrete viewpoint classification for known objects. Finally, they refine their ini-
tial estimations via ICP [32] iterations. In [38], Zakharov et al. proposed a CNN
framework that uses RGB images for pixel-wise object semantic segmentation
in a mask-level. Following this, UV texture maps are estimated to extract dense
correspondences between 2D images and 3D object models minimizing cross en-
tropy losses. Those correspondences are used for pose estimation via P’n’P [22].
This estimation is, ultimately, inserted as a prior to a refinement CNN that
outputs the final pose prediction. In PVNet [31], Peng et al. perform per-pixel
voting-based regression to match 3D object coordinates with predefined key-
points inside the object surface, in order to handle occlusions. In [30], Pavlakos
et al. extract semantic keypoints in single RGB images with a CNN and incor-
porate them into a deformable shape model. In [35], Wohlhart et al. employed
a supervised contrastive convolutional framework to disentangle descriptors of
different object instances and impose proportional distances to different poses of
the same object. In [33], Sundermeyer et al. built a self-supervised Augmented
Auto-Encoder that predicts 3D rotations only from synthetic data. In [29], Park
et al. trained an adversiarially guided Encoder-Decoder to predict pixel-wise
coordinates in a given image and then fed them to a P’n’P algorithm. More
recently, iPose [18] is one of the attempts the philosophy of which is the closest
to ours. Its authors segment binary masks with a pretrained MaskRCNN [11] to
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Fig. 2: Overview of the proposed CNN architecture for object pose tracking.

extract background clutter and occluders and they map 2D pixels to dense 3D
object coordinates, which, in turn, are used as input to a P’n’P geometric opti-
mization. Our attention modules have the same effect, but are computationally
cheaper than MaskRCNN, as they relax the requirement for hard segmentation.

Temporal Tracking The second category under study is temporal tracking,
where feedback is utilized, to allow for skipping steps without prior knowledge
of the previous pose. Garon et al. [7,8], formulated the tracking problem exclu-
sively as a learning one, by generating two streams of synthetic RGB-D frame
pairs from independent viewpoints and regressing the pose using a CNN. Li et
al.[23] initialized a similar CNN architecture using a FlowNet2 [17] backbone
and fused its two streams by subtraction. In DeepTAM [39], the training was
performed with an Optical flow-based regularization term and the production of
multiple heterogenous pose hypotheses was encouraged. Those hypotheses were
bootstrapped in the final layer. Last but not least, Deng et al.[4] extended the
framework of [33] by combining it with a Rao-Blackwellized Particle Filter [5]. In
brief, they randomly sampled 2D bounding boxes to crop RGB images, infer 3D
translation probabilities from their dimensions and search for the closest saved
rotated sample provided by the Autoencoder of [33]. Then, the particles were
weighted according to the orientation probabilities and were prepared for the
next sampling iteration.

3 Methodology

3.1 Problem Formulation

Our problem consists in estimating the object pose P, which is usually described
as a rigid 3D transformation w.r.t. a fixed coordinate frame, namely an element
of the Special Euclidean Lie group in 3D: SE(3). It can be disentangled into
two components; a rotation matrix R, which is an element of the Lie Group
SO(3) and a translation vector t ∈ R3. However, Brégier et al. [2] proposed a
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broader definition for the object pose, which can be considered as a family of
rigid transformations, accounting for the ambiguity caused by possible rotational
symmetry, noted as G ∈ SO(3). We leverage this augmented mathematical def-
inition for introducing a relaxation to the pose space C definition:

C =

{
P | P =

[
R ·G t
0T 1

]
, t ∈ R3, R ∈ SO(3), G ∈ SO(3)

}
. (1)

For example, as stated in [2], the description of the pose of an object with
spherical symmetry requires just 3 numbers: (tx,y,z), as G can be any instance
of SO(3) with the imprinted shape of the object remaining the same. Obviously,
for asymmetrical objects, G=I3.

