

Computer Vision, Speech Communication & Signal Processing Group, National Technical University of Athens, Greece (NTUA) Robotic Perception and Interaction Unit, Athena Research and Innovation Center (Athena RIC)

Action, Gesture and Spoken Command Recognition in Human-Robot Interaction

Petros Maragos

Seminar Talk at Tsinghua University, Beijing, China, 22 Sep. 2017

Multimodal HRI: Applications and Challenges

assistive robotics

education, entertainment

Challenges

- Speech: distance from microphones, noisy acoustic scenes, variabilities
- Visual recognition: noisy backgrounds, motion, variabilities
- Multimodal fusion: incorporation of multiple sensors, integration issues
- Elderly users, Children

Visual Activity Recognition

Action: sit to stand

Gestures: come here, come near

Sign: (GSL) Europe

Outline

- Earlier work: Sign Language Recognition
- Action Recognition
- Gesture Recognition
- Spoken Command recognition
- Audio-Visual Fusion for improved gesture recognition
- Gait analysis
- Applications in EU projects:

 - I-SUPPORT
 - BabyRobot (if time permits)

EU Project: Dicta-Sign

Dicta-Sign: Sign Language Recognition, Generation and Modelling with Application in Deaf Communication

FP7-ICT-2007.2.2, Grant # 231135, Duration: 2009-2012, website: http://dicta-sign.eu

Our Team's Contribution

- Visual Processing Frontend
- Sign Language Recognition
- Data-driven and Phonetic-driven SubUnits
- Co-development of Greek Sign Language Corpus

Partners: AthenaRC-ILSP (Greece), NTUA (Greece), UHH (Germany), UEA (U.K.), UniS (U.K.), CNRS (France), UPS (France), Websourd (France).

Initial Head & Hands Tracking (1/2)

Skin color modeling

training samples

Morphological processing and segmentation of the skin mask

input

skin mask S_0

refinement of S₀ - generalized hole filling - area opening

segmentation - connected components - competitive rec. opening

[S. Theodorakis, V. Pitsikalis and P. Maragos, Image & Vision Comp. 2014] [A. Rousos, S. Theodorakis, V. Pitsikalis and P. Maragos, J. Mach. Learn. Res. 2013]

Initial Head & Hands Tracking (2/2)

- Main parts of tracking:
 - ellipses fitting,
 - □ fwd-bkwd prediction (ellipse parameters),
 - □ template matching (ellipse bbox),
 - probabilistic constraints

 Output: set of skin region masks together with one or multiple body-part labels

Hand Subunits: Dynamic-Static

- Provide Missing Sequential Structure
- **Dynamic-Static**

Segmentation: Intuitive, Unsup., Segments + Labels

- Separate Modeling, SUs,
 Clustering w.r.t. Feature type,
 Parameters and Architecture;
 Normalize features
- Training, HMMs
- Data-Driven Lexicon

[S. Theodorakis, V. Pitsikalis and P. Maragos, IVC 2014]

Handshape Modeling: AAM, Dynamic & Static Priors

Shape-Appearance (SA) Representation

- Training of the Model
 - □ Affine alignment of the training set
 - generalization of the procrustes analysis
 - iterative manual feedback
 - \square **PCA** to learn $A_i(x)$
 - keep only Nc=35 components
- Fitting : Find parameters λ , **p** that minimize:

 $E(\boldsymbol{\lambda}, \boldsymbol{p}) = E_{rec}(\boldsymbol{\lambda}, \boldsymbol{p}) + w_S E_S(\boldsymbol{\lambda}, \boldsymbol{p}) + w_D E_D(\boldsymbol{\lambda}, \boldsymbol{p})$ 9

Face Modeling and Feature Extraction

Face Detection(Viola-Jones with Kalman Filtering)

Global and Local
 Active Appearance Modeling

AAM Tracking
 on GSL Continuous Corpus

[E. Antonakos, V. Pitsikalis and P. Maragos, JIVP 2014]

PDTS Phonetic Subunits (Examples)

Movement-Position and Handshape Fusion

Demo: Continuous Sign Language Recognition

[S. Theodorakis, V. Pitsikalis and P. Maragos, IVC 2014]

EU Project: MOBOT

FP7- ICT-2011.2.1, Grant # 600796, Duration: 2013-2016, website: http:// mobot-project.eu/

Our Team's Contribution

- Action and Gesture Recognition
- Spoken Command Recognition
- Audio-Visual Fusion
- Multimodal HRI
- Gait analysis and Robotics Control

Partners: TUM / UWE (Germany / UK), ICCS-NTUA (Greece), INRIA (France), AthenaRC (Greece), UHEI (Germany), Bethanien (Germany), DIAPLASIS (Greece), ACCREA (Poland).

