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Abstract

Simultaneous Localization and Mapping in dynamic en-
vironments is an open issue in the field of robotics. Tra-
ditionally, the related approaches assume that the environ-
ment remains static during the robot’s exploration phase.
In this work, we overcome this assumption and propose an
algorithm that exploits the dynamic nature of the environ-
ment during robot exploration so as to improve the local-
ization process. We use a Histogram Grid to store all the
past occupancy values of every cell and thus to select the
most probable pose of the robot based on the occupancy
evolution. Experiments on a simulated robot indicate the
effectiveness of the proposed approach.

1. Introduction

During the last two decades much research has been con-
ducted in the field of robotics on the problem of Simulta-
neous Localization and Mapping (SLAM). Kalman Filter-
ing, Expectation Maximization, Maximum Likelihood and
Particle Filtering are some of the most common techniques
used to solve the SLAM problem ([2], [6], [11], [15]).

However, most of these approaches assume that the en-
vironment is static during the robot exploration. Obviously,
this assumption is wrong since there exist objects such as
doors, chairs or people that change their position during the
robot exploration phase. Lately, several approaches have
been presented that deal with this problem by first detecting
these dynamic areas and then filtering them out ([5], [4]).
In this way, however, important features of the environment
are ignored, reducing the quality of the localization process.
These approaches use a single map to model the environ-
ment. However, when the environment changes, a single
map cannot capture the dynamics of the environment.

In this paper, we propose a new SLAM algorithm for
non-stationary environments, which extends the widely
used Maximum Likelihood SLAM (ML-SLAM) algorithm
([15]). Our algorithm makes use of a new storing structure,
the Histogram Occupancy Grid. Every cell of the grid pre-
serves a histogram where the occupancy values of the cell

at every time point are stored. When a new sensor measure-
ment is available, the algorithm calculates the probability of
the measurement based on the values that are stored in the
histograms (and not by comparing with the previous most
likely map as the common ML-SLAM does). So, even if
a door is correctly identified as closed at time point t − 1
and is opened at time point t, the algorithm will success-
fully match the door with a previous occurrence stored in
the cells histograms.

The rest of the paper is organized as follows: In Sec-
tion 2, the related work is presented. In Section 3, we pro-
vide an introduction to the SLAM problem and a description
of the popular Maximum Likelihood SLAM algorithm. In
Section 4, we present our method for SLAM over dynamic
environments and the Histogram Occupancy Grid. Exper-
iments are presented in Section 5. Conclusions and future
work are presented in Section 6.

2 Related Work

In the last few years, many attempts have been made
towards mapping of and localization in dynamic environ-
ments. Some attempts are based on the identification of
moving objects. For example, in [8] a sonar range sensor, a
camera and differentiating techniques were used, in [7] an
expectation maximization algorithm was applied and in [12]
a probabilistic filtering algorithm was implemented all to
detect moving objects in the robot environment. The iden-
tified objects are then removed from the localization and
mapping process.

On the other hand, some works aim at the identification
of different environmental configurations. For example, the
authors of [13] presented a fuzzy clustering technique to
capture the typical configurations of the dynamic environ-
ment. Snapshots were collected in different points in time
and were clustered into possible configurations. The local-
ization algorithm was not only responsible for estimating
the robot pose but also for determining the active map of
the environment. In [1], an offline approach based on the
EM algorithm was implemented. Different snapshots of the
environment were used to identify objects with the same
shape placed in different positions. In both works, the en-
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vironment was assumed to be static during the collection of
the snapshots. The main difference of the presented algo-
rithm with these works is that they do not examine the evo-
lution of the cells occupancy while our approach preserves
the history of the past estimations.

In the next section, a short introduction to the SLAM
problem is presented.

3 The SLAM problem in static environments

In this section, we describe the basic concepts of the
SLAM problem, which are used throughout the paper. A
detailed description of the problem can be found in [14].

The SLAM problem is defined as the problem of estimat-
ing the pose (x, y location and ϑ orientation) of the mobile
robot and constructing, at the same time, a map of the un-
known environment that the robot is exploring. Let st be
the robot position and mt be the map of the environment at
timepoint t. The map is modeled either as a n×n grid where
each cell contains a probability of being occupied ([3]) or as
a set of poses and sensor scans ([9]). In this work, we adopt
the first representation.