3.2 Architecture Description

The proposed architecture is depicted in Fig.2. Our CNN inputs two RGB-D
frames of size 150 × 150: I(t),̂I(t) (with I(t) being the “Observed” and Î(t) the
“Predicted” one) and regresses an output pose representation ∆p ∈ R9, with 3
parameters for translation (t̂x,y,z ∈ [−1, 1]) and 6 for rotation. The first two lay-
ers of the “Observed” stream are initialized with the weights of a ResNet18[13],
pretrained on Imagenet [3], to narrow down the real-synthetic domain adaptation
gap, as proposed in [14]. Since Imagenet contains only RGB images, we initialize
the weights of the Depth input modality with the average of the weights corre-
sponding to each of the three RGB channels. Contrary to [14], we find beneficial
not to freeze those two layers during training. The reason is that we aim to track
the pose of the single objects we train on and not to generalize to unseen ones.
So, overfitting to that object’s features helps the tracker to focus only on dis-
tinguishing the pose change. The weights that correspond to the Depth stream
are, of course, not frozen in either case. To the output of the second “Observed”
layer, we apply spatial attention for foreground extraction and occlusion han-
dling and we add their corresponding output feature maps with the one of the
second layer, along with a Residual connection [12] from the first layer. As a next
step, we fuse the two streams by concatenating their feature maps and pass this
concatenated output through three sequential Fire modules [16], all connected
with residual connections [13].

Background and Occlusion Handling: After our first “Observed” Fire layer,
our model generates an attention weight map by using a Fire layer dedicated to
occlusion handling and foreground extraction, respectively, followed by a 1 × 1
convolution that squeezes the feature map channels to a single one (and nor-
malized by softmax). Our goal is to distil the soft foreground and occlusion
segmentation masks from the hard binary ground-truth ones (that we keep from
augmenting the object-centric image with random backgrounds and occluders)
in order to have their estimations available during the tracker’s inference. To
this end, we add the two corresponding binary cross entropy losses to our overall
loss function. We argue our design choice of using two attention modules, as
after experimentation, we found that assigning a clear target to each of the two
modules is more beneficial, rather than relying on a single attention layer to
resolve both challenges (see Sect.4.3), an observation also reported in [18].
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Rotation representation: From a mathematical standpoint, immediate re-
gression of pose parameters [8] with an Euclidean loss is suboptimal: while the
translation component belongs to the Euclidean space, the rotation component
lies on a non-linear manifold of SO(3). Thus, it is straightforward to model the
rotation loss using a Geodesic metric [15,10] on SO(3), i.e. the length, in radians,
of the minimal path that connects two of its elements: ∆R̂,∆R:

LRot(∆R̂,∆RGT ) = d
(Geod)
Rot (∆R̂,∆RGT ) = arccos

(Tr
(
∆R̂T ·∆RGT

)
− 1

2

)
.

(2)
In order to minimize the rotation errors due to ambiguities caused by the pa-
rameterization choice, we employ the 6D continuous rotation representation that
was introduced in [40]: ∆r = (∆rx

T , ∆ry
T ), where ∆rx/y ∈ R3. Given ∆r, the

matrix ∆R = (∆Rx, ∆Ry, ∆Rz)T is obtained by:

∆Rx = N(∆rx)

∆Ry = N [∆ry − (∆RT
x · ry) ·∆Rx)]

∆Rz = ∆Rx ×∆Ry

(3)

where ∆Rx/y/z ∈ R3, N(·) = (·)
‖(·)‖ is the normalization function. Furthermore,

as it has already been discussed in [2], each 3D rotation angle has a different
visual imprint regarding each rotation axis. So, we multiply both rotation matri-
ces with an approximately diagonal Inertial Tensor Λ, calculated on the object
model’s weighted surface and with respect to its center mass, in order to assign
a different weight to each rotational component. We note here that since we
want that matrix product to still lie in SO(3), we perform a Gramm-Schmidt or-
thonormalization on the Inertial Tensor Λ before right-multiplying it with each
rotation matrix. Finally, we weigh the translation and rotation losses using a
pair of learnable weights v = [v1, v2]T that are trained along with the rest of the
network’s parameters using Gradient Descent-based optimization, as proposed
in [20].

Symmetric Object Handling In the special case of symmetric objects, we
disentangle the ambiguities inserted due to this property from the core of ro-
tation estimation. We classify such ambiguities to two distinctive categories: a
continuous set of rotational ambiguities (the unweaving of which we incorporate
into our loss function) and a discrete set of reflective ambiguities that appear
due to our rotation representation choice and are handled heuristically.