Motivation

Experiments conducted at Bethanien Geriatric Center Heidelberg

Mobility & Cognitive impairments, prevalent in elderly population, limiting factors for *Activities of Daily Living* (ADLs)

Intelligent assistive devices (robotic
Rollator) aiming to provide context-
aware and user-adaptive mobility
(walking) assistance

MOBOT rollator

MOBOT robotic rollator and assistive scenario

Overall working system: audio-gestural command recognition

Multi-Sensor Data for HRI

Kinect1 RGB Kinect1 Depth MEMS Audio Data

Kinect1 RGB Data Kinect Depth Data

Go Pro RGB Data HD1 Camera Data HD2 Camera Data

Action Sample Data and Challenges

- Visual noise by intruders
- Multiple subjects in the scene, even in same depth level
- Frequent and extreme occlusions, missing body parts (e.g. face)
- Significant variation in subjects pose, actions, visibility, background

ACTION RECOGNITION

Visual action recognition pipeline

Visual Front-End

Video

Optical Flow

Dense Trajectories

Features: Dense Trajectories

1. Feature points are sampled on a regular grid in multiple scales

3. Descriptors are computed in spacetime volumes along trajectories

Action Recognition video and results

Action Recognition Results (4a, 6p): Descriptors + Post-processing Smoothing

Dense Trajectories + BOF Encoding

■SVM ■SVM + Viterbi

GESTURE RECOGNITION

Gesture Recognition

Challenging task of recognizing human gestural movements:

- Large variability in gesture performance.
- Some gestures can be performed with left or right hand.

Come Closer

Park

I want to Perform a Task

Overview: Visual Gesture Recognition

Handshape Feature Extraction

Visual Gesture Classification Pipeline

Applying Dense Trajectories on gesture data

Extended results on Gesture Recognition

SPOKEN COMMAND RECOGNITION

Smart home voice interface

- Main technologies:
 - Voice Activity Detection
 - Acoustic Event Detection
 - Speaker Localization
 - Speech Enhancement
 - Keyword Spotting
 - Far-field command recognition

DIRHA demo ("spitaki mou")

https://www.youtube.com/watch?v=zf5wSKv9wKs

- A.Tsiami, A. Katsamanis, I. Rodomagoulakis, G. Potamianos, and P. Maragos, "Home sweet home... Listen!", *Show & Tell Demo Presentation*, ICASSP 2016.
- I. Rodomagoulakis, A. Katsamanis, G. Potamianos, P. Giannoulis, A. Tsiami, P. Maragos, "Room-localized spoken command recognition in multi-room, multi-microphone environments", *Computer Speech & Language*, 2017.

MEMS Audio Sensors Array

- 8 channels
- □ 48 kHz Sampling, 16bit PCM

MEMS mounted on robot rollator

Spoken-Command Recognition Module for HRI

integrated in ROS, always-listening mode, real time performance

Spoken Command Recognition Results (MOBOT-I data)

MOBOT Scenario 3.b

users: Elderly/patients, native Germans

setup: Users are sitting 2-3m in front of the platform

conditions: Noisy (overlapping speech, background noises)

data: 8 users, 19 audio-gestural commands, 3-4 repetitions per user

classification results (ground-truth segmentation)

	leave-one	-out adap	tation-t	esting
--	-----------	-----------	----------	--------

patients models	p1	p12	p13	p9	p4	р7	p8	p11	avg	+34%
CW-tri	40.41	61.07	53.00	50.83	36.51	23.26	27.24	21.24	38.87	
+MLLR	79.79	71.14	78.80	78.75	76.19	76.26	73.42	48.67	72.67	

users: Normal (between 20-40 years old)

- setup: Holding and moving the MOBOT platform (following mode)
- conditions: Quiet indoors environment (laboratory)
- data: 10 users, 21 audio-gestural commands, 5 repetitions
- recognition results: Leave-one-out adaptation-testing

segmen	users										
tation	models	u1	u2	u3	u4	u5	u6	u7	u8	u9	avg
ground truth	CW-tri	57.37	50.79	64.74	48.94	48.94	61.64	66.84	66.58	56.05	57.33
		96.05	95.53	98.95	94.71	94.68	97.35	97.89	98.95	95.79	96.13
VAD	+MLLR	94.21	87.77	97.35	75.00	76.82	92.82	85.32	61.48	94.24	85.13

