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NONLINEAR SPEECH PROCESSING:

OVERVIEW AND APPLICATIONS
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Abstract

This article presents an overview of various nonlinear processing
techniques applied to speech signals. Eevidence relating to the
existence of nonlinearities in speech is presented, and the main
differences between linear and nonlinear analysis are summarized.
A brief review is given of the important nonlinear speech processing
techniques reported to date, and their applications to speech coding,
speech synthesis, speech and speaker recognition, voice analysis and
enhancement, and analyses and simulation of dysphonic voices.
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1. Introduction

Source-filter models form the foundation of many speech-
processing applications such as speech coding, speech syn-
thesis, speech recognition, and speaker recognition. Usu-
ally, the filter is linear and based on linear prediction.
The excitation of the linear filter is either left undefined,
modelled as noise, described by a simple pulse train, or
described by an entry from a large codebook. Although
this approach has enabled progress over the last 30 years, it
neglects structure known to be present in the speech signal.
In practical applications, this neglect manifests itself as an
increase in the bit rate, less natural speech synthesis, and
an inferior ability to discriminate between speech sounds.

Nonlinear techniques are indeed potentially useful in
the framework of the modelling or analyses of the following:
• Nonlinearities of the systems that generate the signal
and/or noise

• Nonlinearities of the signal acquisition system
• Nonlinearities of the transmission channel
• Nonlinearities of the human perception mechanism
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In addition, some problems are difficult to solve with linear
techniques and are more tractable with nonlinear ones. On
the other hand, there are drawbacks when dealing with
nonlinear techniques. The main ones are:
• A lack of a unifying theory of the different nonlinear
processing tools (neural nets, homomorphic, polyno-
mial, morphological, and ordered statistics filters, and
so on)

• The computational burden is usually greater than with
linear techniques

• Nonlinear systems are difficult to analyze, because
well-known analysis tools are not applicable, especially
frequency domain analysis. Attempts have been made
to improve nonlinear filters analysis. One example
is the time slope transform domain for morphological
systems [1–3]. A second example is the obtaining of
the root-signal set of median filters [4], which try to
emulate the eigenfunctions of a linear system

• Sometimes, closed-form formulations of nonlinear
models do not exist. This means that an iterative
solving procedure must be used, and local minima
problems exist.
The conventional linear approaches to speech signal

modelling are based on approximations of the physics of
speech production via linear acoustics and one-dimensional
plane wave propagation of the sound in the vocal tract.
Other assumptions are that the excitation signal and the
vocal-tract filter model are mutually independent and the
airflow through the vocal tract is laminar. A summary
of experimental evidence that demonstrates limitations of
conventional linear analyses follows.

1.1 Residue Comparison

Consider the following empirical argument: a linear and
a nonlinear predictor (with the same prediction order) are
applied to the same speech signal. One observes that
the residual signal of the nonlinear predictor has smaller
energy. A nonlinear predictor can even remove the glottal
cycle periodicity without the use of a long-term predictor.

In [5] linear predictive coding analysis of order 10 was
applied several times to the same speech segment. It was
noted that the prediction gain after the fifth iteration was 0
dB. Thus, the remaining redundancies could not be linear.
The next step was to apply a quadratic Volterra filter to
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the residual signal obtained by means of the linear filter.
The nonlinear predictor further reduced the energy of the
residual signal. The conclusion was that the speech signal
contained nonlinearities. The authors of [6] report similar
experiments.

1.2 Correlation Dimension

An important characteristic of a dynamical system is the
dimension of its attractors, that is, the subspace of the
state-space towards which a time history evolves after
transients die out. The estimation of this dimension gives a
lower bound of the number of parameters needed in order to
model a dynamical system. One goal is to find out whether
the attractor is high dimensional or low dimensional. The
correlation dimension ([7, 8]) is a practical method to
estimate this dimension via an empirical temporal series.

The author of [9] presented an experiment that per-
formed an LPC analysis of a speech signal, replaced the
residual for each speech frame with Gaussian white noise
of the same energy, and re-synthesized the speech signal.
This new signal presented the property that the determin-
ism was limited to the linear components, and the best
predictor was linear. When comparing the correlation di-
mension obtained via the artificial signal to the original
signal, one observed that the dimension obtained via the
artificial signal was greater. The conclusion was that the
residual of the original signal contained a deterministic
nonlinear component, which could possibly be removed by
a nonlinear predictor.