Normally, the presence of the RGB input cue would break any symmetry
ambiguities as their origin is its Depth counterpart that depicts the object’s 3D
shape. However, our preliminary experiments have shown that this is only par-
tially true since the tracker places more emphasis to the Depth cue, in general,
in its effort to estimate the object’s pose. This inclination keeps the ambiguities
present during inference and incurs the need to explicitly model this disentan-
glement in the loss function formulation.

Symmetric Object Handling: Discrete Reflective Symmetry
By replacing the 3D Euler rotational parameter regression of Garon et al.[8],

with its 6D continuous counterpart, we face the extra problem of being unable
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Fig. 3: Comparison of the Rotational Estimation for the 127th frame of the ”Hard
Interaction Scenario” without/with our proposed reflective symmetry handling algo-
rithm. (a) The ground-truth prediction for frame 127. (b) The rotation estimation of
the 126th frame. Rotational error between the prediction and ground truth is small.
(c) An erroneous rotational estimation of the tracker for frame 127. The prediction is
discarded and replaced by the one of the previous timeframe. The error is kept small
and (although larger than in the 126th frame) reflective ambiguity is not propagated
to the next timestep via the previous pose feedback rendering.

to constrain the network’s rotational output. This has a severely negative effect
to objects with reflective symmetry, as there are configurations in which the
tracker predicts unacceptable values for one or more rotational components. For
example, in Fig. 3.2 we observe that the “Cookie Jar” symmetric object has been
turned upside down with respect to both the prediction of the previous timeframe
and the ground truth pose . As a result, we end up with adding significant extra
errors during the mean rotational error calculation over the total motion length,
since that discrepancy is not limited to a single frame, but is accumulated as we
proceed to the following frames, due to the temporal nature of the tracker, until
it is reset. In order to handle this challenge, we employ the following heuristic
algorithm: for each Euler rotational component we calculate the angular distance

d
(o)
A (r̂i(t), r̂i(t− 1)) (in degrees), between the current and the previous timestep.

If a d
(o)
A exceeds a certain threshold (here, it is set to 100o), then the value of

this particular Euler angle is set to r̂i(t− 1). Then, we may choose to perform a
second (or more) iterative forward CNN pass(es), if the time constraints of our
broader application allow so.

Symmetric Object Handling: Continuously Rotational Symmetry In
order to form G, we train a batch (of size B2) of separate Euler angle triplets
ĝ ∈ R3. At each timestep, one of them is selected and it is converted to a rotation
matrix Ĝ∗, which gets right-multiplied with ∆R̂ before being weighted by the
parameters of Λ(G.S.) (see eq.4). Aiming to select the appropriate parameter
from the batch, we train a linear classification layer on top of the first fully
connected layer of the tracker. Moreover, we encourage the symmetry triplets
to be as uniform as possible by incorporating an appropriate penalty to the
overall loss function. To test our approach for the symmetric object case, we
used the cylindrical “Cookie Jar” model of [8], the shape of which has only
one axis of continuous symmetry. Consequently, we estimate a single rotational
symmetry parameter, that of the object-centric z-axis (and keep the rest to 0).
On the other hand, in the previous case, we define all three of its axes as axes
of reflective symmetry. Before the conversion, that parameter is passed through
a tanh function and multiplied by π to constrain its values.
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Overall Loss As a result, our overall tracking loss function is formulated as:

LTrack(∆P̂, ∆P) = e(−v1) ·MSE[(∆t̂, ∆t)] + v1 + v2+

+e(−v2) · arcos

Tr
(

(∆R̂ · Ĝ∗ · Λ(G.S.))
T · (∆R · Λ(G.S.))

)
− 1

2

 (4)

Using a similar external multi-task learnable weighting scheme (s = [s1, s2, s3]T )
as in eq.(4), we combine our primary learning task, pose tracking, with the two
auxiliary ones: clutter and occlusion handling. Both s and v are initialized to 0.