AUDIO-VISUAL FUSION for MULTIMODAL GESTURE RECOGNITION

Multimodal Gesture Signals from Kinect-0 Sensor

(from CHALEARN 2013 Database: 20 Italian gesture phrases, 22 users, ~20 repetitions)

RGB Video & Audio

Skeleton (vieniqui - *come here*)

Depth (vieniqui - *come here*)

User Mask (vieniqui - *come here*)

Overview: Multimodal Hypothesis Rescoring + Segmental Parallel Fusion

[[]V. Pitsikalis, A. Katsamanis, S. Theodorakis & P. Maragos, JMLR 2015]

- Audio and visual modalities for A-V gesture word sequence.
- Ground truth transcriptions ("REF") and decoding results for audio and 3 different fusion schemes.
- Achieved top performance (93.3%) in gesture challenge CHALEARN (ACM ICMI 2013).

Multimodal fusion: Complementarity of visual and audio modalities

Similar audio, distinguishable gesture

Distinguishable audio, similar gesture

Multimodal gesture classification results

Leave-one-out experiments (Mobot-I.6a data: 8p,8g)

- Unimodal: audio (A) and visual (V)
- Multimodal (AV): N-best list rescoring

	p1	p11	p12	p13	p4	p7	p8	p9	avg
A	96.87	81.81	79.16	87.50	78.26	79.16	90.32	80.00	84.13
V	40.62	63.63	70.83	34.37	65.21	50.00	64.51	66.66	56.98
AV	87.50	90.90	95.83	84.37	100.0	79.16	96.77	86.66	90.15

Multimodal confusability graph

[I.Rodomagoulakis, N.Kardaris, V.Pitsikalis, E.Mavroudi, A.Katsamanis, A.Tsiami & P.Maragos, *Multimodal Human Action Recognition in Assistive Human-Robot Interaction*, ICASSP 2016.]

HRI Online Multimodal System Architecture

- ROS based integration
 - Spoken command recognition node
 - Activity detection node
 - Gesture classifier node
 - Multimodal fusion node
- Communication using ROS messages

Online processing details

Activity / Non activity

 Online processing; "Alwayslistening" + Activity detection

Audio-Visual gesture recognition Online processing system – Open Source Software

http://robotics.ntua.gr/projects/building-multimodal-interfaces

N. Kardaris, I. Rodomagoulakis, V. Pitsikalis, A. Arvanitakis and P. Maragos, *A platform for building new human-computer interface systems that support online automatic recognition of audio-gestural commands*, Proc. ACM Multimedia 2016, Amsterdam, The Netherlands, 15-19 Oct. 2016.

Validation experiments (Diaplasis, Kalamata)

Visual Synergy: : SS+GR

foreground/background+gesture recognition

Visual Synergy: SS+GR

Feat. Descr.	GR	SS+GR	Impr. (%)
traject.	38.8	42.1	8.59
HOG	46.0	46.7	1.47
HOF	51.5	56.3	9.33
MBH	57.0	63.9	12.18
combined	62.4	65.6	5.22

Average classification accuracy (%) over all 8 patients using our baseline method (first column) and employing the foreground-background mask (second column). Results show a consistent improvement (third column) over multiple feature descriptors. Results are obtained using the BoVW encoding.

Ref:

A. Guler, N. Kardaris, S. Chandra, V. Pitsikalis, C. Werner, K. Hauer, C. Tzafestas, P. Maragos and I. Kokkinos, *"Human Joint Angle Estimation and Gesture Recognition for Assistive Robotic Vision"* in ECCV workshop on Assistive Computer Vision and Robotics (ACVR-16), Oct. 2016.

GAIT ANALYSIS

Human Gait Cycle

Two main phases in the gait cycle

- Stance phase: the foot is on the ground
- Swing phase: the same foot is no longer in contact with the ground and is swinging through in preparation for the next foot strike

Human Gait Cycle

Comprises eight (8) events, which can generally describe any gait:

1.Initial contact (0%) - IC, (Heel Strike:

initiates the gait cycle)

2.Loading response (0-10%) - LR, (Foot Flat:

the plantar surface of the foot touches the ground)

3.Mid-stance (10-30%) - MS,

4.Terminal stance (30-50%) - TS, (Heel Off:

the heel loses contact with the ground)

5.Pre-swing (50-60%) - PW, (**Toe Off:**

the foot leaves the ground)

- 6.Initial Swing (60-70%) IW,
- 7.Mid-swing (70-85%) MW,
- 8. Terminal swing (85-100%) TW

Human Gait Cycle

Leg Tracking: Particle Filters with Probabilistic Data Association

- Probabilistic Data Association Particle Filtering (PDA-PF) system Tracks the user legs, [1]
- PDA-PF sequentially estimates the relative position and velocity of the patients legs w.r.t. the robotic rollator

[1] G. Chalvatzaki, X. Papageorgiou, C. Tzafestas and P. Maragos,, "Comparative experimental validation of human gait tracking algorithms for an intelligent robotic rollator," in ICRA 2017.

