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Abstract

Automatic speech recognition systems can benefit from including into their acoustic process-
ing part new features that account for various nonlinear and time-varying phenomena during
speech production. In this paper, we develop robust methods for extracting novel acoustic
features from speech signals based on nonlinear and time-varying models of speech. These
new modulation- and chaotic-type features are integrated with the standard linear ones (mel-
frequency cesptrum) to develop a generalized hybrid set of acoustic features. The efficacy
by showing significant improvements in HMM-based phoneme recognition over the TIMIT
database.
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1 Introduction

Despite many decades of research, the current automatic speech recognition (ASR) systems are
still inferior to the corresponding human cognitive abilities because of the many limitations of their
acoustic processing, pattern recognition and linguistic subsystems. Thus, both from a scientific
and a technology viewpoint, there is a significant interest in improving ASR systems. For several
decades the traditional approach to speech modelling has been the linear (source-filter) model where
the true nonlinear physics of speech production is approximated via the standard assumptions of
linear acoustics and 1D plane wave propagation of the sound in the vocal tract. The linear model
has been applied to speech coding, synthesis and recognition with limited success [1, 2]; to built
successful applications, deviations from the linear model are often modeled as second-order effects
or error terms. There is indeed strong theoretical and experimental evidence [3, 4, 5, 6] for the
existence of important nonlinear aerodynamic phenomena during the speech production that can-
not be accounted for by the linear model. The investigation of speech nonlinearities can proceed
in at least two directions: (i) numerical simulations of the nonlinear differential (Navier-Stokes)
equations governing the 3-D dynamics of the speech airflow in the vocal tract, and (ii) development
of nonlinear signal processing systems suitable to detect such phenomena and extract related infor-
mation. In our research we focus on the second approach, which is computationally much simpler,
i.e., to develop models and extract related acoustic signal features describing two types of nonlinear
phenomena in speech, modulations and turbulence. These novel features are then applied to speech
recognition.

The traditionally applied “standard” speech features used in ASR are based on short-time
smoothed cepstra stemming from the linear model. This representation ignores the nonlinear as-
pects of speech and is sensitive to small signal durations. Adding new robust nonlinear information
is however quite promising to lead to improved performances and robustness. In this paper, we
focus on improving the acoustic processing part of ASR systems by developing robust nonlinear and
instantaneous features based on modulation and chaotic models for speech production and by using
these features to increase the recognition performance of ASR systems whose pattern classification
part is based on Hidden Markov Models (HMM). Our motivation for this research work includes the
following: (1) In prior work [7, 8, 9] some of the authors have shown that the AM-FM modulation
model and instantaneous demodulation algorithms for speech resonances can track nonstationarity
in speech and lead to better performance in several speech applications. Some preliminary work
on using Teager energy features (that indirectly contain pre-modulation information) in speaker
and speech recognition include [10, 11, 12, 13]. (2) By using concepts from fractals [14] to quantify
the geometrical roughness of speech waveforms, some of the authors were able to extract fractal
features from speech signals and use them to improve phonemic recognition [15]. (3) Fractals can
quantify the geometry of speech turbulence. A fuller account of the nonlinear dynamics can be
obtained by using chaotic models for general time-series as in [16].

Section 2 of this paper reviews the use of modulation models for speech resonances and describes
robust demodulation algorithms for extracting the parameters of such models. Section 3 summarizes
the basic concepts and algorithms for analyzing speech signals with chaotic models. In Section 4 we
describe how to extract novel short-time feature vectors from speech signals that contain modulation
and/or chaotic dynamics information, integrate these nonlinear speech features with the standard
linear ones (cepstrum), and develop a generalized set of acoustic features for improving HMM-based
phonemic recognition.

2 Speech Modulation Model and Demodulation Algorithms

By ‘speech resonances’ we shall loosely refer to the oscillator systems formed by local vocal tract
cavities emphasizing certain frequencies and de-emphasizing others. Although the linear model
assumes that each speech resonance signal is a damped cosine with constant frequency within 10-
30 ms and exponentially decaying amplitude, there is much experimental and theoretical evidence
for the existence of amplitude modulation (AM) and frequency modulation (FM)in speech resonance



signals, which make the amplitude and frequency of the resonance vary instantaneously within a
pitch period. Motivated by this evidence, Maragos, Quatieri and Kaiser [17, 7] proposed to model
each speech resonance with an AM-FM signal

