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Nonlinear methods for speech analysis
and synthesis

Steve McLaughlin and Petros Maragos

5.1. Introduction

Perhaps the first question to ask on reading this chapter is why should we con-
sider nonlinear methods as offering any insight into speech signals given the suc-
cess of current, mostly linear-based, speech analysis methods. There are known
to be a number of nonlinear effects in the speech production process. Firstly, it
has been accepted for some time that the vocal tract and the vocal folds do not
function independently of each other, but that there is in fact some form of cou-
pling between them when the glottis is open [27] resulting in significant changes in
formant characteristics between open and closed glottis cycles [7]. More contro-
versially, Teager and Teager [69] have claimed (based on physical measurements)
that voiced sounds are characterized by highly complex air flows in the vocal tract
involving jets and vortices, rather than well-behaved laminar flow. In addition, the
vocal folds will themselves be responsible for further nonlinear behavior, since the
muscle and cartilage which comprise the larynx have nonlinear stretching quali-
ties. Such nonlinearities are routinely included in attempts to model the physical
process of vocal fold vibration, which have focused on two or more mass mod-
els [24, 28, 65], in which the movement of the vocal folds is modeled by masses
connected by springs, with nonlinear coupling. Observations of the glottal wave-
form have shown that this waveform can change shape at different amplitudes
[59] which would not be possible in a strictly linear system where the waveform
shape is unaffected by amplitude changes. Models of the glottal pulse also include
nonlinearities, for example, the use of nonlinear shaping functions [58–60] or the
inclusion of nonlinear flow [22].

In order to arrive at the simplified linear model, a number of major assump-
tions are made:

(i) the vocal tract and speech source are uncoupled (thus allowing source-
filter separation);

(ii) airflow through the vocal tract is laminar;
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(iii) the vocal folds vibrate in an exactly periodic manner during voiced
speech production;

(iv) the configuration of the vocal tract will only change slowly.
These imply a loss of information which means that the full speech signal dynam-
ics can never be properly captured. These inadequacies can be seen in practice in
speech synthesis where, at the waveform generation level, current systems tend to
produce an output signal that lacks naturalness. This is true even for concatenation
techniques which copy and modify actual speech segments.

Given the statements above then should make clear why nonlinear methods
will offer useful insights and suggest useful methods that we can adopt to enhance
speech synthesis. The chapter is structured as follows. First some discussion on
speech aerodynamics and modulations in speech are discussed. Then the discus-
sion moves on to consider why conventional linear methods work as well as they
do. The discussion then moves on to consider what nonlinear methods we might
use and for what. These range from modulation models, fractal methods, using
Poincaré maps for epoch detection, the use of unstable manifolds, and functional
approximation methods. Then consideration is briefly given to the use of nonlin-
ear methods in automatic speech recognition. Finally some conclusions are drawn
and suggestions for potential areas of research are considered.

5.1.1. Speech aerodynamics

For several decades the traditional approach to speech modeling has been the lin-
ear (source-filter) model where the true nonlinear physics of speech production is
approximated via the standard assumptions of linear acoustics and 1D plane wave
propagation of the sound in the vocal tract. This approximation leads to the well-
known linear prediction model for the vocal tract where the speech formant reso-
nances are identified with the poles of the vocal tract transfer function. The linear
model has been applied to speech coding, synthesis, and recognition with limited
success [55, 56]. To build successful applications, deviations from the linear model
are often modeled as second-order effects or error terms. However, there is strong
theoretical and experimental evidence [2, 25, 36, 40, 62, 69, 70] for the existence
of important nonlinear aerodynamic phenomena during the speech production
that cannot be accounted for by the linear model. Thus, the linear model can be
viewed only as a first-order approximation to the true speech acoustics which also
contain second-order and nonlinear structure. The investigation of speech non-
linearities can proceed in at least two directions: (i) numerical simulations of the
nonlinear differential (Navier-Stokes) equations [72] governing the 3D dynamics
of the speech airflow in the vocal tract, as, for example, in [57, 70], and (ii) devel-
opment of nonlinear signal processing systems suitable to detect such phenomena
and extract related information. Most of the research in this aspect of nonlinear
speech processing, for example, as reviewed in [35, 54], has focused on the sec-
ond approach, which is computationally much simpler, that is, to develop models
and extract related acoustic signal features describing two types of nonlinear phe-
nomena in speech, modulations and turbulence. Turbulence can be explored both
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from the geometric aspect, which brings us to fractals [32], and from the nonlinear
dynamics aspect, which leads us to chaos [1, 47].

In this chapter we summarize the main concepts, models, and algorithms
that have been used or developed in the three above nonlinear methodologies for
speech analysis and synthesis.

5.1.2. Speech turbulence

Conservation of momentum in the air flow during speech production yields the
Navier-Stokes equation [72]:

ρ

(
∂�u
∂t

+ �u · ∇�u
)
= −∇p + μ∇2�u, (5.1)

where ρ is the air density, p is the air pressure, �u is the (vector) air particle veloc-
ity, and μ is the air viscosity coefficient. It is assumed that flow compressibility is
negligible [valid since in speech flow (Mach numbers)2 � 1] and hence∇·�u = 0.
An important parameter characterizing the type of flow is the Reynolds number
Re = ρUL/μ, where U is a velocity scale for �u and L is a typical length scale, for
example, the tract diameter. For the air we have very low μ and hence high Re.
This causes the inertia forces to have a much larger order of magnitude than the
viscous forces μ∇2�u. A vortex is a region of similar (or constant) vorticity �ω, where
�ω = ∇ × �u. Vortices in the air flow have been experimentally found above the
glottis by Teager and Teager [69] and Thomas [70] and theoretically predicted by
Kaiser [25], Teager and Teager [69], and McGowan [40] using simple geometries.
There are several mechanisms for the creation of vortices: (1) velocity gradients
in boundary layers, (2) separation of flow, which can easily happen at cavity in-
lets due to adverse pressure gradients (see [69] for experimental evidence), and
(3) curved geometry of tract boundaries, where due to the dominant inertia forces
the flow follows the curvature and develops rotational components. After a vor-
tex has been created, it can propagate downstream as governed by the vorticity
equation [72]

∂�ω
∂t

+ �u · ∇�ω = �ω · ∇�u + ν∇2�ω, ν = μ

ρ
. (5.2)

The term �ω · ∇�u causes vortex twisting and stretching, whereas ν∇2�ω produces
diffusion of vorticity. As Re increases (e.g., in fricative sounds or during loud
speech), all these phenomena may lead to instabilities and eventually result in
turbulent flow, which is a “state of continuous instability” [72] characterized by
broad-spectrum rapidly varying (in space and time) velocity and vorticity. Many
speech sounds, especially fricatives and stops, contain various amounts of turbu-
lence. In the linear speech model this has been dealt with by having a white noise
source exciting the vocal tract filter.

Modern theories that attempt to explain turbulence [72] predict the existence
of eddies (vortices with a characteristic size λ) at multiple scales. According to the
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energy cascade theory, energy produced by eddies with large size λ is transferred
hierarchically to the small-size eddies which actually dissipate this energy due to
viscosity. A related result is the Kolmogorov law

E(k, r) ∝ r2/3k−5/3, (5.3)

where k = 2π/λ is the wavenumber in a finite nonzero range, r is the energy dis-
sipation rate, and E(k, r) is the velocity wavenumber spectrum, that is, Fourier
transform of spatial correlations. This multiscale structure of turbulence can in
some cases be quantified by fractals. Mandelbrot [32] and others have conjectured
that several geometrical aspects of turbulence (e.g., shapes of turbulent spots,
boundaries of some vortex types found in turbulent flows, shape of particle paths)
are fractal in nature. We may also attempt to understand aspects of turbulence as
cases of chaos. Specifically, chaotic dynamical systems converge to attractors whose
sets in phase space or related time series signals can be modeled by fractals; refer-
ences can be found in [47]. Now there are several mechanisms in high-Re speech
flows that can be viewed as routes to chaos; for example, vortices twist, stretch,
and fold (due to the bounded tract geometry) [32, 72]. This process of twisting,
stretching, and folding has been found in low-order nonlinear dynamical systems
to give rise to chaos and fractal attractors.

