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Abstract

This chapter begins with analyzing the theoretical connections between
levelings on lattices and scale-space erosions on reference semilattices. They
both represent large classes of self-dual morphological reconstruction op-
erators that exhibit both local computation and global constraints. Such
operators are useful in numerous image analysis and vision tasks includ-
ing edge-preserving multiscale smoothing, image simplification, feature and
object detection, segmentation, shape, texture and motion analysis. Previous
definitions and constructions of levelings were either discrete or continu-
ous using a PDE. We bridge this gap by introducing generalized levelings
based on triphase operators that switch among three phases, one of which
is a global constraint. The triphase operators include as special cases useful
classes of semilattice erosions. Algebraically, levelings are created as lim-
its of iterated or multiscale triphase operators. The subclass of multiscale
geodesic triphase operators obeys a semigroup, which we exploit to find
PDE:s that can generate geodesic levelings and continuous-scale semilattice
erosions. We discuss theoretical aspects of these PDEs, propose discrete al-
gorithms for their numerical solution which converge as iterations of triphase
operators, and provide insights via image experiments.

8.1 Introduction

Nonlinear scale-space approaches that are based on morphological operators are
useful for edge-preserving multiscale smoothing, image simplification, geometric
feature detection, segmentation, shape, texture and motion analysis, and object
recognition.
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The theory and implementations behind the standard multiscale morphological
filters evolved first [347, 467, 333] from a geometric viewpoint that focused on
shape-size analysis and an algebraic viewpoint that was based on set theory, level
sets and min-max filtering. During the previous decade both the algebraic and ge-
ometric aspects of morphology were generalized and improved, by extending its
algebra using the theory of complete lattices [468, 233] and by modeling the dy-
namics and geometry of multiscale morphology using PDEs and curve evolution
[9, 70, 459, 336]. The simplest morphological smoothers are translation-invariant
(TT) Minkowski openings and closings, i.e., compositions of Minkowski erosions
and dilations by compact disk-like sets. These nonlinear smoothers preserve well
the edges of the remaining image signal parts but may blur the boundaries of their
supports at places where the structuring element cannot fit. The opening increas-
ingly reconstructs some of the image parts lost via erosion, whereas the closing
reconstructs by shrinking the parts added via dilation. This reconstruction is local
and extends only up to the scale of these filters.

A much more powerful class of filters are the reconstruction openings and
closings which, starting from a reference image consisting of several parts and
a marker (initial seed) inside some of these parts, can reconstruct whole objects
with exact preservation of their boundaries and edges [554, 455]. In this global
reconstruction process they simplify the original image by completely eliminat-
ing smaller objects inside which the marker cannot fit. The reference image plays
the role of a global constraint. One disadvantage of both the simple as well as
the reconstruction openings/closings is that they are not self-dual and hence they
treat asymmetrically the image foreground vs. background or the bright vs. dark
objects. A recent solution to this asymmetry problem came from the development
of a more general powerful class of self-dual morphological filters, the levelings
which include as special cases the reconstruction openings and closings. The lev-
elings were introduced by Meyer [366] for digital spaces and further studied in
[348, 469]. They possess many useful algebraic scale-space properties, as ex-
plored in [370]. Maragos & Meyer [369] extended them to continuous spaces by
generating levelings with the following nonlinear PDE:

ou(z,y,t)/0t = —sign(u —r)||Vull @.1)
u(z,y,0) = f(z,y) '
where u(z,y,t) is the scale-space function, r(z,y) is the reference image and
f(z,y) is a marker. At scale-space points where u > r (resp., u < r), the above
PDE generates multiscale erosions (resp., dilations) by disks. The leveling A(f]|r)
of r w.r.t. f is produced when ¢ — oo. In [369, 370] it was explained that, if f < r
(resp., f > ), the leveling is a reconstruction opening (resp., closing). Examples
are shown in Fig. 8.1.