1.3 Higher Order Statistics

Higher order statistics (HOS) [10] go beyond second-order
statistics such as the correlation. The problem with HOS
is that they require a large number of records to obtain
accurate estimates. This requirement is in conflict with
the nonstationary nature of speech.

HOS can be used to test whether a signal can be
fitted by a linear model. By definition, a linear stochastic
process can be represented as the output of a linear filter
excited by a sequence of independent random variables.
For linear signal models, the magnitude of the bicoherence
is equal to one. This enables testing the adequacy of
linear models while representing non-Gaussian signals. For
Gaussian signals, the bicoherence vanishes. The author of
[11] presented the following conclusions regarding speech
segments.
• Unvoiced fricative sounds have a bi-spectrum close to
zero, so they can be well modelled via a Gaussian
process.

• Voiced sounds have a bi-spectrum significantly differ-
ent from zero. Thus, they cannot be considered as
Gaussian.
Other research, [12–14] also examined the bi-spectrum

of vowel signals and found quadratic nonlinearities, which
were revealed by a phase coupling between harmonic spec-
tral components. This phase coupling was due to a non-
linear process. A nonlinear predictor could use the phase
coupling to eliminate most of the cycle periodicity, even by

means of a short-term prediction [14]. It is indeed possible
to consider the cycle periodicity as the outcome of some
nonlinear short-term interaction, instead as a long-term
dependency. These experiments do not, however, exclude
the possibility of the existence of nonlinearities of an order
greater than two.

1.4 Probability Density Functions

The probability density function of a speech signal may
be asymmetric, especially when the lower frequencies
(<300Hz) are included. A summarizes of work regarding
this observation is given in [15]. Although the unvoiced
sounds can be considered to be Gaussian, this is not gener-
ally valid for voiced sounds. The shape of the probability
density function may vary strongly with the category of
speech segment. Thus, the hypothesis of universal Gaus-
sianity of [16, 32] is not exact, and the linear predictor that
is optimal (in the mean square error sense) for Gaussian
signals is no longer optimal in the case of speech signals.

2. Brief Review of Nonlinear Techniques in Speech
Processing

Nonlinear methods for speech processing are a rapidly
growing area of research. Naturally, it is difficult to define
a precise date for the origin of the field, but it is clear that
there was rapid growth in this area starting in the mid-
1980s. Since that time, numerous techniques, which are
ultimately aimed at engineering applications, have been
described. An excellent recent overview of these techniques
is given in [15].

Inherent in the broad scope of nonlinear methods is
the large variety of methods found in the literature and the
difficulty in classifying the techniques. Moreover, it is dif-
ficult to predict which techniques ultimately will be more
successful. However, commonly observed in the speech-
processing literature are various forms of oscillators and
nonlinear predictors, the latter being part of the more
general class of nonlinear autoregressive methods. The os-
cillator and autoregressive techniques themselves are also
closely related, as a nonlinear autoregressive model in its
synthesis form forms a nonlinear oscillator if no input is
applied. For this reason we focus here on nonlinear autore-
gressive models. For the practical design of a nonlinear
autoregressive model, various approximations have been
proposed [15, 17–19]. These can be split into two main
categories: parametric and nonparametric methods.
Parametric Methods. Parametric methods are perhaps
best exemplified by the polynomial approximation (trun-
cated Volterra series with the special case of quadratic fil-
ters; [5, 6, 20, 21], locally linear models [9, 22–25], including
threshold autoregressive models [26], and state-dependent
models [27]. Another important group of parametric meth-
ods is based on neural nets: radial basis functions approx-
imations [28–34], multilayer perceptrons [5, 7, 35–41], and
recurrent neural nets [42–45].
Nonparametric Methods. Nonparametric nonlinear au-
toregressive methods also play an important role in non-
linear speech processing. Examples are Lorenz’s method
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of analogues [28, 46–48], perhaps the simplest of various
nearest neighbour methods [17, 49] which also include non-
linear predictive vector quantization [43, 50–52] or code-
book prediction [24, 53]. Another nonparametric approach
[54] is based on kernel-density estimates [55–56] of the
conditional expectation.