(1) = a(t) cos2r /0 F(r)dr] (1)

and the total speech signal as a superposition of such AM-FM signals, one for each formant. Here
a(t) is the instantaneous amplitude signal and f(¢) is the instantaneous frequency representing
the time-varying formant signal. The short-time formant frequency average f. = (1/7) fOT f(t)dt,
where T is in the order of a pitch period, is viewed as the carrier frequency of the AM-FM signal.
The classical linear model of speech views a formant frequency as constant, i.e., equal to f., over
a short time (10-30 ms) frame. However, the AM-FM model can both yield the average f. and
provide additional information about the formant’s instantaneous frequency deviation f(t) — f. and
its amplitude intensity |a(t)|. To isolate a single resonance from the original speech signal, bandpass
filtering is first applied around estimates of formant center frequencies. Then for demodulating a
resonance signal, Maragos et al. [7] used the nonlinear Teager-Kaiser energy-tracking operator
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This is the energy separation algorithm (ESA) and provides AM-FM demodulation by tracking
the physical energy implicit in the source producing the observed acoustic resonance signal and
separating it into its amplitude and frequency components. It yields very good estimates of the
instantaneous frequency signal f(¢) > 0 and of the amplitude envelope |a(t)| of an AM-FM signal,
assuming that a(t), f(t) do not vary too fast (small bandwidths) or too greatly compared with
the carrier frequency f.. There is also a very efficient and computationally simple discrete version
of the ESA, called DESA [7], which is obtained by using a discrete energy operator on discrete-
time nonstationary sinusoids. The DESA is a novel and very promising approach to demodulating
speech resonances for many reasons: (i) It yields very small errors for AM-FM demodulation. (ii) It
has an extremely low computational complexity. (iii) It has an excellent time resolution, almost
instantaneous; i.e., operates on a b-sample moving window and can track instantaneous changes of
speech modulations.

Extensive experiments on speech demodulation using the DESA in [7, 8, 9] indicate that these
amplitude/frequency modulations exist in real speech resonances and are necessary for its natural-
ness.

The main disadvantage of the DESA is a moderate sensitivity to noise. Thus, we describe next
an alternative approach [18] where we first interpolate the discrete-time signal using smoothing
splines [19], and then apply the continuous-time ESA (3). Splines are piecewise polynomial func-
tions constructed as a linear combination of B-Splines. A spline function of order v has continuous
derivatives up to order v — 1, which is important when using the energy operator W. At first we
used exact splines to improve the performance of the ESA, tested on noisy AM-FM signals with
different levels of SNR. The results were disappointing as the exact fitting of the curve, due to the
presence of noise, was creating large estimation errors. The problem of noise led us to optimally
interpolate signal samples with smoothing splines, whose main advantage is that the interpolat-
ing polynomial does not pass through the signal samples but close enough. The smooth spline
interpolating function is defined as the function s, that minimizes the mean square error criterion
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where E; is the data fitting error and FEg quantifies the non-smoothness ("roughness”) of the
interpolant by the mean square value of its derivative. The positive design parameter A controls
the trade-off between how smooth the interpolating curve will be and how close to the data points
the interpolant will pass. (For A = 0 we obtain exact splines with no data smoothing.) Given the

initial signal samples x[n], n = 1,..., N, the interpolating spline function of order v = 2r — 1 is
given by [19]
+oo
so(t) = Y clnlBu(t —n) (4)
n=-—oo

where (3, (t) is the B-spline of order v, and the coefficients c[n] depend only on the data z[n],
the parameter A and the analytic expression of the B-spline. The coefficient sequence c[n| can be
determined recursively by using the sequence z[n] as input to excite an IIR filter with transfer
function H)(z) = 1/[B,(2) + AM(—z +2 — z_l)VTH], where B, (z) is the Z-transform of the discrete
spline b,[n] = B,(n). The IIR filter H, has a symmetric impulse response, and all its poles are
inside the unit circle. Thus, the spline coefficients c¢[n| can be determined stably via a few recursive
equations [18, 19].