A relatively new algebraic approach to self-dual morphology was developed
by Keshet [269] and Heijmans & Keshet [234, 235] based not on complete lat-
tices but on inf-semillatices. Specifically, by using self-dual partial orderings the
image space becomes an inf-semilattice on which self-dual erosion operators can
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LEVELING RECONSTRUCTION CLOSING

RECONSTRUCTION OPENING

(a) (b) (©)

Figure 8.1. Evolutions of 1D leveling PDE u; = —sign(u — r)|u| for 3 different markers
u(z,0) = f(z). Each figure shows the reference signal r (dash line), the marker f (thin
solid line), its evolutions u(z, t) (thin dashdot line) at ¢ = n25A¢, n = 1,2, ..., and the
leveling u(z, 0o) (thick solid line). The 3 markers f were: (a) Arbitrary. (b) An erosion of
r minus a constant; hence, the leveling is a reconstruction opening. (c) A dilation of r plus
a constant; hence the leveling is a reconstruction closing.

be defined that have many interesting properties and promising applications in
nonlinear image analysis.

This chapter continues with an intuitive discussion of multiscale levelings and
their interpretation using level sets. Then, after a brief background on lattice op-
erators, we analyze algebraically multiscale triphase operators, whose limits are
levelings. Special cases of these triphase operators are semilattice erosions. The
semigroup of geodesic triphase operators is emphasized. Afterwards, we focus
on PDEs that can generate both geodesic levelings and TI semilattice self-dual
erosions We discuss theoretical aspects of these PDEs, propose algorithms for
their numerical solution which converge as iterations of discrete triphase opera-
tors, and provide insights via image experiments. The proofs of all propositions
and theorems of this chapter can be found in a recent paper by Maragos [335].

8.2 Multiscale Levelings and Level Sets

Consider a reference image r and a leveling A. If we can produce various markers
fi. i = 1,2,3, ..., that are related to some increasing scale parameter i, let us
construct the levelings g; = A(fi|gi—1), 1 = 1,2,3, ..., with go = r. The signals
g; constitute a hierarchy of multiscale levelings possessing the causality property
that g; is a leveling of g; for j > i. One way to construct such multiscale levelings
is to use a sequence of multiscale markers obtained from sampling a Gaussian
scale-space. As shown in Fig. 8.2, the image edges and boundaries which have
been blurred and shifted by the Gaussian scale-space are better preserved across
scales by the multiscale levelings.

The main approach in mathematical morphology to extend set operators to im-
age function operators is using level sets and threshold superposition [467, 333,
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Reference Reference: Level Curves

Gaus. Marker 1 (c=4)

Leveling 3

Marker 3: Level Curves

C— =)

5\

Leveling 3: Level Curves

Marker 2: Level Curves

Figure 8.2. Multiscale image levelings u(x,y,o00) generated by the PDE
wg = —sign(u — r)||Vul|. The markers u(z,y,0) = f(z,y) were obtained by
convolving the reference image with 2D Gaussians of standard deviations o1 = 4, 02 = 8§,
o3 = 16. At each scale o; as reference r was used the leveling of the previous scale o;_;.
The last two rows show level curves of the markers and the corresponding levelings (6
level curves for each image).

233]. Specifically, if
Xn(f) 2 {z: f(x) >h}, —co<h<oo (8.2)
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are the upper level sets of a real image function f, and we are given an increasing
set operator ¥, then we can construct a so-called flat operator 1 (f) = sup{h :
z € U(Xy(f))} via threshold superposition of the outputs of the set opera-
tor acting on all input level sets. The flat operator ¢ can process both binary
and graylevel images. The levelings produced by the PDE (8.1) are flat opera-
tors and hence they can be constructed by their set counterparts via threshold
superposition. Thus,

A(flr) = sup{h : z € AXn(f)[Xn(r))} (8.3)

The set equivalent of the PDE (8.1) is a curve evolution that propagates the level
curves of u with normal speed +1 whose sign corresponds to sign (r —u). Namely,
when u > r (u < r), the level curves are moved toward (opposite) the direction
of the gradient of u. In the limit, the curves will converge to the level curves of
the leveling. The level curves of the multiscale levelings are shown in Fig. 8.2 to
preserve the global boundaries of image regions much more accurately than the
multiscale Gaussian convolutions.