5.1.3. Speech modulations

By “speech resonances” we will loosely refer to the oscillator systems formed by lo-
cal vocal tract cavities emphasizing certain frequencies and de-emphasizing others.
Although the linear model assumes that each speech resonance signal is a damped
cosine with constant frequency within 10–30 ms and exponentially decaying am-
plitude, there is much experimental and theoretical evidence for the existence of
amplitude modulation (AM) and frequency modulation (FM) in speech resonance
signals, which make the amplitude and frequency of the resonance vary instanta-
neously within a pitch period. First, due to the airflow separation [69], the air jet
flowing through the vocal tract during speech production is highly unstable and
oscillates between its walls, attaching or detaching itself, and thereby changing the
effective cross-sectional areas and air masses. This can cause modulations of the air
pressure and velocity fields, because slow time variations of the elements of sim-
ple oscillators can result in amplitude or frequency modulation of the oscillator’s
sinusoidal response. Also, during speech production vortices can easily be gener-
ated and propagated along the vocal tract [70, 72], while acting as modulators of
the energy of the jet. Motivated by this evidence, Maragos et al. [36] proposed to
model each speech resonance with an AM-FM signal

x(t) = a(t) cos
[
φ(t)

] = a(t) cos
[

2π
∫ t

0
f (τ)dτ

]
(5.4)
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and the total speech signal as a superposition of such AM-FM signals,
∑

k ak(t)
cos[φk(t)], one for each formant. Here a(t) is the instantaneous amplitude sig-
nal and f (t) is the instantaneous cyclic frequency representing the time-varying

formant signal. The short-time formant frequency average fc = (1/T)
∫ T

0 f (t)dt,
where T is in the order of a pitch period, is viewed as the carrier frequency of the
AM-FM signal. The classical linear model of speech views a formant frequency as
constant, that is, equal to fc, over a short-time (10–30 ms) frame. However, the
AM-FM model can both yield the average fc and provide additional information
about the formant’s instantaneous frequency deviation f (t)− fc and its amplitude
intensity |a(t)|.

5.1.4. So if speech is nonlinear, why do linear methods work?
Conventional speech synthesis approaches

Conventionally the main approaches to speech synthesis depend on the type of
modeling used. This may be a model of the speech organs themselves (articula-
tory synthesis), a model derived from the speech signal (waveform synthesis), or
alternatively the use of prerecorded segments extracted from a database and joined
together (concatenative synthesis).

Modeling the actual speech organs is an attractive approach, since it can be
regarded as being a model of the fundamental level of speech production. An ac-
curate articulatory model would allow all types of speech to be synthesized in a
natural manner, without having to make many of the assumptions required by
other techniques (such as attempting to separate the source and vocal tract parts
out from one signal) [19, 24, 28]. Realistic articulatory synthesis is an extremely
complex process, and the data required is not at all easy to collect. As such, it has
not to date found any commercial application and is still more of a research tool.

Waveform synthesizers derive a model from the speech signal as opposed to
the speech organs. This approach is derived from the linear source-filter theory of
speech production [17]. The simplest form of waveform synthesis is based on lin-
ear prediction (LP) [38]. The resulting quality is extremely poor for voiced speech,
sounding very robotic.

Formant synthesis uses a bank of filters, each of which represents the contri-
bution of one of the formants. The best known formant synthesizer is the Klatt
synthesizer [26], which has been exploited commercially as DECTalk. The synthe-
sized speech quality is considerably better than that of the LP method, but still
lacks naturalness, even when an advanced voice-source model is used [16].

Concatenation methods involve joining together prerecorded units of speech
which are extracted from a database. It must also be possible to change the prosody
of the units, so as to impose the prosody required for the phrase that is being gen-
erated. The concatenation technique provides the best quality synthesized speech
available at present. It is used in a large number of commercial systems, includ-
ing British Telecom’s Laureate [45] and the AT&T Next-Gen system [3]. Although
there is a good degree of naturalness in the synthesized output, it is still clearly
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distinguishable from real human speech, and it may be that more sophisticated
parametric models will eventually overtake it.

Techniques for time and pitch scaling of sounds held in a database are also
extremely important. Two main techniques for time-scale and pitch modification
in concatenative synthesis can be identified, each of which operates on the speech
signal in a different manner. The pitch synchronous overlap add (PSOLA) [41]
approach is nonparametric as opposed to the harmonic method, which actually
decomposes the signal into explicit source and vocal tract models. PSOLA is re-
ported to give good quality, natural-sounding synthetic speech for moderate pitch
and time modifications. Slowing down the speech by a large factor (greater than
two) does introduce artifacts due to the repetition of PSOLA bells. Some tonal ar-
tifacts (e.g., whistling) also appear with large pitch scaling, especially for higher
pitch voices, such as female speakers and children.

McAulay and Quatieri developed a speech generation model that is based on
a glottal excitation signal made up of a sum of sine waves [39]. They then used this
model to perform time-scale and pitch modification. Starting with the assumption
made in the linear model of speech that the speech waveform x(t) is the output
generated by passing an excitation waveform e(t) through a linear filter h(t), the
excitation is defined as a sum of sine waves of arbitrary amplitudes, frequencies,
and phases. A limitation of all these techniques is that they use the linear model of
speech as a basis.

5.2. What nonlinear methods might we use?

5.2.1. Modulation model and energy demodulation algorithms

In the modulation speech model, each speech resonance is modeled as an AM-FM
signal and the total speech signal as a superposition of several such AM-FM signals,
one for each formant. To isolate a single resonance from the original speech signal,
bandpass filtering is first applied around estimates of formant center frequencies.

For demodulating a single resonance signal, Maragos et al. [36] used the non-
linear Teager-Kaiser energy-tracking operator Ψ[x(t)] = [ẋ(t)]2 − x(t)ẍ(t), where
ẋ = dx/dt, to develop the following nonlinear algorithm:

√√√√Ψ
[
ẋ(t)

]
Ψ
[
x(t)

] ≈ 2π f (t),
Ψ
[
x(t)

]
√
Ψ
[
ẋ(t)

] ≈ ∣∣a(t)
∣∣. (5.5)

This is the energy separation algorithm (ESA) and it provides AM-FM demodu-
lation by tracking the physical energy implicit in the source producing the ob-
served acoustic resonance signal and separating it into its amplitude and frequency
components. It yields very good estimates of the instantaneous frequency signal
f (t) ≥ 0 and of the amplitude envelope |a(t)| of an AM-FM signal, assuming that
a(t), f (t) do not vary too fast (small bandwidths) or too greatly compared with
the carrier frequency fc.
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There is also a discrete version of the ESA, called DESA [36], which is obtained
by using a discrete energy operator on discrete-time nonstationary sinusoids. The
DESA is an efficient approach to demodulating speech resonances for the follow-
ing several reasons. (i) It yields very small errors for AM-FM demodulation. (ii) It
has an extremely low computational complexity. (iii) It has an excellent time res-
olution, almost instantaneous; that is, operates on a 5-sample moving window.
(iv) It has a useful and intuitive interpretation of tracking and separating the true
physical energy of the acoustic source. (v) It can detect transient events. Exten-
sive experiments on speech demodulation using the DESA in [36, 51, 52] indicate
that these amplitude/frequency modulations exist in real speech resonances and
are necessary for its naturalness, as found from synthesizing speech via an AM-FM
vocoder [52] that uses the AM-FM model.