The above spline interpolation leads us to a new approach for ESA-based demodulation whose
basic steps are the following. (i) By using smoothing splines, the original discrete-time signal
x[n] is interpolated to create a continuous-time expansion s,(t). For fixed v, A, the interpolation
procedure is complete after the computation of the coefficient sequence ¢[n]. (ii) The continuous-
time energy operator ¥ and the continuous ESA are applied to the continuous-time signal s, (t).
This requires computing ¥[s, (¢)] and ¥[0s,(t)/0t], which in turn require the derivatives 9"s, (t)/0t"
for r = 1,2,3. We can derive closed-form expressions for these derivatives that involve only the
coefficients c¢[n] and the B-spline functions [18]. For example,

asgft) =" (eln] = efn — 1)) i (t — n +1/2) )
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The continuous ESA (3) can estimate the instantaneous amplitude a(t) and frequency f(t) of
the continuous signal s, (t). (iii) The information-bearing signals a(t), f(t) are sampled to obtain
estimates of the instantaneous amplitude A[n] = a(nT) and frequency F[n] = T f(nT) of the
original discrete signal z[n|. This whole approach above is called the Spline-ESA.

By setting v = 5, the time-window (i.e., the number of input samples required to produce one
output sample) of Spline-ESA becomes the same with that of the DESA. Extensive comparisons
[18] between the Spline-ESA (with v = 5 and A fixed to a constant value in the order of 0.25)
versus the DESA have demonstrated that, while both algorithms perform well in signal-plus-noise
environments with high SNRs, the Spline-ESA outperforms the DESA in low SNRs. This robustness
in the presence of noise is the main advantage of the Spline-ESA.

The ESAs are efficient demodulation algorithms only when they are used on narrowband AM-
FM signals [20]. This constraint makes the use of filterbanks (i.e., parallel arrays of bandpass
filters) inevitable for wideband signals like speech. Thus, each short-time segment (analysis frame)
of a speech signal is simultaneously filtered by all the bandpass filters of the filterbank, and then
each filter output is demodulated using the ESA. In our on-going research on speech analysis
and recognition [8, 13] we have been using filterbanks with Gabor bandpass filters whose center
frequencies are spaced either linearly or on a mel-frequency scale. Figure 1 shows an example of
demodulating three bands of a speech phoneme into their instantaneous amplitude and frequency
signals.

3 Speech Analysis using Chaotic Models

Many speech sounds, especially fricatives and plosives, contain various amounts of turbulence. In
the linear speech modelling this has been dealt with by having a white noise source exciting the
vocal tract filter. It has been conjectured that geometrical structures in turbulence can be modeled
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Figure 1: Demodulating a speech phoneme using a Gabor filterbank and the Spline-ESA.

using fractals [14], while its dynamics can be modeled using the theory of chaos. In previous
work [15], some of the authors measured the short-time fractal dimension of speech sounds as a
feature to approximately quantify the degree of turbulence in them and used it to improve phoneme
recognition. In this paper, we shall use concepts from chaos theory [16] to model the nonlinear
dynamics in speech of the chaotic type.

We assume that (in discrete time n) the speech production system (whose aerodynamics are
governed by the 3D Navier-Stokes equations) can be viewed as a nonlinear (but finite dimensional
[21] due to dissipativity) dynamical system X (n) — F[X(n)] = X(n + 1) where the phase space
of X(n) is multidimensional. A speech signal segment s(n), n = 1,..., N, can be considered as a
1D projection of a vector function applied to the unknown dynamic variables X (n). It is possible
that the complexity or randomness observed in the scalar signal could be due to loss of information
during the projection. According to the embedding theorem [16], the vector

Y(n) =I[s(n),s(n+Tp),s(n+2Tp),...,s(n+ (Dg — 1)Tp] (6)

formed by samples of the original signal delayed by multiples of a constant time delay Tp defines a
motion in a reconstructed Dg-dimensional space that has many common aspects with the original
phase space of X (n). Specifically, many quantities of the original dynamical system (e.g. generalized
fractal dimensions and Lyapunov exponents) in the original phase-space X (n) are conserved in
the reconstructed space traced by Y (n). Thus, by studying the constructible dynamical system
Y (n) — Y (n+1) we can uncover useful information about the original unknown dynamical system
X(n) - X(n + 1) provided that the unfolding of the dynamics is successful, e.g. the embedding
dimension D is large enough. However, the embedding theorem does not specify a method to
determine the required parameters (Tp, Dg) but only sets constraints on their values. For example,
Dpg must be greater than the box-counting dimension of the attractor set. And Tp can have any
value except from pAt, where p = 1,2 and At corresponds to the period of periodic orbits of the
system. Hence, procedures to estimate the values of these parameters are essential. The time delay
corresponds to the constant time difference between the neighboring elements of each reconstructed
vector. The smaller Tp gets, the more will the successive elements be correlated, as not enough time
will have elapsed for the system to generate sufficient amounts of information and all connected
variables affect the observed one. On the contrary, the greater Tp gets, the more random will the



successive elements be. Thus it is necessary to compromise between these two conflicting arguments.
To achieve this, the following measure of nonlinear correlation is used for dealing with chaotic data
s(n) [16]:

P(s(n),s(n+1T))
P(s(n))P(s(n+T))

N-T
I(T) = P(s(n),s(n+1))-log, (7)
n=1
where P(-) denotes probability. Each log term in the above sum is the mutual information for a
pair of observed values s(n), s(n+T) which are apart from each other by a delay T'. If these values
are independent, their mutual information is zero. Thus, I(T) is the average mutual information
between pairs of samples of the signal segment that are 1" positions apart. Then, the ‘optimum’
time delay Tp is selected as the smallest T" at which the average mutual information assumes a
minimum value:

Tp = min{arg min I(T)} (8)

After setting T, the next step is to select the dimension Dg of the reconstructed vectors. As a
consequence of the projection, points of the 1D signal are not necessarily in their relative positions
because of the true dynamics of the multidimensional system (true neighbors). A true vs. false
neighbor criterion is formed by comparing the distance between two points S,,S; embedded in
successive increasing dimensions. If their distance dp(Sp,S;) along dimension D is significantly
different that their distance dp41(Sy,S;) along dimension D + 1, then they are considered to be
if @p+1(5n,5;)=dp(Sn,5;)

dp(Sn,Sj)
range of [10,15]), then the two points are false neighbors. The dimension D along which the
percentage of false neighbors goes to zero (or minimized in the existence of noise) is chosen as the
embedding dimension Dg.

In the unfolded state-space one can measure invariant quantities of the attractor, which if
chaotic would be characterized by sensitive dependence on initial conditions, dense periodic points
and mixing [22], such as fractal dimensions of geometrical (e.g. box-counting dimension) and/or
probabilistic (e.g. information dimension) character. The dimension of the attractor except from
being a measure of complexity, corresponds to the number of active degrees of freedom of the
system. The correlation dimension [23, 22] (belonging to a greater set of generalized dimensions of
probabilistic type) is defined as

a pair of false neighbors. Equivalently, exceeds a threshold (usually in the

D¢ = lim lim w
r—0 N—oo IOg r

(9)

where C' is the correlation sum i.e. for each scale r the number of points with distances less than
r normalized to the number of pairs of points:

N
C(N,1) = N(Nl_l);gm ~ 1% - X1 (10)

where 6 is the Heavyside unit-step function. Figure 2 shows the waveforms of two speech phonemes,
their attractors and correlation dimension measurements. The shape! differences in the two attrac-
tors are consistent to the corresponding physics for each phoneme.

4 Nonlinear Feature Extraction and Phoneme Recognition

The feature vectors used in speech recognition are typically computed over a 20-30 ms window
and are updated every 5-10 ms. The ‘standard’ feature set consists of the mean square amplitude

!The visualization of the multidimensional attractors has been done by showing the first three elements of each
vector in 3D space and the last three as RGB color components.
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Figure 2: (a) Speech Waveforms, (b) Attractors of Embedded Signals, (c¢) Correlation Sums,
(d) Scale-Varying Correlation Dimensions. Top row: vowel /iy/, bottom row: fricative/z/. (In
(c) and (d) thick lines show average curves.)

(usually called ‘energy’?), the first twelve mel-frequency cepstrum coefficients (MFCC) and their
first and second time derivatives.

We shall augment the ‘standard’ feature vector and thus create a hybrid feature vector by
incorporating information from the non-linear structure of speech of the modulation and chaotic
type as additional features. Thus, as short-time acoustic representations of speech we use feature
vectors that contain information both from the smoothed cepstrum of the linear model, which
represents a first-order approximation to the true speech acoustics, as well as from the speech
modulations and the chaotic dynamics, which contain information from the second-order non-linear
speech acoustics.