Loss = e(−s1) · LTrack + e(−s2) · LUnoccl + e(−s3) · LForegr + s1 + s2 + s3 (5)

For objects with continuously rotational symmetry the loss becomes:

Loss(Symm) = Loss+ e(−s4)
( 1

B

B∑
b=1

1

ξb

)
+ s4, with (6)

ξb =
1

B2(B2 − 1)

B2∑
j=1

∑
k 6=j

d
(Geod)
Rot (Ĝk, Ĝj), (7)

The extra term added to the multi-task loss is a penalty that guides the classi-
fication layer(s) to select the proper rotational symmetry parameter(s) at each
timestep. It encourages the geodesic rotational distances between all pairs of
parameters in the batch to be maximum and, thus, ultimately converge to as a
uniform distribution as possible. Here, we train B2=64 such parameters for each
continuous rotational component.

3.3 Data Generation and Augmentation

Following [7], for our network (Fig.2), we generate two synthetic RGB-D pairs
I(t),̂I(t), but we alter their sampling strategy using the “Golden Spiral” approach
[21], and we modify the augmentation procedure of [7,8] as follows: Firstly, we
blend the object image with a background image, sampled from a subset of
the SUN3D dataset [37]. We also mimic the procedure of [7,8] in rendering a
3D hand model-occluder on the object frame with probability 60%. A twist we
added, is preparing our network for cases of 100% occlusion, by completely cov-
ering the object by the occluder for 15% of the occluded subset. Note that both
the foreground and unoccluded object binary masks are kept during both of
these augmentation procedures. Hence, we can use them as ground truth seg-
mentation signals for clutter extraction and occlusion handling in our auxiliary
losses to supervise the corresponding spatial attention maps. We add to the “Ob-
served” frame pair I(t): (i) Gaussian RGB noise, (ii) HSV noise, (iii) blurring (to
simulate rapid object movement), (iv) depth downsampling and (v) probabilis-
tic dropout of one of the modalities, all with same parameters as in [8]. With a
probability of 50%, we change the image contrast, using parameters α ∼ U(0, 3),
β ∼ U(−50, 50) (where U(·) is a uniform distribution) and gamma correction
γ ∼ U(0, 2) with probability 50%, to help generalize over cases of illumination
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Object Attributes
Size Symmetry Shape Texture Distinctive parts

“Dragon” Medium No Complex Rich Yes
“Cookie Jar” Medium Rotoreflective Simple Poor and Repetitive No

“Dog” Medium No Complex Almost None Yes
“Lego” Small No Complex Rich and Repetitive No

“Watering Can” Big No Simple Poor Yes

Table 1: Characteristics of the five objects we test our approach on. The fact that there
are no two identical items validates the generalization capabilities of our tracker.

differences between rendered and sensor generated images. Instead of modelling
the noise added to the “Observed” Depth modality with an ad-hoc Gaussian
distribution as in [8], we consider the specific properties of Kinect noise [28]
and model it with a 3D Gaussian noise (depending on depth and the ground
truth object pose), used for simulating the reality gap between synthetic and
real images. Its distribution consists of a product of an z-Axial: nA ∼ N (0, σA)
and two z-Lateral: nLx

∼ N (0, σLx
), nLy

∼ N (0, σLy
) 1D distributions that

vary with the object depth z and its angle around the y-axis, θy: with standard
deviations σA,σLx ,σLy respectively. The rest of the preprocessing follows [7].

4 Evaluation and Results

4.1 Implementation Details

We use ELU activation functions, a minibatch size of 128, Dropout with prob-
ability 0.3, Adam optimizer with decoupled weight decay [26] by a factor 1e−5,
learning rate 1e−3 and a scheduler with warm restarts [25] every 10 epochs. All
network weights with ELU activation function (except those transferred from
ResNet18 [13]) are initialized via a uniform K.He [12] scheme, while for all those
with a symmetric one we use a corresponding Xavier [9] distribution. Since the
Geodesic distance suffers from multiple local minima [6], following [27], we first
warm-up the weights, aiming first to minimize the LogCosh[1] loss function for
25 epochs. Then, we train until convergence, minimizing the loss (5). The average
training time is 12 hours in a single GeForce 1080 Ti GPU.