SLAM aims at finding the robot pose and the map of the
environment that maximizes the probability:

argmaxmt,st
p(mt, st|z1:t, u1:t) (1)

where [1 : t] is the period of observation, mt is the esti-
mated map of the environment at time point t, st is the es-
timated pose of the robot at t, z1:t are the sensor observa-
tions during the period [1 : t] and u1:t are the control motion
commands followed by the robot during the period [1 : t].

Maximizing Equation 1 is a very expensive task, since
searching should be performed in the space of all maps and
poses. The existing solutions can successfully solve this
problem but under specific assumptions. The most common
assumption made is that the environment is static. Under
this assumption, the Equation 1 is simplified as follows:

argmaxm,st
p(m, st|z1:t, u1:t) (2)

As already stated, we adopt the Occupancy Grid repre-
sentation to model the environment. Occupancy Grid di-
vides the environment into cells and attempts to determine
the probability of the cells occupancy. A common way to
calculate the occupancy probability of a cell i is to use the
log-likelihood sensor model for the i cell at time t:

Ri,t = log
p(zt|mi == occ)

1 − p(zt|mi == emp)
(3)

where p(zt|mi == state) denotes the probability that
we get the observation zt given that the state of the cell
equals to state. The overall occupancy of every cell can
be calculated by the following formula:

Ri =
∑

t

Ri,t (4)

In the next section, we shortly describe one of the most pop-
ular algorithms for solving the SLAM problem in static en-
vironments, the Maximum Likelihood SLAM (ML-SLAM)
algorithm.

3.1 Maximum Likelihood SLAM (ML-SLAM)

The main idea of the ML-SLAM algorithm is to incre-
mentally build a single map of the environment as the sen-
sor data arrive, without keeping track of any residual uncer-
tainty at the robot pose. Given a sensor measurement zt−1,
a motion command ut−1, the previous most likely pose s∗t−1
and map m∗

t−1, the most likely pose s∗t and map m∗
t are es-

timated. These estimates, once made, are frozen and can
never be changed in the future.

In more detail, a series of maximum likelihood maps
m∗

1,m
∗
2, . . ., along with a series of maximum likelihood

poses s∗1, s
∗
2, . . . is maintained. The tth map and pose are

constructed from the (t− 1)th map and pose via maximiza-
tion of the marginal likelihood:

〈m∗
t , s

∗
t 〉 = argmaxmt,st

p(st,mt|zt, ut,m
∗
t−1, s

∗
t−1)=

argmaxmt,st
p(zt|st,mt)p(st,mt|ut, s

∗
t−1,m

∗
t−1)=

argmaxmt,st
p(zt|st,mt)p(st|ut, s

∗
t−1)p(mt|m∗

t−1)(5)

In the above equation, the first probability p(zt|st, mt)
corresponds to the Perception Model of the robot (how
probable a sensor measurement zt is given the robot pose st

and the map mt) while the second one p(st|ut, s
∗
t−1) repre-

sents the Motion Model of the robot (how probable a pose
st is given the previous pose st−1 and the motion command
ut−1). The last probability p(mt|m∗

t−1) represents the Map
Model and indicates how probable a new map is with re-
spect to the previous most likely map. Although the solu-
tion to the above equation is an optimization of both robot
pose and environmental map, in practice it usually suffices
to search in the space of all poses st as the map mt can be
uniquely determined once the pose st is known.

4 Maximum Likelihood SLAM in Dynamic
Environments

The traditional ML-SLAM assumes that the environment
is static (c.f. Equation 5). In this section, we will describe
how we can apply the ML-SLAM on dynamics environ-
ments.