We have used the hybrid feature vector as input to a hidden Markov model (HMM)-based
speech recognizer. The HMM recognizer is the HTK system [24]. In the experiments presented
below, context-independent 5-state left-right phone HMMs were used. The input vectors are split
into different data streams, one for the standard features (MFCC) and the others for the non-linear
features. The non-linear features are assumed to be independent of the linear features and to
belong to separate probability ‘streams’. Each one of these streams has an independent probability
distribution. These distributions are modelled by a certain number of Gaussian mixture probability
densities, called mixture components. For more details see [24].

We have experimented with a broad range for the number of Gaussian mixture densities, but
here we are presenting the recognition results only for the cases of 8 and 16 mixtures, since these
values are the most representative. Stream-weights affect directly the recognition process. Our
experiments have shown that the best recognition results are obtained when the data-stream weights
are equal and sum up to one. So, when using two data-streams (i.e. linear and modulation features
or linear and chaotic features) we set each of the weights equal to 0.5, whereas in the case of three
data-streams (i.e. linear, modulation and chaotic features) we set the weights equal to 0.35.

The experiments were made over the TIMIT database. The TIMIT database consists of 6300
sentences, i.e. 10 sentences spoken by each of 630 speakers from 8 major dialect regions of the
US. All of the speech signals in TIMIT are sampled at 16 kHz. The training set consists of 3696
sentences and the test set of 1344 sentences. Each one of these sentences was segmented into 25-
ms speech frames, whose update period was 10 ms. The (linear and nonlinear) feature sets were
extracted from each such frame.

2We prefer the term ‘mean square amplitude’ over the term ‘energy’ because the energy in an oscillatory signal
is more appropriate to be related to the physical energy of the source producing this signal. Such an energy is
proportional both to the amplitude squared and the frequency squared.



4.1 Modulation Features for Speech Recognition

We have automated the extraction of modulation features from speech signals in the following way:
First, we use a parallel filterbank of overlapping Gabor bandpass filters whose center frequencies
are spaced on a mel-frequency scale. Second, the output signals from each Gabor bandpass filter
are demodulated via the Spline-ESA into its instantaneous amplitude a(t) and frequency f(t)
component signals. These lowpass information signals are segmented into 25-ms frames, updated
every 10 ms. For each such short-time analysis frame and for each band, the weighted mean F,
and standard deviation B,, of the instantaneous frequency signal are estimated as in [8]:

LT Raema [ /20 + (£ — Fua(B)dt
Fy, = LZO+T o2(1)dt , By = LZO+T 2(0)dt (11)

where tg and T are the start and duration of the analysis frame, respectively. Next, we compute
the frequency modulation (FM) percentage in each band as the ratio K = B, /F,. For each
analysis frame, the FM percentages K;, ¢ = 1, ..., L, are computed, one for each narrowband speech
component, where L is the number of filters in the filterbank. The modulation feature set consists
of the sequence of the FM percentages K; and their first and second time derivatives. This is a
total of 3L numbers per frame. We have experimented with mel-spaced filterbanks consisting of
L =12 and L = 6 Gabor filters spanning the whole frequency range and overlapping by 50%.

We have used these modulation feature vectors to augment the standard feature vectors em-
ployed in speech recognition tasks. The HTK system [24] was used both as the HMM recognizer
and for the extraction of the standard feature set which consists of the first 12 mel-scale cepstrum
coefficients, the signal’s mean-square amplitude and their first and second time-derivatives. So, the
standard feature vector’s size is 39. The augmented hybrid feature set consists of the standard and
the modulation feature set. The two different feature subsets are treated as separate streams (with
weights 0.5 each) by the HTK system and their probability distributions are assumed independent.

Table 1: Recognition Results

Phoneme Percent Correct 3

# Gaussian Mixtures | MFCC | MFCC+FM | MFCC+Chaotic | MFCC+FM+Chaotic
8 73.95 84.31 78.61 84.75
16 78.76 86.83 85.01 87.69

Table 1 reports the phoneme recognition results over the TIMIT database using either only the
standard features (column MFCC) or the augmented standard-plus-modulation features (column
MFCC+FM). Clearly, our experiments on phoneme-recognition by augmenting the standard feature
set with modulation information, show a significant improvement over using only the standard
features. This relative error rate reduction approaches 40% when using 8 Gaussian mixtures. In
general, the absolute recognition scores improve with the number of Gaussian mixtures used. Thus,
the FM modulation percentage features provide an improvement to the recognition performance
with a moderate increase in the size of the feature vector.