4.2 Dataset and Metrics

We test our approach on all the “Interaction” scenarios and the highest per-
centage “Occlusion” scenarios of [8], which are considered the most challenging.
As in [8], we initialize our tracker every 15 frames, and use the same evaluation
metrics.

Due to limited computational resources, we produced only 20,000 samples,
whose variability covers the pose space adequately enough to verify the validity
of our experiments, both for the ablation study and the final experimentation. In
the following tables, similarly to [8], we report the mean and standard deviation
of our error metrics, as well, as the overall tracking failures (only in the final
experimentation section).
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Translational Error(mm) Rotational Error(degrees)

Garon et al. [8] 34.38 ± 24.65 36.38 ± 36.31
Only occlusion 17.60 ± 10.74 37.10 ± 35.08

Hierarchical clutter & occlusion 14.99 ± 9.89 39.07 ± 33.22
Parallel clutter & occlusion 14.35± 10.21 34.28± 29.81

Table 2: Comparison of different attentional foreground/occlusion handling configura-
tions added to the baseline architecture of Garon et al.[8].

Rotational Error(degrees)

Garon et al. [8] 36.38 ± 36.31
Rotational MSE 46.55 ± 40.88

Geod. 37.69 ± 35.39
Geod.+[40] 14.90 ± 21.76

Geod.+[40]+Λ(G.S.) 9.99± 13.76

Table 3: The evolution of the proposed rotation loss, on the baseline architecture of
Garon et al. [8] (without our proposed attention modules).

Translational Error(mm) Rotational Error(degrees)

Garon et al. [8] 48.58 ± 38.23 36.38 ± 36.31
Steady Weights 11.83 ± 8.94 10.98 ± 16.74

Recursive Batch Standarization [34] 13.97 ± 10.23 14.76 ± 19.24
Learnable Weights [20] 11.63 ± 8.79 8.31 ± 6.76

Table 4: Comparison of different multi-task weighting schemes.

4.3 Ablation Study

In this section, we discuss our main design choices and we demonstrate quanti-
tative results that led to their selection.

Hierarchy choices for the attention modules Here, we justify the need for
both attention modules of our architecture (Fig. 2). We build upon the network
proposed by [8] and we firstly introduce a single convolutional attention map just
for occlusion handling . Then, we explore the possibility for a seperate attentional
weighting of the “Observed” feature map for foreground extraction, prior to the
occlusion one, and we, finally, leverage both in parallel and add their resulting
maps altogether.

The comparison of Table 2 establishes not only the need for both attentional
modules in our design, but also that the parallel layout is the optimal one. We can
observe the effect of parallel connection in Fig.1 as both attentions present sharp
peaks. We can, also, observe a visual tradeoff between the parallel attentions:
while the object is not occluded (either in steady state or when moving), the
module responsible for foreground extraction is highlighted more intensely than
the occlusion one. As the object gets more and more covered by the user’s hand,
the focus gradually shifts to the module responsible for occlusion handling. Note
that this is not an ability we explicitly train our network to obtain, but rather
a side effect of our approach, which fits our intuitive understanding of cognitive
visual tracking. Moreover, although our supervising signals are uniform, both
attentional modules learn to highlight specific keypoints of interest during the
tracker’s inference.

We, also, observe another interesting property: the tracker learns to handle
self-occlusion patterns as well. For example, for the “Dragon” object of Fig.1, it
learns to ignore the one wing when it is in front and focuses on the other one, at
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Translational Error(mm) Rotational Error(degrees) d
(o)
A (r̂z, r

GT
z )

Garon et al.[8] 10.75 ± 6.89 23.53 ± 18.85 10.60 ± 38.90
Ours 10.87 ± 8.14 20.55 ± 18.06 4.60 ± 35.42

Ours+Unique,frozen
learnable symmetry parameter

11.38 ± 8.94 10.98 ± 16.74 2.98 ± 25.07

Ours+Regression of
learnable symmetry parameter

13.03 ± 6.88 17.25 ± 12.40 2.84 ± 24.95

Ours+Mean of a batch of frozen,
learnable symmetry parameters

11.98 ± 9.23 13.84 ± 11.87 2.16 ± 29.25

Ours+Optimal selection out of
a batch of frozen,

learnable symmetry parameters
10.43 ± 6.63 9.57 ± 10.01 2.07 ± 24.52

Table 5: Comparison of different selection methods for the continuously rotational
symmetry parameter.

the back, if its appearance is more distinctive of the pose. The same can be said
for the legs of the “Dog” model of Fig.6. This is a clue that this module has,
indeed, learned the concept of occlusions and has not overfitted to the shape of
the user’s hand, the occluder model that was used for training.