The main disadvantage of the DESA is a moderate sensitivity to noise. This
can be reduced by using regularized versions of the continuous ESA adapted for
discrete data. Two such continuous approaches were developed by Dimitriadis and
Maragos [13]. The first, called Spline-ESA, interpolates the discrete-time signal
with smoothing splines to create a continuous-time signal, applies the continuous-
time ESA (5.5), and finally samples the information-bearing signals to obtain esti-
mates of the instantaneous amplitude and frequency of the original discrete signal.
In the second approach, called Gabor-ESA, the signal derivatives in the original
ESA are replaced by signal convolutions with corresponding derivatives of the Ga-
bor filters’ impulse response.

The ESAs are efficient demodulation algorithms only when they are used on
narrowband AM-FM signals [6]. This constraint makes the use of filterbanks (i.e.,
parallel arrays of bandpass filters) inevitable for wideband signals like speech.
Thus, each short-time segment (analysis frame) of a speech signal is simultane-
ously filtered by all the bandpass filters of the filterbank, and then each filter out-
put is demodulated using the ESA. Ongoing research in speech modulations has
been using filterbanks with Gabor bandpass filters whose center frequencies are
spaced either linearly or on a mel-frequency scale [13, 52]. Figure 5.1 shows an ex-
ample of demodulating three bands of a speech phoneme into their instantaneous
amplitude and frequency signals.

While the instant frequency signals produced by demodulating resonances
of speech vowels have a quasiperiodic structure, those of fricatives look random.
Since fricative and stop sounds contain turbulence, Maragos and Dimakis [11, 35]
proposed a random modulation model for resonances of fricatives and stops where
the instant phase modulation signal is a random process from the 1/ f noise family.
Specifically, they modeled each such speech resonance R(t) as

R(t) = a(t) cos
(
2π fct + p(t)

)
, E

[∣∣P(ω)
∣∣2
]
∝ σ2

|ω|γ , (5.6)

where p(t) is a random nonlinear phase signal, P(ω) is its Fourier transform,
and E[·] denotes expectation. The power spectral density (PSD), measured ei-
ther by a sample periodogram |P(ω)|2 or empirically via filterbanks, is assumed
to obey a 1/ωγ power law; such processes are called the “1/ f noises.” In [35] the
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Figure 5.1. Demodulating a speech phoneme using a Gabor filterbank and the Spline-ESA.

proposed 1/ f model for the instant phase was the fractional Brownian motions
(FBMs), which are a popular fractal model for a subclass of 1/ f noises [32]. In [11]
this 1/ f phase model was extended to include the class of alpha-stable processes.
The method used in [11, 35] to solve the inverse problem, that is, that of extract-
ing the phase modulation p(t) from the speech resonance and modeling it as a 1/ f
noise, is summarized in the following steps.

(1) Isolate the resonance by Gabor bandpass filtering the speech signal.
(2) Use the ESA to estimate the AM and FM signals, a(t) and f (t).
(3) Median filter the FM signal for reducing some extreme spikes.
(4) Estimate the phase modulation signal p(t) by integrating the instant fre-

quency.
(5) Estimate the spectral exponent γ of the phase modulation signal by using

a statistically robust estimator of its power spectrum and least-squares
fitting a line only on the part of the power spectrum not affected by low-
pass filtering.
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The efficiency of this method was successfully tested on artificial resonance
signals with 1/ f phase modulation signals.

Strong experimental evidence was also presented that certain classes of speech
signals have resonances that can be effectively modeled as phase modulated 1/ f
signals. The validity of the model was demonstrated by confirming that its power
spectrum obeys a spectral 1/ f γ power law.

Figure 5.2 demonstrates the application of the above described 1/ f phase
modulation model to a voiced fricative. In [11, 35] extensive similar experiments
have been performed on real speech signals (from the TIMIT database), by follow-
ing the same procedure: a strong speech resonance is located, possibly by using the
iterative ESA method. Then the ESA is used to extract the phase modulation. (The
phase modulations were also estimated via the Hilbert transform to make sure that
the ESA does not introduce any artifacts.) The estimated phase is assumed to be
a low-passed version of a 1/ f γ random process and the γ exponent is estimated
from the slope of the power spectrum. In all these experiments the conjecture in
[35] that the phase modulation of random speech resonances has a 1/ f γ spectrum
has always been verified.

Ongoing work in this area includes better estimation algorithms and a statis-
tical study relating estimated exponents with types of sounds. Some advances can
be found in [11].

5.2.2. Fractal methods

Motivated by Mandelbrot’s conjecture that fractals can model multiscale struc-
tures in turbulence, Maragos [34] used the short-time fractal dimension of speech
sounds as a feature to approximately quantify the degree of turbulence in them.
Although this may be a somewhat simplistic analogy, the short-time fractal di-
mension of speech has been found in [34, 37] to be a feature useful for speech
sound classification into phonetic classes, segmentation, and recognition. An effi-
cient algorithm developed in [34] to measure it consists of using multiscale mor-
phological filters that create geometrical covers around the graph of the speech
signal, whose fractal dimension D can then be found by

D = lim
s→0

log
[
Area of dilated graph by disks of radius s/s2

]
log(1/s)

, (5.7)

D is between 1 and 2 for speech signals; the larger D is, the larger the amount of
geometrical fragmentation of the signal graph is. In practice, real-world signals do
not have the same structure over all scales; hence, D is computed by least-squares
fitting a line to the log-log data of (5.7) over a small scale window that can move
along the s axis and thus create a profile of local multiscale fractal dimensions D(s, t)
at each time location t of the short speech analysis frame. The function D(s, t) is
called a fractogram. The fractal dimension at the smallest scale (s = 1) can provide
some discrimination among various classes of sounds such as vowels (very low
D), unvoiced fricatives (very high D), and voiced fricatives (medium D). At higher
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Figure 5.2. Experiments with phoneme /z/. (a) Speech signal s(t), (b) PSD of s(t) and Gabor filter, (c)
instant frequency, (d) phase modulation p̂(t), and (e) PSD of p̂(t) and estimated slope.

scales, the fractogram multiscale fractal dimension profile can also offer additional
information that helps in discriminating among speech sounds, see Figure 5.3.

Related to the Kolmogorov 5/3 law (5.3) is the fact that the variance between
particle velocities at two spatial locations X and X + ΔX varies ∝ |ΔX|2/3. By
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Figure 5.3. (a), (b), and (c) show waveforms from speech sounds sampled at 30 kHz. (d), (e), and (f)
show their multiscale fractal dimensions estimated over moving windows of 10 scales.

linking this to similar scaling laws in FBMs, it was concluded in [34] that speech
turbulence leads to fractal dimension of D = 5/3, which was often approximately
observed during experiments with fricatives.

5.2.3. Poincaré maps and epoch marking

The section discusses how nonlinear techniques can be applied to pitch marking
of continuous speech. We wish to locate the instants in the time domain speech
signal at which the glottis is closed. A variety of existing methods can be employed
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to locate the epochs. These are abrupt change detection [10], maximum likelihood
epoch detection [9], and dynamic programming [68]. All of the above techniques
are sound and generally provide good epoch detection. The technique presented
here should not be viewed as a direct competitor to the methods outlined above.
Rather it is an attempt to show the practical application of ideas from nonlinear
dynamical theory to a real speech processing problem. The performance in clean
speech is comparable to many of the techniques discussed above.

In nonlinear processing a d-dimensional system can be reconstructed in an
m-dimensional state space from a single dimension time series by a process called
embedding. Takens’ theorem states that m ≥ 2d+1 for an adequate reconstruction
[67], although in practice it is often possible to reduce m. An alternative is the sin-
gular value decomposition (SVD) embedding [8], which may be more attractive
in real systems where noise is an issue.

A Poincaré map is often used in the analysis of dynamical systems. It replaces
the flow of an nth order continuous system with an (n − 1)th order discrete-time
map. Considering a three-dimensional attractor a Poincaré section slices through
the flow of trajectories and the resulting crossings form the Poincaré map. Re-
examining the attractor reconstructions of voiced speech shown above, it is evi-
dent that these three-dimensional attractors can also be reduced to two-dimen-
sional maps.1 Additionally, these reconstructions are pitch synchronous, in that
one revolution of the attractor is equivalent to one pitch period. This has pre-
viously been used for cyclostationary analysis and synchronization [31]; here we
examine its use for epoch marking.