To deal with a dynamic environment, we rely on the ob-
servation that this environment cannot be captured in a sin-
gle static map. Actually, a set of maps should be main-
tained. One such map mt should represent the probability
of occupancy at a specific time interval [t, t + ∆t) where
∆t denotes the frequency of map construction. The mt map
acts as an Occupancy Grid for the interval [t, t + ∆t) and
new sensor measurements are added with the update rule of
the Occupancy Grid:

Ri,t =
∑

t≤t′<t+∆t

Ri,t′ (6)
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By using this history of grids, the proposed algorithm
can estimate the current state of the environment not only
by the last observed map but from the history of the obser-
vations. With the use of the history of grids, the Equation 5
that describes the ML-SLAM algorithm is transformed as
follows:

〈mt, s
∗
t 〉 = argmaxmt,st

p(st,mt|zt, ut,m1:t−1, s
∗
t−1)

= argmaxmt,st
p(zt|st, mt,m1:t−1)p(st,mt|ut, s

∗
t−1,m1:t−1)

= argmaxmt,st
p(zt|st, mt)p(st|ut, s

∗
t−1)p(mt|m1:t−1)(7)

Comparing the Dynamic ML-SLAM Equation 7 with the
ML-SLAM Equation 5, we can observe that difference be-
tween the two approaches can be located in the Map Model
p(mt|m1:t−1). As we can see, the probability of a map does
not only depend on the previous most likely map, m∗

t−1,
as with the ML-SLAM, but on the entire history of maps
m1 − mt−1.

4.1 Map Model

In order to evaluate a map based on the history of maps,
we make two assumptions. At first, we assume that the
prediction for individual cells of the map is independent of
the predictions for the other cells given the history of maps.
Next, we assume that each cell evolves independently from
the others. Thus, we decompose the problem of estimating
the Map Model into a number of problems, the estimations
of the Cell Model for all the cells of the environment:

p(mt|m1:t−1) =
∏

p(mi,t|m1:t−1) =
∏

p(mi,t|mi,1:t−1)
(8)

where mi,t denotes the ith cell of the map mt.
In order to estimate how probable an occupancy value is

for the ith cell given the history of its occupancies values,
we can count the occurrences of this value in its history. For
example, imagine a cell that contains a static object (i.e. a
wall). The cells history will be filled with the ”occupied”
value. So, the probability of the cell being occupied will be
1 and the probability of being free will be 0. In the case,
however, that the cell corresponds to a closed door config-
uration, when the door is closed the cell occupancy will be
zero and when the door is open the cell occupancy will be
one. So, the history of the cell will contain different oc-
cupancy values, thus we will calculate different non-zero
values for the probabilities of being occupied and of being
free.

The above can be summarized in the following formula:

p(mi,t == state|mi,1:t−1) =
|{j : mi,j == state}|

|{j : mi,j}|
(9)

4.2 Histogram Occupancy Grid

Equation 7 implies that a history of all maps must be
available at any time point. One structure that can be used
to store the history is the Temporal Occupancy Grid as de-
scribed in [10]. On the other hand, Equation 9 indicates

that we do not need to preserve the whole history of the cell
occupancy evolution. Instead, we only need to know how
many times a cell has taken specific occupancy values. So,
to save memory, we use the Histogram Occupancy Grid, a
grid that each cell contains a histogram. Every histogram
contains a list of probabilities that indicate how probable
the occupancy of a cell is. An example of a histogram can
be found in Figure 1. We have to note here that instead of
a histogram we could use any other representation of prob-
ability distributions (e.g. particles).

Figure 1. Example of a cell histogram

4.3 Most likely pose determination

On the ML-SLAM, to find the most likely pose, we can
apply the gradient ascent technique (hill climbing) on the
Equation 5, as indicated in [15]. In this way, we can find
the local maximum of the available robot poses (an exam-
ple in Figure 2 where the orientation is ignored). However,
on the Dynamic ML-SLAM, we cannot apply a simple hill
climbing. When moving in a dynamic world, there might
exist more than one local maxima. A spurious measure-
ment might be explained either by a dynamic effect of the
environment or by an erroneous pose estimation. In Fig-
ure 3, an example of a local maximum that could result in
a failure of the gradient ascent technique is presented. In-
stead, a randomized and hill climbing search could be ap-
plied. Random restarts with different starting points will
eventually detect the global maximum.