Speech Fluid Dynamics, Modulation and Fractal Meth-
ods. Another class of nonlinear speech processing methods
includes algorithms proposed to analyze nonlinear phe-
nomena of the fluid dynamics type in the speech airflow
during speech production. Such nonlinear phenomena are
described in [57, 58]. The investigation of the speech
airflow nonlinearities can proceed in at least two directions:

• Numerical simulations of the nonlinear differential
(Navier-Stokes) equations governing the 3D dynamics
of the speech airflow in the vocal tract

• Development of nonlinear signal processing systems
suitable to detect such phenomena and extract related
information. The second direction has been followed
by Maragos and his co-workers to model and detect
modulations in speech resonances of the AM-FM type
[59], to model and measure the effects of turbulence
in speech sounds using fractals [60], and to apply
related nonlinear speech features to problems of speech
recognition and speech vocoders [60–63].

3. Applications of Nonlinear Speech Processing

Although nonlinear speech processing is applicable to al-
most all the fields of speech processing, the main contribu-
tions are in the following fields.

3.1 Speech Coding

The bit rate available for speech signals must be strictly
limited in order to accommodate the constraints of the
channel resource. For example, new low-rate speech-coding
algorithms are needed for interactive multimedia services
on packet-switched networks such as the evolving mo-
bile radio networks or the Internet, and nonlinear speech
processing offers a good alternative to conventional tech-
niques. Voice transmission will have to compete with other
services such as data/image/video transmission for the
limited bandwidth resources allocated to an ever-growing,
mobile network user base, and very low bit rate coding
at consumer quality will see increasing demand in future
systems.

In speech coding, it is possible to obtain good results
using models based on linear predictive coding, as the
residual can be coded with sufficient accuracy given a high
enough bit rate. However, it is also evident that some of
the best results in terms of optimizing both quality and
bit rate are obtained from codec structures that contain
some form of nonlinearity. Analysis-by-synthesis coders
fall into this category. For example, in CELP coders the
closed-loop selection of the vector from the codebook can
be seen as a data-dependent, nonlinear mechanism.

With a nonlinear predictor, it may be possible to im-
prove the long-term pitch predictor in analysis-by-synthesis

coders. In [64], it was reported that this long-term pre-
diction contributed around 75% to the overall SNR of a
typical CELP coder. Therefore, it is reasonable to expect
that the nonlinear predictor, will contribute to improving
this long-term prediction and hence the performance of the
coder.

3.2 Speech Synthesis

New telecommunication services include the capability of
a machine to speak with a human in a "natural way"; to
this end, a lot of work must be done in order to improve
the actual voice quality of text-to-speech and concept-to-
speech systems. The richness of the output signals of self-
excited nonlinear feedback oscillators will allow synthetic
voices to be better matched to human voices.

Speech synthesis technology plays an important role in
many aspects of human-machine interaction, particularly
in telephony applications. Improvement can focus on new
techniques for the speech signal generation stage in a speech
synthesizer based on concepts from nonlinear dynamical
theory.

To model the nonlinear dynamics of speech, the one-
dimensional speech time-domain signal is embedded into an
appropriate higher dimensional space. This reconstructed
state-space representation has approximately the same dy-
namical properties as the original speech generating system
and is thus an effective model for speech synthesis.

Improvement can also focus on systems that will re-
produce the natural dynamics of speech. This will involve
constructing models that operate in the state-space do-
main, such as neural network architectures. The speech
synthesized by these methods will be more natural sound-
ing than linear concatenation techniques because the low-
dimensional dynamics of the original signal are learnt,
which means that phenomena such as inter-pitch jitter
are automatically included into the model. In addition
to generating high-quality speech, other associated tasks
will also be addressed. The most important of these is to
examine techniques for natural pitch modification that can
be linked into the nonlinear model.

3.3 Speech and Speaker Recognition

Speech recognition plays an increasingly important role in
modern society. nonlinear techniques allow one to merge
feature extraction and the classification problem, and to
include the dynamics of the speech signal in the model.
This is likely to lead to significant improvements over
current methods, which are inherently static.

Security in transactions, information access, and the
like is another important question to be addressed in the
future, and speaker identification/verification is perhaps
one of the most important biometric systems, because of
its feasibility for remote (telephonic) recognition without
additional hardware requirements.