The basic processing steps required for a waveform of N points are as follows.
(1) Mark yGCI, a known glottal closure instant (GCI) in the signal.
(2) Perform an SVD embedding on the signal to generate the attractor re-

construction in 3D state space.
(3) Calculate the flow vector, h, at the marked point yGCI on the attractor.
(4) Detect crossings of the Poincaré section, Σ, at this point in state space by

signs changes of the scalar product between h and the vector yi − yGCI

for all 1 ≤ i ≤ N points.
(5) Points on Σ which are within the same portion of the manifold as yGCI

are the epochs.
When dealing with real speech signals a number of practical issues have to be con-
sidered. The input signal must be treated on a frame-by-frame basis, within which
the speech is assumed stationary. Finding the correct intersection points on the
Poincaré section is also a difficult task due to the complicated structure of the at-
tractor. Because of this, additional measures are used for locating the epoch points.
The flow chart shown in Figure 5.4 illustrates the entire process. Two different data
sets were used to test the performance of the algorithm, giving varying degrees of
realistic speech and hence difficulty.

1Strictly these attractor reconstructions are discrete-time maps and not continuous flows. How-
ever it is possible to construct a flow vector between points and use this for the Poincaré section
calculation.
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Poincaré section for frame

Choose set of epoch from amoung set
of intersections using distance/windowing

measure, updating < T0 > at each step

More
data?

No

Yes

Read next frame with
50% overlap

Set chosen point for this frame
= last epoch from previous frame

Display epochs and
pitch contour

Figure 5.4. Schematic of the epoch marking algorithm.
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Figure 5.5. Results for the voiced section of “came along” from the Keele database for a female speaker.
From top to bottom: the signal; the epochs as calculated by the algorithm; the laryngograph signal; and
the pitch contour (Hz) resulting from the algorithm.

(1) Keele University pitch extraction database [49]. This database provides
speech and laryngograph data from 15 speakers reading phonetically
balanced sentences.
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Figure 5.6. Results for the voiced section of “raining” from the BT Labs database for a male speaker.
From top to bottom: the signal; the epochs as calculated by the algorithm; the processed laryngograph
signal; and the pitch contour (Hz) resulting from the algorithm.

(2) BT Labs continuous speech. 2 phrases, spoken by 4 speakers, were pro-
cessed manually to extract a data set of continuous voiced speech. Laryn-
gograph data was also available.

The signals were up-sampled to 22.05 kHz, the BT data was originally sampled at
12 kHz, and the Keele signals at 20 kHz. All the signals had 16 bit resolution.

Figure 5.5 shows the performance of the algorithm on a voiced section taken
from the phrase “a traveller came along wrapped in a warm cloak,” spoken by a
female speaker. There is considerable change in the signal, and hence in the at-
tractor structure, in this example, yet the epochs are sufficiently well located when
compared against the laryngograph signal.

In Figure 5.6, which is a voiced section from the phrase “see if it’s raining”
spoken by a male speaker, the epochs are well located for the first part of the signal,
but some slight loss of synchronization can be seen in the latter part.

5.2.4. Pitch variations in LP synthesized vowels:
using nonlinear methods

As was made clear in the previous section pitch modification is the key to many
applications in speech. In this section we wish to consider the application of non-
linear methods to this problem. In an effort to simplify the problem, vowels gener-
ated by a linear prediction synthesizer are examined. The purpose of this exercise,
which appears counter-intuitive when dealing with nonlinear synthesis, is to start
with a simpler waveform, which can also be generated at any required fundamen-
tal frequency. If an analysis of this simple waveform leads to the development of a
suitable algorithm for pitch modification, then this is a step towards implementing
an algorithm for real speech signals.

Figure 5.7 shows the time domain waveforms and corresponding 2D projec-
tions of the 3D phase space structures for the linear prediction synthesized vowel
/u/. The LP coefficients were calculated using the constant pitch /u/ vowel sound
of the male speaker PB, taken from the Edinburgh 1996 database. The LP filter was
then excited by a Dirac pulse train of appropriate period. This generated the sta-
tionary synthesized vowels shown, with fundamental frequencies of 70 Hz, 100 Hz,
130 Hz, and 160 Hz. These values of pitch would be typical for a male speaker.
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Figure 5.7. LP synthesized vowel /u/ at pitch values of 70 Hz, 100 Hz, 130 Hz, and 160 Hz.

All of these phase space reconstructions are characterized by a trajectory rising
steeply out from a center point, which then returns towards this point in a series
of downwards spirals. This equates to the excitation by the glottal pulse, followed
by a slow decay of the waveform until the next impulse. At lower fundamental fre-
quencies, corresponding to longer pitch periods, the number of spirals is greater,
since there is a greater delay between epoch pulses. It is possible to divide each
of the phase space reconstructions into two parts. The outer part consists of the
outward pulse and the wide initial inward spiral, and is almost constant across
all four structures. The inner part consists of the tight inner spirals close to the
center point, and it is here that the variation between structures due to the pitch
change can be observed. The number of inner spirals appears to be solely due to
the length of the pitch period. This topological description, although applied to LP
synthesized vowels, also has some similarities with the real speech signals shown
previously. By a careful examination a form of outward trajectory followed by in-
wards spiraling can be seen.

Examining the LP phase space reconstructions from a nonlinear dynamical
theory viewpoint, it would appear that there is a fixed point around which the
trajectories evolve. Fixed points may take a number of forms. A more complex
form is a saddle point, which has trajectories approaching the fixed point close to
the inset (stable manifold) and diverging away near the outset (unstable manifold).
Index 1 saddle points have an inset that is a surface, and an outset that is a curve,
whereas the opposite is true of index 2 saddle points. Spiral saddle points have
trajectories spiraling around the fixed point near the surface, towards or away from
the saddle, for index 1 and index 2, respectively. Figure 5.8 shows an example of
an index 1 spiral saddle point. Looking at the inner part of the LP phase space
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Figure 5.8. A spiral saddle point (index 1), with trajectories spiraling towards the fixed point near a
surface and diverging away along a curve.

Figure 5.9. A Šilnikov-type orbit for an index 1 spiral saddle point.

reconstruction, particularly at low pitches, an index 1 spiral saddle point appears
to be a good description.

A homoclinic trajectory occurs when a trajectory on the unstable manifold
joins another on the stable manifold, and thus forms a single trajectory connect-
ing the saddle to itself [46]. For spiral saddle points, this type of trajectory is also
called a Šilnikov orbit, after Šilnikov’s theorem [73], as shown in Figure 5.9. When
the inset and outset intersect, then a so-called homoclinic intersection occurs [23].
This leads to the situation where a trajectory on the unstable manifold joins an-
other trajectory on the stable manifold to form a single trajectory. This trajectory
joins the saddle point to itself producing a homoclinic orbit.

Trajectories that come near the saddle point will approach the saddle close to
the stable manifold and then be forced away from it near the unstable manifold.
However, as they are pushed away by the outset, they will be recaptured by the
inset and pulled back in towards the saddle point. This description captures very
closely the behavior seen in all parts of the LP vowel state space reconstructions.
The similarity between vowel phase space reconstructions and Šilnikov orbits has
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also been noted by Tokuda et al. [71], in their nonlinear analysis of the Japanese
vowel /a/.

5.2.4.1. Attempted application of controlling chaos ideas

This analysis inspires a possible alternative approach to pitch modification, which
operates entirely in the state space domain. It is based on concepts from the con-
trolling chaos literature, and involves perturbing the trajectory of the speech signal
in state space in order to affect a change in its orbit.