Contributions of the rotation Loss components We demonstrate the value
of every component included in our rotation loss (leaving symmetries temporarily
out of study), by: (i) regressing only the rotational parameters with the baseline
architecture of [8], (ii), replacing the MSE loss with the Geodesic one, (iii),
replacing the rotation parameterization of [8] with the continuous one of (3),
and, (iv) including the Inertial Tensor weighting of each rotational component.

Table 3 indicates the value that translation estimation brings to rotation
estimation, as when the former’s regression is excluded, the latter’s performance
decreases. Moreover, Table 3 justifies our progressive design selections in formu-
lating our rotation loss, as with the addition of each ambiguity modelling, the 3D
rotation error decreases, starting from 46.55o±40.88o and reaching 9.99o±13.76o.

Weighting the Multi-Task Loss Here, we explore various weighting schemes
of the multiple loss functions of our approach, both the main and the auxiliary
ones. Our first approach is the crude addition of the tracking and the two Binary
Cross Entropy losses . A second one is standarizing the three losses by subtracting
their batchwise means and dividing by their batchwise standard deviations, that
we calculate using the Welford algorithm[34]. Lastly, we consider the learnable
weighting strategy that we, ultimately, utilize . In quantitative comparison of
Table4 the scheme of [20] emerges as the clear favourite.

Comparison of Continuously Rotational Symmetry Regression meth-
ods (“Cookie Jar” model) In our effort to disentangle the rotation estimation
and the continuously rotational symmetries, we try different configurations for
optimally choosing the appropriate parameter(s): (i) learning a unique symme-
try parameter over all possible pose changes in the training set and keeping it
frozen during inference, (ii) regressing a different one per pose pair, (iii) learning
a batch of them and taking their average during inference and, ultimately, (iv)
selecting the optimal from the aforementioned batch using an appropriate clas-
sification layer while encouraging the values of this batch to be as uniform as
possible, at the same time. This freedom of ours resides from the fact that the
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Fig. 4: Comparison of the SoA[8] (light blue) and our (pink) approaches for the “Cookie
Jar” in 3 scenarios: “Translation Only”, “Rotation Only” and “Full Interaction”.

Fig. 5: Comparison of the SoA[8] (light blue) and our (pink) approaches for the “Lego”
in 3 scenarios: “Translation Only”,’Full’ and “Hard Interaction”.

minimization of the tracking loss w.r.t. the symmetry matrix Ĝ∗ (see [2]) does
not explicitly impose a global-solution constraint. This time, the comparison is
done w.r.t. the full approach of Sect.3 that does not account for symmetries and,
apart from the classic 3D translational and rotational errors, we, also, report the
Euler angle error for the z-component. As we can see in Table 5, our proposed
approach is the “golden medium” between accuracy and robustness since both
its mean and standard deviation are the lowest across all metrics.

4.4 Experimental Results

According to our ablation study, we proceed to merge our parallel attention
modules with the Geodesic rotation loss of eq.(4), along with the remaining
elements of Sect.3. We evaluate our method on five objects of dataset [8]: the
“Dragon”, the “Cookie Jar”, the “Dog”, the “Lego” block and the “Watering
Can”, aiming for maximum variability (see Table 1). In Fig. 1-7, we plot the
3D translational and rotational errors in three randomly selected scenarios for
each object both for the SoA and our tracker.

Evidently, the object most benefited by our methodological improvements is
the “Dragon”. Since its geometry is the most complex, its texture is rich and it
has several distinctive parts that stand out of the user’s grip, both our geometric
modelling and the parallel attention modules find their best application in this
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Fig. 6: Comparison of the SoA[8] (light blue) and our (pink) approaches for the “Dog”
in 3 scenarios: “75% Vertical Occlusion”, “Rotation Only” and “Hard Interaction”.