Many problems remain in continuous speech recogni-
tion. Much of this may be due to the static nature of
the hidden Markov models (HMM) used: they are unable
to follow the dynamics of the speech between individual
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states. In addition, it is typically a series of mel-frequency
cepstral coefficients that form the acoustic feature vec-
tor used for classification, with the inclusion of first- and
second-order differentials to try to provide some continuity
between frames. However, the cepstrum itself is funda-
mentally based on a linear speech model, and the inclusion
of the differential terms is an unsatisfactory method to
attempt to include the speech dynamics into the inherently
static HMMs.

The nonlinear predictor may be able to perform the
tasks of front-end feature extractor and low-level classifier
simultaneously. A simple recognition system can be envis-
aged where each class (which could be of phones, diphones,
etc.) can be characterized by a nonlinear model. Then,
given an input frame of speech, it will be possible to use the
sum of the error residual from the predictor over the frame
to decide to which class the input speech belongs. Thus
the feature extraction and the classification problem are
merged together and solved by one unit. Further, the dy-
namics of the speech signal may be included in the nonlin-
ear model, unlike the HMM structure, which is inherently
static. This has been highlighted previously as a promising
area to pursue for continuous speech recognition.

For speaker recognition applications it has been shown
that the residual signal of a linear analysis contains enough
information to enable human beings to identify people.
Thus, there is relevant information that is ignored with a
linear analysis. Several articles [65, 66] have shown that
it is possible to improve the identification rates with a
combination of linear and nonlinear predictive models.

Further, for both speech and speaker recognition there
is growing experimental evidence that using nonlinear aero
acoustic features of the modulation or fractal type as in-
put to HMM-based classifiers (in addition to the stan-
dard cepstrum linear features) leads to better recognition
performance than using only linear features. Thus, work
on detecting such features and using them in recognition
systems is very promising.

3.4 Voice Analysis and Enhancement

3.4.1 Voice Analysis

The underlying groundwork of actual speech systems is the
use of some parametric representations of the speech signal,
which reflect our understanding of speech production and
speech perception mechanisms. However, as prior research
focused on the analysis of read or laboratory speech and
written text, our knowledge of running speech perception
and speech production mechanisms is limited. To formu-
late a better representation of the speech signal the first
step is to analyze it in a very detailed manner, using cor-
pora based on spontaneous speech. The use of spontaneous
speech will allow one to account for phonological phenom-
ena, such as assimilation, disfluencies, speaking styles, and
emotional state [78, 80].

The actual speech technology is a new approach to
speech problems, which overcomes the classical source filter
theory and is able to quantify the nonlinear features of
speech time series data, and to embed these new features

in automatic speech-based systems. New ideas and new
algorithms can be generated only after a detailed acoustic
analysis of spontaneous speech.

The properties that are found to be significant at the
acoustic level may or may not be so at the perceptual level.
For example, an acoustic parameter such as the amplitude
of the peaks in the spectrum may vary significantly from
one consonant to the other, and therefore exhibit values
that are peculiar for a consonant [76], although percep-
tually the amplitude information might or might not be
(it is still an open problem) integrated with the informa-
tion contained in the frequency range. The preprocessing
processes performed in the inner ear are highly nonlinear,
with the result that perception of speech sounds undergoes
a series of phenomena that are still not completely under-
stood (see [77] for details). Because of these processes, the
relevance of the acoustic attributes must be supported and
integrated by a perceptual analysis in order to evaluate
their perceptual significance.

The need to acquire deeper knowledge of the acoustic
and perceptual properties of running speech justifies the
set-up of acoustic and perceptual experiments for a vari-
ety of speech sounds. It is necessary a multidisciplinary
research, for the development of shared speech corpora
(extracted from running speech) from several languages.
Accurate analyses carried out on both consonants and
vowels should be performed. The aim is to find a combi-
nation of acoustic properties that prove to be speaker in-
dependent (normalization problem), context independent
(co-articulation problem), and robust to the noise effects.

Speaker dependence of the speech signal leads to
speaker dependence of the speech recognizer. Normaliza-
tion is the process of finding acoustic properties of speech
sounds that prove to be independent of physiological differ-
ences, linguistic differences, or even the physical and emo-
tional state of the speaker. Two approaches can be found
in the literature. The first is based on the assumption
that in some projections of acoustic space there must be
an invariant representation of the speech sounds (radical
invariance) [82]. The second is based on the hypothesis
that a speaker-independent representation comes out from
a certain number of direct (such as F3 formant frequency)
and indirect (such as mode of vocal cord vibration) acoustic
cues based on a perceptual estimate of the speaker’s vocal
tract length. Both the methods are strategies to tackle the
variations from speaker, channel, and environment. Both
can bring useful improvements when embedded in auto-
matic speech-based systems. An accurate acoustic and
perceptual analysis can suggest new features for improving
these normalization methods.