Examining once again the phase space reconstructions for different pitches of
the vowel sound as produced by a linear prediction synthesizer (Figure 5.7), it ap-
pears that almost all of the information about the higher pitch sounds is contained
in the lowest pitch vowel reconstruction. The effect of decreasing pitch, that is, in-
creasing pitch period, is an increase in the number of spirals towards the center
of the reconstruction, while the remainder of the phase space structure is approx-
imately constant. Therefore it should be possible to modify the lowest pitch phase
space reconstruction in some way, so that a higher pitch version can be produced.
This may not be entirely realistic for real vowel sounds, but an algorithm capable
of pitch modification of LP synthesized sounds would provide a stepping stone to
pitch modification of real voiced speech.

5.2.4.2. Controlling chaos

In the field of nonlinear dynamics, there has been a large amount of interest in the
possibility of controlling systems which exhibit chaotic behavior, so as to improve
their performance. The basic principle is to locate low-period unstable periodic or-
bits within the attractor, which mainly comprises a large number of uncontrolled
chaotic orbits. Then, using small perturbations of some control parameter, the sys-
tem is moved and stabilized onto one of the low-period orbits, which is chosen so
that performance is optimized. This was first proposed by Ott et al. [44], and then
further refined, allowing the technique to be used with time-delay embedding, by
Dressler and Nitsche [15].

5.2.4.3. Principle of pitch modification by small changes

Some of the concepts of this technique can be applied to the low-pitch vowel phase
space reconstruction in order to modify the fundamental frequency. Assuming
that the phase space reconstruction does have a Šilnikov-type orbit, with an index
1 saddle point at the center, then the trajectory spirals in towards the fixed point
near the stable manifold (which is a plane), before being ejected out close to the
unstable manifold. The process then repeats with the reinjection back towards the
fixed point. The idea is to perturb the trajectory when it is close to the saddle
point. Moving the trajectory closer to the plane of the stable manifold will cause
it to spend longer in the region of the fixed point, thus increasing the pitch period
and decreasing the pitch. Conversely, moving the trajectory away from the stable
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Figure 5.10. Principle of perturbing trajectory to modify pitch.

manifold, in the direction of the unstable manifold, will cause a faster ejection and
therefore higher pitch.

An algorithm capable of perturbing the speech trajectories as described would
need to perform the following operations.

(i) Embed the time series in 3D state space.
(ii) Locate the fixed point. The center of the phase space reconstruction will

be close to the index 1 saddle point, where the two-dimensional stable manifold
intersects with the one-dimensional unstable manifold. In practice, it will not be
possible to locate the saddle point exactly, only the closest data point to it.

(iii) Find the direction of the stable and unstable manifolds. The stable mani-
fold is expected to be a plane and the unstable manifold a curve.

(iv) Perturb the trajectory. Figure 5.10 shows the trajectory approaching the
saddle point and entering a sphere of radius ε. At the point of entry, it is a dis-
tance δ away from the stable manifold in the direction of the unstable manifold,
whose magnitude is Λ. By perturbing the trajectory towards the stable manifold
(i.e., decreasing δ), the trajectory will spend longer near the fixed point, whereas
moving the trajectory away from the manifold (an increase in δ) will cause a faster
ejection.

(v) Calculate the relationship between the size of the perturbation and the
change in pitch, so that arbitrary pitch modifications can be made.

5.2.4.4. Period modification in a Šilnikov flow

Before attempting to apply the above algorithm to the LP speech signal, modifying
the period of a system which is completely specified, via a set of equations, will be
examined. Consider the three coupled differential equations:

ẋ = αx − βy,

ẏ = βx + αy,

ż = γz.

(5.8)
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These define a Šilnikov flow in the region around the fixed point, although they do
not model the reinjection that is characteristic of a homoclinic orbit. The system
can be seen to have a fixed point at (0, 0, 0), since the time derivatives go to zero at
this point. Performing an eigenanalysis, the eigenvalues are found to be at

λ1 = γ,

λ2,3 = α± jβ.
(5.9)

The eigenvalue λ1 = γ has a corresponding eigenvector of (0, 0, 1), and the eigen-
vectors of the complex conjugate eigenvalues are both in the x-y plane. If α is
negative and γ is positive, then this defines an index 1 spiral saddle. Trajectories
will spiral in towards the fixed point near the x-y stable manifold and then will be
ejected out near the z unstable manifold.

Choosing the values α = −0.1, β = 1.0, and γ = 0.08, the equations were
iterated using the fourth-order Runge-Kutta method [53], with a step size of 0.1. In
order to simulate a homoclinic orbit, the trajectory was reset back to its start point
after it had been ejected out along the unstable manifold a considerable distance
from the fixed point (the threshold was set at z > 0.4). The resulting state space
plot is shown in Figure 5.11(a). Plotting the variable x against time, as seen in
Figure 5.11(b), results in a periodic waveform. The reinjection to complete the
orbit is clearly seen. Evidently this is not very realistic, but this is not relevant as
it is only the inward spiral followed by ejection that is of interest. In these terms,
(5.8) with reinjection generates a realistic homoclinic orbit.

Now the principle of perturbing the trajectory is applied. To reiterate, moving
the trajectory towards the stable manifold should cause an increase in the period,
whereas moving away from the stable manifold (in the direction of the unstable
eigenvector) will decrease the period. When the trajectory enters a sphere of ra-
dius ε during the Runge-Kutta iteration, it is then modified. In the experiments
presented here, ε was set at 0.1, which is approximately 1% of the spiral radius
in the x-y plane. In order to find the relationship between the period length and
the modification factor, the distance from the stable manifold in the direction of
the unstable manifold, δ, and the corresponding period length, n, were recorded
over a range of values. Plotting n against log δ results in a straight line, as seen in
Figure 5.12. Therefore the period length n can be expressed as

n = a ln δ + b, (5.10)

where a and b are constants, which are easily calculated from simultaneous equa-
tions. Denoting the distance from the stable manifold as the trajectory enters the
sphere before modification as δ0, then the multiplier, R, required to change the
period length to nd samples is

R = e(nd−b)/a

δ0
. (5.11)
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Figure 5.11. Šilnikov orbit with reinjection from (5.8): (a) 3D state space and (b) x against time.
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Figure 5.12. Log relationship between period length and distance from stable manifold.

Upon entering the sphere, the position vector (x, y, z) is modified to (x, y,Rz),
causing a move towards or away from the stable manifold in the direction of the
unstable eigenvector.
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Figure 5.13. Period modification of the Šilnikov orbit by a factor of (a) 0.6 and (b) 1.4.
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Figure 5.14. Zoom in on the fixed point, showing a comparison of the original and the modified
trajectories.

The original orbit has a period length of 836 samples. In the following ex-
amples, the period is modified by 0.6 (nd = 502 samples) and 1.4 (nd = 1170
samples). a and b are calculated as −124.99 and 375.92, respectively. The values of
R are then found as 14.5 and 0.069. The resulting modified waveforms are shown
in Figure 5.13. Figure 5.14 shows a magnified view of the state space plot around
the fixed point demonstrating the modification taking place, for the case of period
modification by a factor of 1.4.

This demonstrates the validity of the trajectory perturbation approach. A
Šilnikov-type orbit, which has a periodic time domain structure quite reminis-
cent of a vowel, has been modified, allowing both extension and shortening of the
period length. In theory, it should be possible to extend the period length by any
required factor by moving close to the stable manifold. The limit on period length
shortening, on the other hand, is governed by the size of the sphere, since no mod-
ification occurs until the trajectory has entered it. However, it should be noted that
increasing the size of the sphere beyond a small radius about the fixed point could
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introduce some discontinuity, and, when applied to speech, this would introduce
audible artifacts.

5.2.4.5. Application to LP speech

Performing trajectory modifications when the system model is derived from a data
set, rather than a set of equations, will evidently be a more complex task. The
stages of the algorithm outlined in Section 5.2.4.3 and the problems found are
now discussed for the LP synthesized vowel /u/.