Fig. 7: Comparison of the SoA[8] (light blue) and our (pink) approaches for the “Wa-
tering Can” in 3 scenarios:“75% Horizontal Occlusion”, “Rotation Only” and “Full
Interaction”.

case. When the user’s hand occludes parts of the “Dragon”, the attention shifts
to its body parts of interest that stand out of the grip, like its neck, wings or tail
(Fig.1). For the symmetric “Cookie Jar”, the differences between our method
and the baseline are lower. The attentions’ effect is less prominent here since
this model is of simpler, symmetric shape and poorer texture. This replaces the
distinctive clues of the dragon case with ambiguities, denying the corresponding
modules of the ability to easily identify the pose. Alongside the “Lego” model,
they make the most out of the reflective symmetry handling algorithm as they
avoid large abrupt errors that propagate to future frames. Although our CNN
primarily focuses on the object’s shape, appearance seems to play a significant
role in its predictions, as well, since the errors of the “Dog” and the “Watering
Can” models, the less textured ones, decrease more mildly. The foreground at-
tention map aids disentangling the “Dog” model from its background, a table
of the same color, in the “75% Occlusion” scenarios. On the other hand, for the
“Watering Can”, the most ambiguities are presented when viewpoint-induced
symmetries appear, with the effects of our modelling declining in this case.

The accuracy of our approach exceeds that of the SoA [8], across all objects
and in almost all scenarios, especially for 3D rotations. According to Table6,
both errors are generally lower (in terms of both mean and standard deviation)
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Approach 75% Horizontal Occlusion 75% Vertical Occlusion

Translational Error(mm) Rotational Error(degrees) Fails Translational Error(mm) Rotational(degrees) Fails

Garon et al.[8] (’Dragon) 16.02 ± 8.42 18.35 ± 11.71 13 18.20 ± 11.81 14.66 ± 12.98 13
Ours(“Dragon”) 12.68 ± 11.49 13.00 ± 9.14 10 12.87± 10.49 13.14± 8.85 8

Garon et al.[8](“Cookie Jar”) 21.27 ± 9.74 21.90 ± 13.97 17 20.77 ± 6.88 24.86 ± 13.64 20
Ours(“Cookie Jar”) 9.51 ± 4.17 15.48 ± 9.50 15 20.97 ± 7.32 16.14 ± 10.06 15
Ours+Symm.(“Cookie Jar”) 6.37 ± 2.14 7.22 ± 3.97 11 19.01 ± 7.53 13.00 ± 7.49 14

Garon et al.[8](“Dog”) 37.96 ± 23.39 47.94 ± 31.55 21 32.84 ± 34.07 22.44 ± 13.60 21
Ours(“Dog”) 24.43 ± 18.92 17.24 ± 12.41 25 36.53 ± 22.39 12.67 ± 7.95 20

Garon et al.[8](“Lego”) 68.25 ± 46.97 40.04 ± 47.37 28 40.04 ± 47.37 35.30 ± 31.32 20
Ours(“Lego”) 72.04 ± 34.10 18.41 ± 13.84 28 12.92 ± 5.73 12.92 ± 9.02 20

Garon et al.[8](“Watering Can”) 21.59 ± 11.32 23.99 ± 16.95 14 32.76 ± 24.12 26.74 ± 19.05 18
Ours(“Watering Can”) 20.71 ± 10.24 17.00 ± 18.99 13 17.66 ± 17.95 13.46 ± 10.43 12

Approach Translation Interaction Rotation Interaction

Translational Error(mm) Rotational Error(degrees) Fails Translational Error(mm) Rotational(degrees) Fails

Garon et al.[8] (“Dragon”) 41.60 ± 39.92 11.55 ± 15.58 15 23.86 ± 17.44 27.21 ± 22.40 15
Ours(“Dragon”) 11.05 ± 8.20 3.55 ± 2.27 1 9.37± 6.07 7.86± 6.69 2