8.3 Multiscale Image Operators on Lattices

A poset is any set equipped with a partial ordering <. The supremum (\/) and
infimum (/\) of any subset of a poset is its lowest upper bound and greatest lower
bound, respectively; both are unique if they exist. A poset is called a (sup-) inf-
semillattice if the (supremum) infimum of any finite collection of its elements
exists. A (sup-) inf-semilattice is called complete if the (supremum) infimum
of arbitrary collections of its elements exist. A poset is called a (complete) lat-
tice if it is simultaneously a (complete) sup- and an inf-semilattice. An operator
v on a complete lattice is called: increasing if it preserves the partial ordering
[f < g = ¥(f) < ¥(g)]; idempotent if 1)> = 1); antiextensive (resp., exten-
sive) if ¥(f) < f (resp., f < ¥(f)). An operator € (resp., 0) on a complete
inf-semilattice (resp., sup-semilattice) is called an erosion (resp., dilation) if it
distributes over the infimum (resp., supremum) of any collection of lattice ele-
ments; namely 0(\/; f;) = \/,; 0(f;) and €(A, fi) = A, €(f:). A lattice operator
is called an opening (resp., closing) if it is increasing, idempotent, and antiexten-
sive (resp., extensive). A negation is a bijective operator v # id such that both v
and v~ are either decreasing or increasing and v> = id, where id is the identity.
An operator is called self-dual if it commutes with a negation.

In this chapter, the image space is the collection of signals defined on a con-
tinuous or discrete domain E and assuming values in V, where E = R™ or Z™,
m=1,2,..,and V C R = RU {—o00, +00}. The value set V is equipped with
some partial ordering that makes it a complete lattice or inf-semilattice. This lat-
tice structure is inherited by the image space by extending the partial order of V
to signals pointwise.
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8.3.1 Multiscale Operators on Complete Lattices

Classical lattice-based morphology [233, 468] uses as image space the complete
lattice L of signals f : E — V with values in V = R or Z. In £ the signal
ordering is defined by f < g & f(z) < g(z),Vz, and the signal infimum and
supremum are defined by (A, fi)(z) = sup; fi(z) and (V/, fi)(z) = inf; fi(z).
Assume first E = R™. Let B = {x : ||z|| < 1} denote the unit-radius ball in
R™ w.r.t. the Euclidean metric || - || and let tB = {tb : b € B} be its version at
scale t > 0. The simplest multiscale dilation/erosion on £ are the Minkowski flat
dilation/erosion of an image f by tB:

0(f)@) 2 (F&tB)(@)=V,epflz—a) 8.4)
(N 2 (FotB)@) = A f@+0)

We shall also need the multiscale conditional dilation and erosion of a marker
(‘seed’) image f given a reference (‘mask’) image 7:

Sip(flr) 2 (f®tB)Ar, &i(flr) 2 (fOtB)Vr (8.5)

Iterating the unit-scale conditional dilation (erosion) yields the conditional
reconstruction opening (closing) of r from f:

Pu(flr) 0 (fIr) = Vyz1 05 (fIr)
pu(flr) €5 (flr) = Anz1 €B(fI7)

where, for any operator ¢/ and any positive integer n, ™ denotes the n-fold
composition of ¢ with itself and ¥)>° = lim,,_, o, ™ if the limit exists.

Another important pair is the geodesic dilation and erosion. First we define
them for sets X C E. Let R C [ be a reference (mask) set and consider its
geodesic metric dg(x,y) equal to the length of the geodesic path connecting the
points = and y inside R. If Br(z,t) = {p € R : dr(z,p) < t} is the geodesic
closed ball with center z and radius ¢ > 0, then the multiscale geodesic set dila-
tion of X given R is defined by A*(X|R) = Upex Br(p,t). By using threshold
decomposition and synthesis of an image f from its level sets X (f) we can
synthesize a flat geodesic dilation for images by using as generator its set counter-
part. Then, a possible definition of geodesic erosion is via negation. The resulting
multiscale geodesic dilation and erosion of f given a reference image r are

4
Y

(8.6)

B(fN@ 2 sw{h<r@)iwe MXAAIXED} g
et(flr)(x) & =0 (=fl—r)
The geodesic dilation and erosion possess a semigroup property:
§'6° = 6"° gles =gtts Ws it >0 (8.8)

whereas their conditional counterparts do not: 0;58(055(f|r)|r) # O (t+s)B(f|r).
By letting t — oo the geodesic dilation (erosion) yields the geodesic reconstruc-
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tion opening p~ (closing p*) of r from f:

P 2 07(1r) = Viso 6 (/1) 39
PrUI 2 e () = Niso (1)

The above limit 0~ (£°°) can also be reached using iterations o" E™)forn — oo
since, due to the semigroup property, the geodesic dilation (erosion) at integer
scales t = n can be obtained via n-fold iteration of the unit-scale operator.