Embedding. The LP data first has a small amount of Gaussian white noise added,
to give a signal-to-noise ratio of 20 dB. This adds some variation to the signal, thus
making the manifold more than a single trajectory wide. The formation of local
neighborhoods can then be made by selecting near points from adjacent trajecto-
ries. The data is then embedded in three dimensions using time-delay embedding
with τ set at 12 samples, equal to the first minimum of the mutual information.

Fixed point location. Because of the asymptotic nature of the fixed point, the closer
the trajectory comes to it, the greater the amount of time that will be spent in
the region around it. Therefore, for sampled data, the Euclidean distance between
subsequent samples will decrease as the trajectory moves towards the fixed point.
The data sample which has the minimum distance between adjacent samples will
be the closest data point to the fixed point. This is then used as the best known
position of the fixed point, x f , in subsequent calculations.

Direction of manifolds. An index 1 saddle point has a two-dimensional stable man-
ifold and a one-dimensional unstable manifold. The approximate directions of
these manifolds are found by an eigenanalysis of the data trajectory about the
fixed point. To do this, a tangent map can be formed. Taking x f , the closest data
point to the fixed point, as the center, a neighborhood matrix is constructed from
the M points within a hypersphere around x f . The neighborhood matrix is then
evolved forward a samples and recalculated. The tangent map then defines the lin-
ear transformation between the two local neighborhood matrices. Its eigenvalues
and eigenvectors are found by SVD. Figure 5.15 shows the eigenvectors found by
this method for the LP vowel /u/. The saddle point is marked and the three eigen-
vectors are shown. The largest eigenvector corresponds to the unstable manifold,
and the two smaller eigenvectors are in the plane of the stable manifold. The pa-
rameters used in this analysis were 25 local neighbors, with an evolve length of 10
samples.

Perturbing trajectory. It is now possible to consider perturbing the trajectory, as
shown in Figure 5.10, by moving the trajectory either towards or away from the
stable manifold in the direction of the unstable manifold, as it enters the sphere
of radius ε. However, an insurmountable problem is immediately encountered.
Perturbing the trajectory implies moving it away from its existing course (defined
by the locally linear tangent map calculated at each synthesis step) and into some
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Figure 5.16. Stylized diagram of state space around the saddle point, showing two sets of data trajec-
tories. Perturbing trajectory implies moving into an area of state space not covered by the locally linear
model.

other area of state space. This part of state space will not contain any data, and
hence is not covered by the locally linear model. Therefore perturbing the trajec-
tory moves it into a region of state space that is completely unmodeled, as shown in
Figure 5.16. There is no information available to indicate how it should continue
to evolve (contrary to the previous example with the set of equations that defined
all points in state space), and so continuing the synthesis process after perturbing
the trajectory is impossible.

This means that pitch modification by perturbing the trajectory and locally
linear synthesis are not compatible, and leaves the problem of realistic pitch mod-
ification unresolved.
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5.2.5. Functional approximation methods

Neural network synthesis background. Kubin and Birgmeier reported an attempt
made to use a radial basis function (RBF) network approach to speech synthesis.
They propose the use of a nonlinear oscillator, with no external input and global
feedback in order to perform the mapping

x(n) =A
(

x(n− 1)
)
, (5.12)

where x(n − 1) is the delay vector with nonunit delays, and A is the nonlinear
mapping function [30].

The initial approach taken [4] used a Kalman-based RBF network, which has
all of the network parameters trained by the extended Kalman filter algorithm.
The only parameter that must be specified is the number of centers to use. This
gives good prediction results, but there are many problems with resynthesis. In
particular, they report that extensive manual fine-tuning of the parameters such
as dimension, embedding delay, and number and initial positions of the centers is
required. Even with this tuning, synthesis of some sounds with complicated phase
space reconstructions does not work [30].

In order to overcome this problem, Kubin resorted to a technique that uses
all of the data points in the training data frame as centers [30]. Although this
gives correct resynthesis, even allowing the resynthesis of continuous speech using
a frame-adaptive approach, it is unsatisfactory due to the very large number of
varying parameters, and cannot be seen as actually learning the dynamics of the
speech generating system.

Following their dynamical analysis of the Japanese vowel /a/, Tokuda et al.
constructed a feed-forward neural network to perform synthesis [71]. Their struc-
ture has three layers, with five neurons in the input layer, forty neurons in the
hidden layer, and one in the output layer. The time delay in the input delay vec-
tor is set at τ = 3 and the weights are learnt by back propagation. Using global
feedback, they report successful resynthesis of the Japanese vowel /a/. The signal is
noisy, but preserves natural human speech qualities. No further results in terms of
speech quality or resynthesis of other vowels are given.

An alternative neural network approach was proposed by Narasimhan et al.
This involves separating the voiced source from the vocal tract contribution, and
then creating a nonlinear dynamical model of the source [43]. This is achieved by
first inverse filtering the speech signal to obtain the linear prediction (LP) residual.
Next the residue waveform is low-pass filtered at 1 kHz, then normalized to give
a unit amplitude envelope. This processed signal is used as the training data in a
time-delay neural network with global feedback. The NN structure reported is ex-
tremely complex, consisting of a 30 tap delay line input and two hidden layers of
15 and 10 sigmoid activation functions, with the network training performed us-
ing back propagation through time. Finally, the NN model is used in free-running
synthesis mode to recreate the voiced source. This is applied to a LP filter in order
to synthesize speech. They show that the NN model successfully preserves the jitter
of the original excitation signal.
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RBF network for synthesis. A well-known nonlinear modeling approach is the ra-
dial basis function neural network. It is generally composed of three layers, made
up of an input layer of source nodes, a nonlinear hidden layer, and an output layer
giving the network response. The hidden layer performs a nonlinear transforma-
tion mapping the input space to a new space, in which the problem can be better
solved. The output is the result of linearly combining the hidden space, multiply-
ing each hidden layer output by a weight whose value is determined during the
training process.

The general equation of an RBF network with an input vector x and a single
output is

F
(

x(n)
) = P∑

j=1

wjφ
(∥∥x − c j

∥∥), (5.13)

where there are P hidden units, each of which is weighted by wj . The hidden units,
φ(‖x − c j‖), are radially symmetric functions about the point c j , called a center,
in the hidden space, with ‖ · ‖ being the Euclidean vector norm [42]. The actual
choice of nonlinearity does not appear to be crucial to the performance of the
network. There are two distinct strategies for training an RBF network. The most
common approach divides the problem into two steps. Firstly the center positions
and bandwidths are fixed using an unsupervised approach, not dependent on the
network output. Then the weights are trained in a supervised manner so as to
minimize an error function.

Following from the work of Kubin et al., a nonlinear oscillator structure is
used. The RBF network is used to approximate the underlying nonlinear dynam-
ics of a particular stationary voiced sound, by training it to perform the predic-
tion

xi+1 = F
(

xi
)
, (5.14)

where xi = {xi, x(i−τ), . . . , x(i−(m−1)τ)} is a vector of previous inputs spaced by some
delay τ samples, and F is a nonlinear mapping function. From a nonlinear dy-
namical theory perspective, this can be viewed as a time-delay embedding of the
speech signal into an m-dimensional state space to produce a state space recon-
struction of the original d-dimensional system attractor. The embedding dimen-
sion is chosen in accordance with Takens’ embedding theorem [67] and the em-
bedding delay, τ, is chosen as the first minimum of the average mutual information
function [18]. The other parameters that must be chosen are the bandwidth, the
number and position of the centers, and the length of training data to be used.
With these sets, the determination of the weights is linear in the parameters and is
solved by minimizing a sum of squares error function, ES(F̂ ), over the N samples
of training data:

Es(F̂ ) = 1
2

N∑
i=1

(
x̂i − xi

)2
, (5.15)
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where x̂i is the network approximation of the actual speech signal xi. Incorpo-
rating (5.13) into the above and differentiating with respect to the weights, then
setting the derivative equal to zero gives the least-squares problem [5], which can
be written in matrix form as

(
ΦTΦ

)
wT = ΦTx, (5.16)

where Φ is an N × P matrix of the outputs of the centers; x is the target vector of
length N ; and w is the P length vector of weights. This can be solved by standard
matrix inversion techniques.