Garon et al.[8](“Cookie Jar”) 20.43 ± 25.44 17.19 ± 12.99 16 10.75 ± 5.89 23.53 ± 18.85 19
Ours(“Cookie Jar”) 8.64 ± 8.23 8.31 ± 5.97 5 10.87 ± 8.14 20.55 ± 18.06 16
Ours+Symm.(“Cookie Jar”) 8.09 ± 7.67 5.83 ± 5.50 3 9.98 ± 10.63 13.84 ± 11.87 16

Garon et al.[8](“Dog”) 58.87 ± 71.86 16.42 ± 13.51 20 11.16 ± 10.28 20.00 ± 21.31 17
Ours(“Dog”) 21.64 ± 22.78 9.27 ± 8.03 14 10.68 ± 7.53 20.07 ± 19.29 17

Garon et al.[8](“Lego”) 27.90 ± 23.53 11.89 ± 18.50 29 16.42 ± 10.90 17.83 ± 15.90 32
Ours(“Lego”) 22.66 ± 24.58 9.08 ± 7.60 12 10.13 ± 6.79 7.22 ± 4.55 4

Garon et al.[8](“Watering Can”) 24.95 ± 42.91 13.26 ± 11.34 16 13.14 ± 8.99 22.19 ± 25.93 15
Ours(“Watering Can”) 24.30 ± 21.51 8.79 ± 6.35 16 12.22 ± 9.46 18.66 ± 15.51 15

Apporach Full Interaction Hard Interaction

Translational Error(mm) Rotational Error(degrees) Fails Translational Error(mm) Rotational(degrees) Fails

Garon et al.[8] (“Dragon”) 35.23 ± 31.97 34.98 ± 29.46 18 34.38 ± 24.65 36.38 ± 36.31 17
Ours(“Dragon”) 10.31 ± 8.66 6.40 ± 4.52 1 11.63± 8.79 8.31± 6.76 2

Garon et al.[8](“Cookie Jar”) 13.06 ± 9.35 31.78 ± 23.78 24 15.78 ± 10.43 24.29 ± 20.84 15
Ours(“Cookie Jar”) 17.03 ± 11.94 22.24 ± 20.86 21 15.29 ± 16.06 16.73 ± 14.79 11
Ours+Symm.(“Cookie Jar”) 14.63 ± 11.19 15.71 ± 13.80 21 14.96 ± 9.06 15.00 ± 13.20 8

Garon et al.[8](“Dog”) 37.73 ± 42.32 20.77 ± 19.66 23 23.95 ± 38.86 24.38 ± 26.39 20
Ours(“Dog”) 24.88 ± 35.85 28.52 ± 25.38 20 19.32 ± 15.97 19.72 ± 20.17 19

Garon et al.[8](“Lego”) 30.96 ± 31.44 22.10 ± 20.20 20 30.71 ± 42.62 36.38 ± 34.99 20
Ours(“Lego”) 23.58 ± 27.73 11.80 ± 12.28 13 16.47 ± 12.95 14.29 ± 11.68 11

Garon et al.[8](“Watering Can”) 33.76 ± 37.62 40.16 ± 35.90 26 28.31 ± 19.49 23.04 ± 24.27 28
Ours(“Watering Can”) 19.82 ± 19.98 28.76 ± 30.27 26 18.03 ± 14.99 19.57 ± 17.47 23

Table 6: 3D Translational and Rotational errors and overall tracking failures in six
different scenarios for five employed objects.

and our tracker fails equally or less often. It presents aggravated errors in fast
object motions more rarely than [8] and handles both static and dynamic high-
percentage occlusion patterns better. Also, it not only keeps track of the object’s
3D position under severe occlusions, but extends this property to 3D rotations,
as well. Although more computationally intense than [8], it runs in 40 fps.

5 Conclusion

In this work, we propose a CNN for fast and accurate single object pose tracking.
We perform explicitly modular design of clutter and occlusion handling and we
account for the geometrical properties of both the pose space and the object
model during training. As a result, we reduce both SoA pose errors by an average
of 34.03% for translation and 40.01% for rotation for a variety of objects with
different properties. Our tracker exceeds the SoA performance in challenging
scenarios with high percentage occlusion patterns and rapid movement and we
gain an intuitive understanding of our artificial tracking mechanism.
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