4.4 Restrictions

We should note here that the Dynamic ML-SLAM in-
herits the inability to detect Loop Closures from the ML-
SLAM algorithm. Tiny odometry errors could result in
enormous error in the estimated robot pose. This causes
the inability to detect if the robot has returned to a previous
pose. The nature of this algorithm, the fact that previous
estimations of the robot pose are frozen and can never be
changed when new sensor measurements arrive, makes it
inapplicable to cyclic environments.

For the same reason, this algorithm will fail when ap-
plied in a highly dynamic environment (i.e. an environment
with many objects that move arbitrarily). On these environ-
ments, the pose probability function will probably contain
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Figure 2. Example of a pose probability in
static environment

Figure 3. Example of a pose probability in dy-
namic environment

more than one local maximum with similar probabilities.
We will not be sure which of these maxima will correspond
to the correct pose. The fact that we do not preserve any un-
certainty on the robot pose, makes it impossible to recover
from erroneous estimations of the robot pose that have been
made in the past.

5 Experiments

In order to evaluate the proposed algorithm, we per-
formed a number of experiments with a simulated pioneer
robot equipped with a laser range finder. The environment
used throughout the experiments was a short passage with
eight doors. Errors were added in the robot odometry in
order to create more challenging conditions (systematic 3
degrees rotational error on every 5 cm of traveled distance).
We have to mention that if no odometry errors were added,
both the ML-SLAM and the dynamic ML-SLAM will per-
form almost identically. That is because the ML-SLAM
would silently ignore the dynamic areas and use the static
areas to localize the robot. The occupancy grid map of the
raw odometry data is presented in Figure 4.

Figure 4. Raw odometry data in static envi-
ronment

Figure 5. Occupancy Grid generated by the
ML-SLAM applied in a static environment

At first, an experiment in a static environment (the
doors preserved their states during the experiment) was per-
formed. Both ML-SLAM and Dynamic ML-SLAM per-
formed excellent under these conditions. The result of the
ML-SLAM is presented in Figure 5. The eight circles in-
dicate the doors of the environment. An identical map was
created by the Dynamic ML-SLAM.

A second experiment was conducted in the same envi-
ronment but at this time the states of the doors were chang-
ing every 5 to 20 seconds (at random). The robot followed
the same path as with the previous experiment and the ML-
SLAM and Dynamic ML-SLAM algorithms were applied.

In figure 6, the Occupancy Grid map generated by the
ML-SLAM algorithm in this dynamic environment is pre-
sented. We can observe that the map error is significant.
The left part of the map is badly positioned with respect to
the rest of the map. In figure 7, the map of the environment
obtained by the execution of the ML-SLAM is presented.
The generated map is of higher quality in comparison to the
one in Figure 7. The main difference with the map in Fig-
ure 5 is that the left part of the map is slightly turned as the
algorithm failed to match the two lines indicated in the spot-
ted area. The dynamics of the area is higher in comparison
to other areas as there exist two doors near this area. So, on
highly dynamic areas, the algorithm will fail due to the fact
that we do not preserve the uncertainty on the robot pose
and thus we can not correct previous estimations.
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Figure 6. Occupancy Grid generated by the
ML-SLAM applied in dynamic environment

Figure 7. Occupancy Grid generated by the
Dynamic ML-SLAM

6 Conclusions

In this work, a new SLAM algorithm that can be ap-
plied in dynamic environments and the appropriate statis-
tical framework that this algorithm is based on were pre-
sented. We introduced the Histogram Grid structure that
preserves the history of the cells probability and we used
this structure to identify dynamic areas and enhance the lo-
calization algorithm. The obtained maps are shown to be
more accurate because of the improved pose selection pro-
cess. Simulated results prove the correctness of this ap-
proach.

As a future plan, we will conduct a number of experi-
ments with a real robot in different dynamic environments.
The results are expected to agree with those shown in this
work. To deal with the loop closure problem that was de-
scribed earlier, it is in our plans to combine the Dynamic
ML algorithm with the Particle Filtering algorithm in order
to model the uncertainty on the robot pose with particles.
This can yield in a robust algorithm that might be able to
successfully localize the robot in a highly dynamic environ-
ment and produce a valid map of the environment.
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