Co-articulation produces changes in the articulation
and the acoustic of a speech sound, due to its phonetic con-
text [83]. Co-articulation causes significant problems for
automatic speech synthesis and recognition systems. An
acoustical and perceptual analysis of spontaneous speech
can help in identifying these features and give a quantita-
tive assessment of their practical use. Moreover, a fitting
procedure for these physical parameters (or eventually the
development of richer language-based models) can consti-
tute an additional approach to solving the problems of
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automatic speech-based systems, overcoming the current
paradigms based on the analysis of statistical properties
of recorded utterances (through LPC, computation of cep-
strum coefficients, etc.). The experiments suggested con-
stitute a first step towards the definition of new properties
of speech segments that can play a fundamental role in the
design of preprocessing algorithms, classification methods,
and system structure for speech applications.

3.4.2 Nonlinear Speech Enhancement

Contamination of speech signals with background noise
reduces the signal-to-noise ratio (SNR) of for example,
portable phones, hands-free telephones, and security
screens. In particular, speech recognition equipment expe-
riences problems due to noisy environments that are quite
acceptable to human listeners. Speech enhancement is
motivated by the need to improve the performance of voice
communications systems in noisy conditions. Applications
range from front-ends for speech recognition systems to
enhancement of telecommunications in aviation, military,
teleconferencing, and cellular environments. The goal is
either to improve the perceived quality of the speech or to
increase its intelligibility.

Recently, new nonlinear speech-processing methods
using artificial neural networks (ANN) have been investi-
gated [67–69] that are shown to be more able to take into
account nonlinearities in the acoustics or electro-acoustic
transmission systems [70] and the non-Gaussian nature of
speech. Several other distinct neural-network-based frame-
works for speech enhancement have also emerged in the
literature. These include time-domain filtering, transform-
domain mapping, state-dependent model switching, and
on-line iterative approaches. A good overview of these can
be found in [71].

A novel ANN-based multisensor sub-band adaptive
signal-processing scheme has been described for enhancing
acoustic-speech corrupted by real noise and reverberation
in [67, 68]. Numerically robust adaptation-algorithms
were employed for the single-layered linear-in-parameters
ANN sub-band filters; simulation experiments using real-
reverberant automobile data were used to demonstrate
that nonlinear speech-enhancement schemes are capable of
outperforming conventional linear filtering-based wideband
and multiband noise-cancellation implementations.

Currently, the binaural ANN based sub-band process-
ing schemes are being further developed to incorporate
additional, more complex cross-band and cross-channel in-
teractions. Both cross-band and cross-channel interactions
are major influences on human hearing abilities; cross-
band effects support "spectral sharpening" operations and
cross-channel (binaural) effects invoke lateralization and
noise cancellation to separate desired from undesired sig-
nals [72]. The developed schemes will be assessed both
quantitatively and qualitatively using formal listening and
intelligibility tests with human subjects.

In related work [87, 88], it has recently recently shown
that under certain circumstances, adding the right amount
of noise can actually enhance rather than diminish the
detection of a weak periodic signal. This phenomenon is

known as stochastic resonance (SR). Currently, SR is being
investigated in a leaky integrate-and-fire (LIF) neuron
model, and in networks of such neuron models. LIF neuron
models are widely used in neuronal modelling as they
capture most of the important sub-threshold dynamics of
real neurons. SR has been assessed by applying a sub-
threshold periodic signal plus noise to an LIF neuron and
examining its output SNR (with a peak indicating SR at
a certain noise strength). In a new study [88], SR has
been demonstrated in both continuous (floating point) and
low-resolution discrete (FPGA-based) LIF neuron models.
Future work will investigate SR in LIF neuron networks
using mixed tones and eventually real speech signals.