8.3.2 Image Operators on Reference Semilattices

In [269, 234, 235] a recent approach for a self-dual morphology was developed
based on inf-semilattices. Now, the image space is the collection of signals f :
E — V, where V = R or Z. The value set V becomes a complete inf-semilattice
(cisl) if we select an arbitrary reference element r € V and use the following
partial ordering

a=<b<=rAb<rAa and rVvb>rva (8.10)

which coincides with the activity ordering in Boolean lattices [365, 233].
Given a reference image r(x), a valid signal cisl ordering is f <, g defined as
f(z) 2,(z) g(x) Vz. The corresponding signal cisl infimum becomes

(Air) @ 2 F@ AV @IV A, Fil) &.11)
= med[r(z),V, fi(z), \, fi(z)]

where med(+) denotes the median. Under the above cisl infimum, the image space
becomes a cisl denoted henceforth by F,.. Varying the reference signal r yields
cisl’s that are all isomorphic to each other. Significant in this chapter is the cisl
Fo with r(z) = 0. An isomorphism between Fy and an arbitrary cisl F,. is the
bijection {(f) = f + r. Thus, if 1)y is an operator on Fy, then its corresponding
operator on F, is given by ¢,.(f) = o1 (f). If 1) is an erosion on Fy that
is translation-invariant (TI) and self-dual, then 1), is also a self-dual TI erosion
on F,. Note: the infimum, translation operator and negation operator on J are
different from those on F,.. For example, if vo(f) = — f is the negation on Fy,
then self-duality of 1y means ¥gvy = 1Py, whereas self-duality on F, means
U,V = vpth,. where v, (f) = 2r — f.
The simplest multiscale TI self-dual erosion on the cisl Fy is the operator

W(H@) =0A\ fle—alv A flz—a) (8.12)

a€tB a€tB

The corresponding multiscale TT self-dual erosion on the cisl F,. is

VL) =T+ Pe(f =) (8.13)
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8.4 Multiscale Triphase Operators and Levelings

DEFINITION 4 . Given two operators « and 3 from £2? to £ that are increasing
w.r.t. both arguments and, V f, r,

fAr<B(flr) <r <a(flr) < fVr, (8.14)

a triphase operator ) is defined by

A(flrsa, B) £ a(fIB(fIr)), = B(fla(fIr)) (8.15)

where the operators « and 3 are assumed to commute in the definition (8.15). (Suf-
ficient conditions are given in [335].) The triphase operators have four arguments:
two signals f and r and two operators o and 3. The signal arguments (f,r) are
written as (f|r) to emphasize their asymmetric roles (marker vs. reference) and
to connect them with conditional operators that use the same notation. If the op-
erators « and /3 are known and fixed, we shall omit them and write A(f|r), or
simply A(f) if r is assumed. The prototypical example of a triphase operator is
when a(f|r) = €g(f) V r is a conditional erosion and 3(f|r) = d5(f) Arisa
conditional dilation.

As shown in [335], the action of a triphase operator A at points z where f(x) >
r(z) (resp., f(x) < r(x)) is determined only by « (resp., 5):

Bflr)(x), if  f(z) <r(x)
AfIn)(@) = ¢ alfln)(@), if fz) <r(@) (8.16)
r(z), it f(z) =r(z)

Some general properties of triphase operators follow next.

PROPOSITION 4 ([335]). (a) A is antiextensive in the cisl Fp: A(f|r) <, f.

(b) A is increasing in F,, i.e., f <. g => A(f|r) <. A(g|r).

(c) If a and 3 are dual of each other, then X is self-dual; i.e., if a(—f| —r) =
—B(fIr), then A\(—f| = 1) = =A(f]r).

On digital spaces, Meyer [366] and Matheron [348] defined as a leveling of
r any signal f such that dg(f) A7 < f < ep(f) V r. This is equivalent to
f = A(f|r), where \ is the conditional triphase formed by the conditional erosion
£p(+|") and dilation d5(-|-) in place of o and 3. By generalizing the triphase,
we propose the following alternative definition of levelings, valid for discrete or
continuous spaces.