Two types of center positioning strategy were considered.
(1) Data subset. Centers are picked as points from around the state space re-

construction. They are chosen pseudorandomly, so as to give an approx-
imately uniform spacing of centers about the state space reconstruction.

(2) Hyperlattice. An alternative, data independent approach is to spread the
centers uniformly over an m-dimensional hyperlattice.

Synthesis. From analysis, an initial set of parameters with which to attempt resyn-
thesis was chosen. The parameters were set at the following values.

Bandwidth = 0.8 for hyperlattice, 0.5 for data subset; dimension = 7; number
of centers = 128; hyperlattice size = 1.0; and training length = 1000.

For each vowel in the database, the weights were learnt, with the centers ei-
ther on a 7D hyperlattice, or chosen as a subset of the training data. The global
feedback loop was then put in place to allow free-running synthesis. The results
gave varying degrees of success, from constant (sometimes zero) outputs, through
periodic cycles not resembling the original speech signal and noise-like signals, to
extremely large spikes at irregular intervals on otherwise correct waveforms [33].

These results implied that a large number of the mapping functions learnt by
the network suffered from some form of instability. This could have been due to
a lack of smoothness in the function, in which case regularization theory was the
ideal solution. Regularization theory applies some prior knowledge, or constraints,
to the mapping function to make a well-posed problem [21].

The selection of an appropriate value for the regularization parameter, λ, is
done by the use of cross-validation [5]. After choosing all the other network pa-
rameters, these are held constant and λ is varied. For each value of λ, the MSE on
an unseen validation set is calculated. The MSE curve should have a minimum in-
dicating the best value of λ for generalization. With the regularization parameter
chosen by this method, the 7D resynthesis gave correct results for all of the signals
except KH /i/ and KH /u/ when using the data subset method of center selection.
However, only two signals (CA /i/ and MC /i/) were correctly resynthesized by
the hyperlattice method. It was found that λ needed to be increased significantly
to ensure correct resynthesis for all the signals when the hyperlattice was used.
Achieving stable resynthesis inevitably comes at some cost. By forcing smoothness
onto the approximated function there is the risk that some of the finer detail of
the state space reconstruction will be lost. Therefore, for best results, λ should be
set at the smallest possible value that allows stable resynthesis. The performance of
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Figure 5.17. Time domain examples of the vowel /u/, speaker MC. (a) Original signal and (b) linear
prediction synthesized signal; RBF network synthesized signal for (c) hyperlattice and (d) data sub-
set. (Reprinted from Signal Processing, Vol.81, Lain Mann and Stephen McLaughlin, “Synthesising
natural-sounding vowels using a nonlinear dynamical model,” pages 1743–1756 © 2001 with permis-
sion Elsevier Science.)

the regularized RBF network as a nonlinear speech synthesizer is now measured by
examining the time and frequency domains, as well as the dynamical properties.
In addition to comparing the output of the nonlinear synthesizer to the original
speech signal, the synthetic speech from a traditional linear prediction synthe-
sizer is also considered. In this case, the LP filter coefficients were found from the
original vowel sound (analogous to the training stage of the RBF network). The
estimate (Fs + 4) [56] was used to set the number of filter taps to 26. Then, using
the source-filter model, the LP filter was excited by a Dirac pulse train to pro-
duce the desired length LP synthesized signal. The distance between Dirac pulses
was set to be equal to the average pitch period of the original signal. In this way,
the three vowel sounds for each of the four speakers in the database were synthe-
sized.

Figure 5.17 shows the time domain waveforms for the original signal, the LP
synthesized signal and the two RBF synthesized signals, for the vowel /u/, speaker
MC. Figure 5.18 shows the corresponding frequency domain plots of the signals,
and the spectrograms are shown in Figure 5.19. In these examples, the regulariza-
tion parameter λ was set at 0.01 for the hyperlattice, and 0.005 for the data subset.
In the linear prediction case, the technique attempts to model the spectral fea-
tures of the original, hence results in the reasonable match seen in the spectrum
(although the high frequencies have been overemphasized), but the lack of resem-
blance in the time domain. The RBF techniques, on the other hand, resemble the
original in the time domain, since it is from this that the state space reconstruction
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Figure 5.18. Spectrums for examples of the vowel /u/, corresponding to the signals in Figure 5.17. (a)
Original signal, (b) linear prediction synthesized signal; RBF network synthesized signal for (c) hyper-
lattice, (d) data subset. (Reprinted from Signal Processing, Vol.81, Lain Mann and Stephen McLaughlin,
“Synthesising natural-sounding vowels using a nonlinear dynamical model,” pages 1743–1756 © 2001
with permission Elsevier Science.)
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Figure 5.19. Wideband spectrograms for examples of the vowel /u/ corresponding to the signals in
Figure 5.17. (a) Original signal, (b) linear prediction synthesized signal; RBF network synthesized sig-
nal for (c) hyperlattice, (d) data subset. (Reprinted from Signal Processing, Vol.81, Lain Mann and
Stephen McLaughlin, “Synthesising natural-sounding vowels using a nonlinear dynamical model,”
pages 1743–1756 © 2001 with permission Elsevier Science.)

is formed, although the spectral plots show the higher frequencies have not been
well modeled by this method. This is because the networks have missed some of
the very fine variations of the original time domain waveform, which may be due
to the regularization.

Further spectrogram examples for different vowels and speakers follow the
same pattern, with the size of λ being seen to influence the quality of the signal at
high frequencies.

Jitter and shimmer. Jitter and shimmer measurements were made on all of the
original and RBF synthesized waveforms, using epoch detection2 over a 500 mil-
lisecond window. Jitter is defined as the variation in length of individual pitch
periods and for normal healthy speech should be between 0.1% and 1% of the
average pitch period [61]. Table 5.1 shows the results of the average pitch length
variation, expressed as a percentage of the average pitch period length. Results

2Using entropic laboratory’s ESPS epoch function.
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Table 5.1. Percentage jitter and shimmer in original and synthesized waveforms (hyperlattice and
data subset) averaged over the vowels /i/, /a/, and /u/ for each speaker, and as an average over the data-
base. (Reprinted from Signal Processing, Vol.81, Lain Mann and Stephen McLaughlin, “Synthesising
natural-sounding vowels using a nonlinear dynamical model,” pages 1743–1756 © 2001 with permis-
sion Elsevier Science.)

Data type
MC CA Average

(male) (female) (female)

Hyperlattice jitter (%) 0.470 1.14 0.697

Data subset jitter (%) 0.482 0.663 0.521

Original jitter (%) 0.690 0.685 0.742

Hyperlattice shimmer (%) 1.00 1.33 0.922

Data subset shimmer (%) 0.694 7.65 2.34

Original shimmer (%) 4.21 7.06 5.17

for both center placing techniques are presented, with the jitter measurements of
the original speech data. The hyperlattice synthesized waveforms contain more
jitter than the data subset signals, and both values are reasonable compared to the
original.

Shimmer results (the variations in energy each pitch cycle) for the original and
synthesized waveforms are also displayed in Table 5.1. It can be seen that in general
there is considerably less shimmer on the synthesized waveforms as compared to
the original, which will detract from the quality of the synthetic speech.

Incorporating pitch into the nonlinear synthesis method. The approach adopted
here is to model the vocal tract as a forced nonlinear oscillator and to embed an
observed scalar time series of a vowel with pitch information into a higher dimen-
sional space. This embedding, when carried out correctly, will reconstruct the data
onto a higher dimensional surface which embodies the dynamics of the vocal tract,
(see, e.g., [63, 64] for issues regarding embedding).