3.5 Analyses and Simulation of Dysphonic Voices

Voiced speech signals are produced by filtering the acoustic
source signal by means of the vocal tract transfer function.
The source signal is generated by pulsatile airflow through
the glottis. Pulsatile glottal airflow is the outcome of
the vibrating vocal folds, the vibratory patterns of which
are controlled via the positions of the laryngeal cartilages
and tensions of the intrinsic and extrinsic laryngeal muscle
pairs. The vibration of the vocal folds is self-sustained, and
the equations that describe the vibrations are nonlinear.
The lack of linearity is due to the contact between the left
and right vocal folds, the nonlinear relations between the
stresses and strains of the vocal folds, and the nonlinear re-
lations between glottal shape and airflow rate or pressure.
In normal phonation, the periodicity of the acoustic voice
source signal is thought to be due to the synchronization
of a small number of modes of vibration of the vocal folds
[75]. Although periodicity is the norm in healthy voices,
observations of the acoustic source signal generated by in
vivo, in vitro, or simulated vocal fold vibrations have re-
vealed patterns that are suggestive of bifurcations from pe-
riodic regimes of vibration to subharmonic or quasiperiodic
regimes, as well as chaos [86].

These observations have motivated the application of
analysis techniques inspired by nonlinear system dynamics,
especially those based on state-space reconstruction. These
techniques enable the computation of dynamical invariants,
that is, quantities like the global embedding dimension,
the local dynamic dimension, and Lyapunov exponents.
The global embedding dimension indicates the number of
geometric dimensions that are needed to completely unfold
the attractor; the local dynamic dimension indicates the
number of the dynamical degrees of freedom that specify
the evolution of the dynamical system along local areas of
the attractor [74]; and Lyapunov exponents characterize
the stability of the trajectories in the state-space of the
dynamical system. Positive exponents would suggest that
the trajectories are unstable, that is, sensitive to small
perturbations [79].

Ideally, these analyses are performed not only to rep-
resent the speech signal in a more economical or more re-
vealing manner than would be possible by means of linear
techniques, but also to draw conclusions regarding the dy-
namics of the glottal vibrator. The down side, therefore, is
that these techniques require the glottal vibrator to be in
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a steady-state and disturbance free, assumptions that are
difficult to check and are presumably never exactly true,
especially in the case of dysphonic voices. Analysis tech-
niques inspired by nonlinear system dynamics have there-
fore mainly been used to infer qualitatively the dynamics
of simulated or in vitro vibrations [75, 81]. Such nonlinear
analyses of speech signals sustained by healthy or dys-
phonic speakers have so far produced few incontrovertible
results. The most up-to-date study is [84]. The article of
Kumar and Mullick [79] is interesting insofar as it explicitly
discusses the relative merit of linear and some nonlinear
techniques in the light of an economical representation of
the speech signal rather than of vocal fold dynamics.

It is important to note that even in sustained speech
sounds, the timing of the glottal cycles is determined not
only by the dynamic regime of the fold vibration, but also
by external disturbances, which are known as vocal jitter
and shimmer, vocal tremor, vibrato, and glissandi. These
perturbations of the dynamic regimes are best understood
as modulation noise. A source of additive noise (as op-
posed to modulation noise) is acoustic noise generated by
turbulent airflow that is accelerated or decelerated by ob-
stacles in the glottis or vocal tract. It has been shown that
modulation noise of the speech signal is stochastic rather
than deterministic [85]. Additive and modulation noise is
therefore likely to interfere with methods of analysis that
are aimed at describing the dynamics rather than the noise
[73].

4. Conclusion

It seems evident, after 50 years of research in the field, that
phonetic percepts cannot be seen as "knowledge-innocent"
records of a raw speech signal. Therefore, all the attempts
to improve automatic speech systems (for both synthesis
and recognition) seem to require a step forward, towards
the assumption of nonlinearity. Speech production and
speech perception are adaptively organized. The simula-
tion of these processes by a machine requires one to include
in the model the dynamic of this adaptation, and it is clear
that this dynamic is nonlinear. Implementing techniques
of nonlinear speech processing may help to improve the
applications and to understand this dynamic and how it
evolves, both perceptually and physically, as speech is a
learned skill affected by the constraints of the production
and perception systems. The techniques discussed above
are a first step in this direction. What is further needed
is that experts, from both speech science and speech tech-
nology, make an active effort to try to share their knowl-
edge with the aim of embedding these nonlinear aspects
in a mathematical and computational theory, which might
allow the development of better speech models and conse-
quently improve current and future speech applications.
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