DEFINITION 5 . A signal f is a called a A-induced leveling of r iff it is a fixed
point of the triphase operator A, i.e. f = A(f|r).

The following is a necessary and sufficient condition for f to be a A-induced
leveling of r:

f=AfIr) <= B(flr) < f < a(flr) (8.17)
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Since any triphase operator ) is antiextensive, a leveling of a reference r from
a marker f can possibly be obtained by iterating A to infinity, or equivalently by
taking the cisl infimum of all iterations of \. The limit of these iterations

AR 2 A (F ) = A st A" () 2o - 2 M) 2 f (8.18)

exists in the cisl F,.. Henceforth, we shall deal only with triphase operators A for
which A\ = A\™; e.g., this happens if « is a lattice erosion and £ is a lattice di-
lation [335]. In such cases, A(f|r) is a leveling, and the map r — A(f]|r) is called
a leveling operator. Note that, A is an increasing, antiextensive and idempotent
operator, and hence a semilattice opening, in the cisl JF,. It is also an increasing
and idempotent operator, and hence a morphological filter, in the complete lattice
L.

If we replace the operators « and # with the multiscale conditional flat erosion
and dilation by B of (8.5) we obtain a multiscale conditional triphase operator

A (fIr) 2 e (f10es(fIr) = 6:6(flews(fIr) (8.19)

By replacing the conditional dilation and erosion in (8.19) with their geodesic
counterparts from (8.7) we obtain a multiscale geodesic triphase operator

N (flr) 2 (16" (fIr) = 8" (FI" (£1r) (820)
For both the conditional and the geodesic triphase, its constituent erosion and
dilation operators satisfy the basic properties of the operators o and 3 required
for the definitions of triphase operators. Further, they commute.

Comparing (8.19) with (8.13) reveals that A;g(:|r) becomes a multiscale
translation-invariant (TI) semilattice erosion on F,. if r is constant. In particular,
if » = 0, then ;g becomes a multiscale TI self-dual erosion on Fy. For non-
constant 7, A;p is generally neither TI nor an erosion. In constrast, the geodesic
triphase is a semilattice erosion, although not TI.

PROPOSITION 5 ([335]). The geodesic triphase operator X' (flr) = 8t(f|5t(f|r)
is a semilattice erosion in the cisl F,; ie., )\t(Aifih“) = Al)\(flh“)

The geodesic triphase is the most important triphase operator because it obeys
a semigroup. This will allow us later to find its PDE generator.

PROPOSITION 6 ([335]). (a) As t — oo, )\t(f|r) vields the geodesic leveling
which is the composition of the geodesic reconstruction opening and closing:

A(flr) & AZ(fIr) = p~(FlpT (fIr) = p* (flp™ (fIr)) (8.:21)
(b) The multiscale family {)\t(-|r) :t > 0} forms an additive semigroup:
NN Gy = AT (), vt s > 0. (8.22)

(c) For a zero reference (r = 0), the multiscale geodesic triphase operator be-
comes identical to its conditional counterpart and the multiscale TI semilattice

erosion: Y4 (f) = X' (f10) = A (£10)
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(d) For any r, the multiscale TI semilattice erosion L(f) = r +§(f —r) obeys

a semigroup: Plaps = pits,

From the semigroup property (8.22), the n-fold iteration of the unit-scale
geodesic triphase operator concides with its multiscale version at integer scale
t = n. The same is true for the multiscale TI semilattice erosions. It is not gen-
erally true, however, for the conditional triphase operator A B(f|r), which does
not obey a semigroup. Further, its iterations converge to the conditional level-
ing Ap(f|r) = A% (f|r) which is smaller w.rt. <, than the geodesic leveling

A(flr) = X7 (fIr).