Previous studies, discussed above, have successfully modeled stationary (i.e.,
constant pitch) vowel sounds using nonlinear methods, but these have very lim-
ited use since the pitch cannot be modified to include prosody information. The
new approach described here resolves this problem by including pitch informa-
tion in the embedding. Specifically, a nonstationary vowel sound is extracted from
a database and, using standard pitch extraction techniques, a pitch contour is cal-
culated for the time series so that each time domain sample has an associated pitch
value. In the present study measurements of rising pitch vowel sounds, where the
pitch rises through the length of the time series, have been used as the basis for
modeling; see, for example, Figures 5.20 and 5.21.

The time series is then embedded in an m-dimensional space, along with the
pitch contour, to form an (m+ 1)-dimensional surface. A mixed embedding delay
between time samples (greater than unity) is used to capture the variable time
scales present in the vowel waveform. The (m+ 1)-dimensional surface is modeled
by a nearest neighbor approach, which predicts the next time series sample given
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Figure 5.20. Synthesized vowel sounds together with desired and measured pitch profiles. (a) RV1,
(c) RV4.

a vector of previous time samples and a pitch value (it is envisaged that more
sophisticated modeling techniques will be incorporated at a later date).

Synthesis is then performed by a modification of the nonlinear oscillator ap-
proach [20], whereby the input signal is removed and the delayed synthesizer out-
put is fed back to form the next input sample. In contrast to previous techniques,
the required pitch contour is also passed into the model as an external forcing in-
put. Our results show that this method allows the vowel sound to be generated
correctly for arbitrary specified pitch contours (within the input range of pitch
values), even though the training data is only made up of the rising vowel time
series and its associated pitch contour. In addition, sounds of arbitrary duration
can be readily synthesized by simply running the oscillator for the required length
of time. Typical synthesis results are shown. It can be seen that the sinusoidal pitch
contour of the synthesized sound is quite different from the rising pitch profile of
the measured data; the duration of the synthesized data is also somewhat longer
than that of the measured data. The small offset evident between desired and syn-
thesized pitch contours is attributed to a minor calibration error.

The initial results presented here are encouraging. Indeed, perhaps somewhat
surprisingly so since a limited measured pitch excitation data set, involving a sim-
ple rising pitch profile with a small number of data points at each specific pitch
value, was used. Specifically, good synthesis results are obtained using a simple
nearest neighbor embedding model with only sparse data (typically around 1000
data points embedded in a space of dimension 17, corresponding to a very low
density of around only 1.5 data points per dimension).

Nonlinear function approximation models for chaotic systems. In their attempt to
model and analyze nonlinear dynamics in speech signals, Kokkinos and Maragos
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Figure 5.21. Synthesized vowel sounds together with desired and measured pitch profiles. (a) RV5,
(c) RV6.

[29] have explored the applicability of nonlinear function approximation meth-
ods for the approximation of the speech production system dynamics; as in re-
lated work, the modeling is done not on the scalar speech signal, but on its recon-
structed multidimensional attractor by embedding the scalar signal into a phase
space. However, in contrast to the aforementioned approaches to nonlinear speech
synthesis, the authors’ focus has been on facilitating the application of the meth-
ods of chaotic signal analysis even when only a short-time series is available, like
phonemes in natural speech utterances. This introduces an increased degree of
difficulty that has been dealt with by resorting to sophisticated function approx-
imation models that are appropriate for short data sets. A variety of nonlinear
models have been explored, ranging from commonly used approximations based
on global or local polynomials as well as approximations inspired from machine
learning such as radial basis function networks, fuzzy logic systems and support
vector machines.

Among the set of models explored, the authors opted for the use of the Takagi-
Sugeno-Kang [66] model from the fuzzy logic literature, which can be seen as a
special case of the probabilistic mixture of experts architecture used for function
approximation. The expression used for the approximation F̂ of the nonlinear
function F can be written as

F̂ (X) =
∑M

i=1 μi(X)�i(X)∑M
i=1 μi(X)

, (5.17)

where μi measures the degree of membership of X in the ith fuzzy set and �i(X) is
the local model of the system dynamics for the ith fuzzy set. The term μi is typically
expressed as a radially symmetric function φ(X − Ci) centered around point Ci
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and �i are first-order polynomials in X . This expression was found experimentally
to give accurate approximations of complex functions using short data records,
while its probabilistic interpretation leaves open an interesting perspective for the
incorporation of probabilistic information in speech synthesis.

Using this model has enabled the computation of useful features, like Lya-
punov exponents, that are used to assist in the characterization of chaotic systems.
Specifically, in [29] promising experimental results are reported, demonstrating
the usefulness of Lyapunov exponents in the classification of speech phonemes in
broad phoneme classes.

5.2.6. Nonlinear methods in speech recognition

Despite many decades of research, the current automatic speech recognition (ASR)
systems still fall short from the corresponding human cognitive abilities, especially
in noisy environments, because of the limitations of their acoustic processing, pat-
tern recognition, and linguistic subsystems. Thus, there is an industrial need to
develop improved robust ASR systems. Further, the complexity of the problem
requires a long-term vision.

For developing the front end of ASR systems in a way consistent with the non-
linear structure of speech, one direction of nonlinear speech signal processing re-
search has been the work of Maragos, Potamianos, and their collaborators [13, 14,
37, 48, 50]. This consists of two goals: (1) development of new and robust acous-
tic speech representations of the nonlinear and time-varying type (modulations
and fractals) based on improved models for speech production and hearing, and
(2) integration/fusion of the perceptually important among the new speech repre-
sentations and the standard linear ones (cepstrum) to develop improved acoustic
processing front ends for general speech recognition systems.

The motivations for the above goals include the following. (i) Adding new in-
formation to the feature set such as nonlinear and instantaneous information and
good formant tracks derived from the nonlinear model can model better the aero-
dynamics and time evolution of speech features. (ii) Robustness to large speaker
population or large vocabularies with confusable words can be achieved by using
speech processing models motivated by the physics of speech production and audi-
tory perception. (iii) Feature specialization can be achieved by investigating which
of the new nonlinear features and the standard linear features correspond to the
various pieces of information conveyed by the speech waveform. Such a feature
tuning can lead to feature economy with corresponding reduction of computation
and better acoustic modeling.

Some of the first efforts on using fractal features for ASR include the experi-
ments in [37] on recognition of spoken letters from the E-set of the ISOLET data-
base. Incorporating the speech fractogram as additional features to the cepstral
feature vector led to a moderate decrease in the recognition error. Generalized
fractal features, extracted after embedding the speech signal in a multidimensional
space, have given good classification results [48] in discriminating among various



136 Nonlinear methods for speech analysis and synthesis

sound classes, for example, fricatives, stops, vowels, and so forth, from the TIMIT
database. Further, fractal-related features like the correlation dimension and the
fractogram, extracted after a filtering of the nonlinear speech dynamics in the mul-
tidimensional embedding space, have yielded a notable decrease in recognition
error on standard databases such as AURORA 2, especially in noisy conditions
[12]. Finally, the AM-FM modulation features have given an even more signifi-
cant decrease in recognition error on standard databases such as TIMIT-plus-noise
and AURORA 3, as reported in [14]. It appears that these nonlinear features (of
the modulation and fractal type) increase the robustness of speech recognition in
noise. Ongoing work in this area deals with finding statistically optimal ways to
determining the relative weights for fusing the nonlinear with the linear (cepstral)
features.

5.3. Summary

In view of these observations, it seems likely that the data-based model of the vowel
dynamics possesses an important degree of structure, perhaps reflecting physio-
logical considerations, that requires further investigation. It is also clear that whilst
encouraging there is still some way to go in overcoming the limitations of the ap-
proach. It is clear that speech is a nonlinear process and that if we are to achieve
the holy grail of truly natural sounding synthetic speech than this must be ac-
counted for. It is also clear that nonlinear synthesis techniques offer some potential
to achieve this although a great deal of research work remains to be done. In the
field of speech recognition, there is also strong experimental evidence that acous-
tic features representing various aspects of the nonlinear structure of speech can
increase the robustness of recognition systems. However, more research is needed
to find optimal ways for fusing the nonlinear with the linear speech features.
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