The results in table 1 refer to the case of a 6-channel filterbank (i.e. 18 modulation features);
hence, the augmented feature set has a size of 57. We have experimentally found that measuring
the modulations in the outputs of only 6 Gabor filters yields better recognition results than using
12 filters. For example, the correct phoneme recognition for the 12-channel filterbank was 80.96%
(using 8 Gaussian mixtures) compared to 84.3% for 6 channels. Note that the 12-channel case
employs a larger feature vector of size 75 despite its inferior recognition performance. This difference
in the recognition rates can be explained based on the modulation model for speech resonances.
In the 12-channel case the large number of filters causes each bandpass filter to have a narrower

3The percentage number of phonemes correctly recognized is given by the ratio of the number of correct labels to
the total number of phonemes in the defining transcription files.



bandwidth and hence pass a smaller part of the AM-FM modulation structure of the neighbor
speech resonances. In contrast, the filters in the 6-channel filterbank have a wider bandwidth and
hence they keep a richer part of the modulation information.

4.2 Chaotic Features for Speech Recognition

As explained in Section 3, through an automated procedure each speech analysis frame has been
embedded in a multidimensional state-space using the appropriate time delay Tp and embedding
dimension Dg. The physical justification of embedding only a frame instead of a whole phoneme
is that the reconstructed space in this occasion belongs to the state-space of the dynamic system
during the time period it produced the current frame. After the embedding, we computed a feature
vector that was related to the correlation sum and the scale-varying correlation dimension and
hence carried information about the chaotic dynamics of each frame. Specifically, we selected a set
of four chaotic features: (1) the mean of the correlation sum C, (2) the standard deviation of C,
(3) the mean of the scale-varying correlation dimension D¢, and (4) the standard deviation of D¢.
This feature set also included the first and second time derivatives of these four features.

We have used the above chaotic feature set to augment the standard feature set (MFCC) and
test it on HMM-based recognition over the TIMIT database, experimenting with a wide range of
stream weights and number of Gaussian mixtures (1 — 16). The recognition results of the hybrid
feature set (MFCC + Chaotic) were quite promising, even though our preliminary first application
of chaotic features in an ASR system used the fewest and simplest possible such features. One of
the best recognition percentages (see table 1) resulted with weights (0.5,0.5) for the corresponding
streams (standard, chaotic) and for a 16-mixture model. The relative phone error rate reduction
of 29% (over using only the standard features) is significant and is possibly due to the detection
of nonlinear phenomena which remain “hidden” in the 1D dynamics. Unfolding the signal to its
original state-space enables the observation of the true dynamics of the system; furthermore a
broad variety of new measurements can be performed on the unfolded attractor that can yield
fractal and/or chaotic features.

Of special interest is the experiment reported in the rightmost column of table 1 in which
both the chaotic features and the modulation features were used to augment the standard feature
set. This produced a hybrid feature vector of dimension 69. Using equal weights of 0.35 for the
three data streams (standard, modulation, chaotic) outperformed all other experiments, achieving
relative error rate reduction by 42% for both 8 mixtures and 16 mixtures (compared with using
only the standard feature set). A possible explanation for this improvement is that the information
provided by the new (nonlinear) features deals with different aspects of the speech dynamics and
therefore is valuable for the recognition process.

5 Conclusions

In this paper we have described how to apply efficient nonlinear DSP algorithms to speech signals
in order to extract novel acoustic features related to their nonstationary and nonlinear dynamics of
the modulation and chaotic type. Furthermore we have developed a hybrid feature set for speech
recognition that includes both the standard linear features as well as the new nonlinear features
and applied this new feature set to HMM-based phoneme recognition. Our experimental results
have shown a significant improvement in recognition over the TIMIT database.

Given the relation of the underlying nonstationary and nonlinear models to the physics and
the true dynamics of speech production and given the efficiency of the nonlinear DSP algorithms
we have developed to extract the corresponding nonlinear features, we believe that the modulation
and chaotic models and related nonlinear algorithms have a strong potential in speech recognition.

In the near future, we intend to apply the modulation and chaotic features for speech recognition
in noisy environments and for large vocabulary speech recognition.

Regarding the modulations, the Spline-ESA can offer robustness in the speech demodulation
problem. Other goals of our on-going research include: experimentation with more sophisticated



chaotic features, such as generalized dimensions and Lyapunov exponents which contain dynamical
information; a better integration of chaotic features with modulation features; improvement of the
algorithms for extracting chaotic features in the presence of noise.
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