8.5 Partial Differential Equations

8.5.1 PDEs for 1D Levelings and Semilattice Erosions

Consider a 1D reference image r(z) and a marker image f(z) on R, both real
and continuous. We start evolving the marker image by producing the multiscale
geodesic triphase evolutions

u(, t) = X'(fIr)(z) = 0" (fle (1) (=) (8.23)
The initial value is u(z,0) = f(z). In the limit we obtain the final result
u(z, 00) which will be the leveling A(f|r). Attempting to find a generator PDE
for the function u, we shall analyze the following evolution rule: du(z, t) /0t =
limgyo[u(z,t + s) — u(z,t)]/s. By using the semigroup (8.22) that u satisfies
and the pointwise representation (8.16) of triphase operators, the evolution rule
becomes
ou l%msw [0° (u(z, t)|r)(z) (z,t)]/s, %f u(z, t) <r
i limg o[f (u(z, t)|r)(x) (z,t)]/s, }f u(z,t) > r(x) (8.24)
0, if w(z,t)=r(z)

We shall show later that, at points where the partial derivatives exist, this rule be-
comes the following PDE: u; = —sign(u — r)|u,|. Starting from a continuous
marker f(z), the evolutions u(z, t) remain continuous for all z, ¢. However, even
if the initial image f is differentiable, at finite scales ¢ > 0, the above triphase
evolution may create shocks (i.e., discontinuities in the derivatives). One way to
propagate these shocks (as done in solving evolution PDEs of the Hamilton-Jacobi
type with level-set methods [401]) is to use conservative monotone difference
schemes that pick the correct weak solution satisfying the entropy condition.
An alternative way we propose to deal with shocks is to replace the standard
derivatives with morphological sup/inf derivatives. For example, let

Mu(z,t) £ 1319[ \ u(@+a,t) —u(z,1)]/s

lal<s

()

—Uu
—Uu

be the sup-derivative of u(x,t) along the z-direction, if the limit exists. If the
one-sided right derivative O ,u(x, t) and left derivative O_,u(z, t) of u along the
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x-direction exist, then its sup-derivative also exists and is equal to M u(x,t) =
max|0, 04 u(z,t), —0_,u(z,t)] Obviously, if the left and right derivatives are
equal, then the M becomes equal to the magnitude |u,(z,t)| of the standard
derivative. The nonlinear derivative M leads next to a more general PDE that can
handle discontinuities in Ou/0z.

THEOREM 3 ([335]). Let u(z,t) = )\t(f|r) (x) be the scale-space function of
multiscale geodesic triphase operations with initial condition u(z,0) = f(z).
Assume that r is continuous and f is continuous with left and right derivatives at
all z. (a) If the partial left and right derivatives Oy, u exist at some (z,t), then

o max|[0, 04 u(z,t), —0_zu(z,t)], if wu(z,t) <r(x)
E(w,t) =< min[0, 04 u(z,t), —0_su(z,t)], if w(z,t) >r(x)
0, it wu(z,t) =r(z)

(8.25)

(b) If the two-sided partial derivative Ou/Ox exists at some (z,t), then u satisfies

ou ou

E(m,t) = —signfu(z,t) — r(z)] ‘%(:r,t) (8.26)

Thus, assuming that du/0x exists and is continuous, the nonlinear PDE (8.26)
can generate the multiscale evolution of the initial image u(z,0) = f(z) under
the action of the geodesic triphase operator. However, even if f is differentiable,
as the scale ¢ increases, this evolution can create shocks. In such cases, the more
general PDE (8.25) that uses morphological derivatives still holds and can propa-
gate the shocks provided the equation evolves in such a way as to give solutions
that are piecewise differentiable with left and right derivatives at each point.

Consider now on the cisl Fo the multiscale TI semilattice erosions v(z,t) =
Y (f)(x) of areal 1D image f(x) by 1D line segments tB = [—t, ], defined in
(8.12). Since v(x, t) is the special case of the corresponding function u(z, t) for
multiscale geodesic triphase operations when r = 0, we can use the leveling PDE
(8.26) to generate the evolutions v(z, t):

Ov/0t = —sign(v)|0v/0x|, wv(z,0) = f(x) (8.27)

If r(z) is not zero, we can generate multiscale TI semilattice erosions ¥L(f) =
r 4+ Y5(f — r) of f by the following PDE system

Ou/ot = —sign(v)ve|, v(,0) = f(z) —r(z)
Ur(H)@) = r)+o(t)
If f — r has both negative and positive values and is non-constant, then as ¢t — oo
we obtain the reference r; i.e, ¥3°(f) = r because ¥§°(f — r) = 0.
To find a numerical algorithm for solving the previous PDEs, let U be the
approximation of u(z,t) on a grid (iAz,nAt)). Similarly, define R; = r(iAx)
and F; 2 f(iAz). Consider the forward and backward difference operators:

D, Ul & (U, —UM)/Az, DU £ (U =U))/Az  (829)

(8.28)
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To produce a shock-capturing and entropy-satisfying numerical method for solv-
ing the leveling PDE (8.26) we approximate the more general PDE (8.25)
by replacing time derivatives with forward differences and left/right spa-
tial derivatives with backward/forward differences. This yields the following
algorithm:

Uin+1 = Ur- At[ (Pi”)+ maX(O,D—inn, —D-HcUin)
+(P*)” max(0, —-D_,U}*, D4, U}")]

K3

(8.30)

where P = sign(U — R;), ¢* = max(0,¢), and ¢~ = min(0, g). Further,
to avoid spurious numerical oscillations around zerocrossings of f — r, at each
iteration we enforce the sign consistency

sign(U* — R;) =sign(F; — R;), Vn,i (8.31)

We iterate the above scheme for n = 1,2, ..., starting from the initial data U? =
F;. For stability, (At/Ax) < 0.5 is required.

The above scheme can be expressed as iteration of a discrete triphase operator
& acting on the cisl Fr of 1D sampled real-valued signals with reference R:

Ut =o(Up), ®(F) & a(F) V[Ri AB(EF)], (8.32)
where the operators a, § are given by, for § = At/Awx,

OZ(FZ) = min[Fi,HFi_l + (1 — G)Fi,GFH_l + (1 — Q)FZ],

B(F;) = max[F,,0F;_, + (1 — 0)F,,0F;, + (1 — )F)]. (8.33)

By using ideas from methods of solving PDEs corresponding to hyperbolic con-
servation laws [401], we can easily show that this scheme! is conservative and
monotone increasing for § = At/Az < 1. Hence, it satisfies the entropy
condition. Examples of running this algorithm are shown in Fig. 8.1. An im-
portant question is whether the above algorithm converges. The answer is given
affirmative next.

PROPOSITION 7 ([335]). If ®(-) = a(-) V[R A B(:)] and (o, B) are as in (8.33),
then ® is a parallel triphase operator and the sequence U1 = ®(U™), U° = F,
converges to a unique limit U = ®°(F). For digital images F, R assuming a

finite number of gray levels, the limit ®>°(F) is a conditional leveling of R from
F.

If At = Az, then the o and 3 operators (8.33) of the discrete triphase operator
® in (8.32) become erosion and dilation, respectively, by a unit-scale window
B = {-1,0, 1}. Further, the corresponding PDE numerical algorithm coincides
with the iterative discrete algorithm of [366] for constructing levelings.

I There are also other possible approximation schemes, e.g. the scheme proposed in [400] to solve
the edge-sharpening PDE u¢ = —sign(uzz )|uz |, which is however more diffusive and requires more
computation than the above scheme; see[335].
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8.5.2 PDEs for 2D Levelings and Semilattice Erosions

A straighforward extension of the leveling PDE from 1D to 2D images results by
replacing the term —|u,| creating 1D multiscale erosions with the term —||Vu)|
generating multiscale erosions by disks. Then the 2D leveling PDE becomes:

6u(m,y,t)/8t = _Sign[u(xayvt) - T(ll,‘,y)]”VU(lL‘,y,t)”
u(z,y,0) = fla,y)

As in the 1D case, u(z,y,t) = 2 (fIr)(z,y) is a scale-space function holding
the 2D multiscale geodesic triphase evolutions of the marker image f(x, y) within
the reference image r(x, y). Of course, we could select any other PDE modeling
the intermediate growth kernel by shapes other than the disk, but the disk has the
advantage of creating an isotropic growth.

For discretization, let U;'; be the approximation of u(z,y,t) on a com-
putational grid (1Az, jAy,nAt) and set the initial condition U?j = F; =
f(iAz,jAy). Then, by replacing the magnitudes of standard derivatives with
morphological derivatives and by expressing the latter with left and right deriva-
tives which are approximated with backward and forward differences, we arrive at
the following entropy-satisfying scheme for solving the 2D leveling PDE (8.34):

(8.34)

UMt = eU), ®(Fyj) £ [Rij AB(F;)]V a(Fy),
a(Fjj) = Fij

— At\/man[O, D,mFij, _D+IFij] + man[O, D,yFij, —D+yFij]
B(Fij) = Fij

+ At\/mZax[O, -D_, i D+mFij] + mZax[O, —D,yFij, D+yFij]
(8.35)

For stability, (At/Az+At/Ay) < 0.5isrequired. As in the 1D case, this scheme
converges to a discrete conditional leveling. Examples of running the above 2D
algorithm are shown in Fig. 8.3. In all image experiments based on PDEs we used
Az = Ay = 1, At = 0.25 as space-time steps.

As a by-product of the 2D leveling PDE, the multiscale TI semilattice erosions
(8.13) of a marker image f by disks B w.r.t. a reference image r can be generated
as follows:

av/at _Sign(U)HVUH: v(a:,y,O) = f(af,y) — T’(Cl?,y)
VL) (@,y) = r(z,y) +v(z,y,t) (8.36)

8.6 Discussion

We conclude by providing some insights on the behavior of levelings and
multiscale semilattice erosions via several image experiments. Then, we also
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Figure 8.3. Multiscale triphase evolutions and leveling of a soilsection image r generated
by PDEs. The marker image f was obtained from a convolution of the reference r with
a 2D Gaussian of o = 8. Second row: left two images show geodesic triphase evolutions
generated by the leveling PDE (8.34); right two images show multiscale TI semilattice
erosions generated by the PDE (8.36).

comment on the advantages of PDE-based algorithms for generating these lattice
scale-spaces.

As shown in Figs. 8.3 and 8.4, the leveling limit is strongly dominated by the
structure of the reference image. Although the selection of markers suitable for
producing levelings with various designable properties is still an open issue, it
appears that a smooth version of the reference works well as a marker for ap-
plications of image simplification and segmentation. This choise also works for
image denoising where the marker may be a linear or nonlinear smoothing of the
noisy reference. In a different scenario shown in Fig. 8.4, we experimented with
a binary edge map as reference whereas the marker was a smooth version of the
same original image. Here the intermediate triphase evolutions (geodesic semilat-
tice erosions) toward the leveling seemed useful for adding image region details
back to the edge map. Finally, as discussed in [235, 335], the intermediate multi-
scale TI semilattice erosions seem potentially applicable to mixing or morphing
the marker image into the reference, even if the two images are completely un-
related. On comparing the speed of convergence, we have experimentally found
that the geodesic triphase evolutions toward levelings converge to the limit more
slowly than the multiscale TI semilattice erosions.

The basic algebraic discrete algorithm that Meyer [366] developed to construct
levelings of digital images is the iteration of the conditional triphase operator
A(F;) = eg(F;) V [R; Adg(F;)], where d g and £ are flat dilation and erosion
by a discrete unit-scale disk-like set B. Now we know that this converges to a
discrete conditional leveling Agg44iscr- The new PDE-based numerical algorithm
(8.32),(8.33) converges to another discrete conditional leveling Apgenum - If Atrye
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Original Reference Marker

Figure 8.4. First row: original image g, reference image r resulting from applying the
Canny edge detector to g, marker image f which is a Gaussian convolution of g, and the
leveling A(f|r). Second row: first two images show multiscale geodesic triphase evolu-
tions (converging to the leveling); last two images show multiscale TI semilattice erosions.
(All evolutions were generated by PDEs.)

is the sampled true (geodesic) leveling, then r <, Aggdgiser =r Apdenum =r
Atrvue- Hence, the algebraic discrete algorithm yields a result that has a larger ab-
solute deviation from the true solution than the PDE numerical algorithm. Further,
the algebraic discrete algorithm is a special case of the PDE algorithm using the
value § = At/Axz = 1, which makes it unstable (amplifies small errors). Thus,
in addition to its well-known advantages (such as better geometry and accuracy,
physics, and insightful modeling), the PDE approach also has some advantages
over the discrete modeling that are specific for the operators examined in this
chapter. In the 2D case we have an additional comparison issue: Although for the
triphase evolutions toward levelings the desired result in segmentation applica-
tions is mainly the final limit, there may be other applications, for instance such
as mixing/morphing images, where we need to stop the marker growth before
convergence. In such cases as evolutions of 2D multiscale (geodesic or TI) semi-
lattice erosions, the isotropy of the partially grown marker offered by the PDE
approach is an advantage over the discrete algebraic approach.