HMMs-based Gait Phases Recognition System

Posterior estimates of the legs' states are fed into two HMMs that recognize the left and right gait cycles respectively, [2].

[2] G. Chalvatzaki, X. Papageorgiou, C. Tzafestas and P. Maragos, "Estimating double support in pathological gaits using an HMM-based analyzer for an intelligent robotic walker," in RO-MAN 2017.

Gait parameters estimation based on HMMs

Use and validation of HMM-based gait analysis for reliable estimation of clinically-relevant gait parameters

- HMM-based **recognition of gait phases** transitions
- Computation of **gait parameters based on this on-line** gait segmentation
- Application areas: medical diagnosis, rehabilitation progress

Temporal Gait parameters:

•Stride Time (the duration of each gait cycle)

•Stance Time (the stance phase duration in one cycle)

Double Support Time (the time period when both feet are in contact with the ground)

Spatial Gait parameters

•Stride Length (the distance trevelled by both legs in the duration of one stride)

•Gait Speed (the ratio of stride length to stride time)

Validation studies

Two experimental setups from the MOBOT project:

- Validation using ground truth data from a Motion Capture System, [2].
- Validation using ground truth from a GAITRite System, [3,4].

[2] G. Chalvatzaki, X. Papageorgiou, C. Tzafestas and P. Maragos, "Estimating double support in pathological gaits using an HMM-based analyzer for an intelligent robotic walker," in RO-MAN 2017.

[3] X. Papageorgiou, G. Chalvatzaki, K. Lianos, C. Werner, K. Hauer, C. Tzafestas, P. Maragos,, "Experimental validation of human pathological gait analysis for an assisted living intelligent robotic walker," in Biorob 2016.
[4] G. Chalvatzaki, X. Papageorgiou, C. Tzafestas and P. Maragos, "HMM-based Pathological Gait Analyzer for a User-Adaptive Intelligent Robotic Walker, in EUSIPCO- Workshop: "MultiLearn 2017.

1st Validation study: Experimental Protocol

- Data were collected using a HOKUYO rapid laser sensor (mean sampling frequency of 512 planar points every 28ms) mounted on the robotic rollator
- The subjects walked with **physical support of the rollator** on a straight direction of about 3 m, performed a 180° turn and returned to initial position
- Under appropriate carer's supervision
- The patients were wearing their **normal cloths** (no special clothing) and were instructed to walk as normally as possible

1st Validation study

Ground Truth: Gait Phases Detection from Motion Capture

System Data

1st Validation study

Gait Phases Detection: Motion Capture Data

1st Validation Study: Results

Evolution of the estimated **stride time and stance time** over the stride number obtained by the proposed the HMM-based approach and the respective stride and stance times provided by the ground truth data for the patients of the study

1st Validation Study: Results

Evolution over the stride number of the **Double Support (DS) duration** estimates obtained by the proposed HMM approach compared to ground truth data

2nd Validation study: Setup

POMA score: Performance Oriented Mobility Assessment

TABLE I: Demographics

Subject	1	2	3	4	5	6
Age	89	83	83	71	82	82
Sex	F	F	F	F	F	Μ
POMA	7	11	19	20	26	27
Falls	yes	yes	yes	yes	yes	yes

Demographics for the subjects that participated in the experiments.

Snapshots of a subject walking on the GAITRite walkway assisted by the robotic platform, during one stride.

The captured footprints of the subject by the GAITRite System.

The GAITRite System mat.

2nd Validation study: Results

Gait Parameters Extraction

(a) Evolution of the average stride length as it was estimated by (b) Evolution of the average stride time as it was estimated by the HMM-based system w.r.t. Ground truth data according to the the HMM-based system w.r.t. Ground truth data according to the POMA score of the patients.

(c) Evolution of the average stance time as it was estimated by (d) Evolution of the average gait speed as it was estimated by the HMM-based system w.r.t. Ground truth data according to the the HMM-based system w.r.t. Ground truth data according to the POMA score of the patients.

EU Project: I-SUPPORT

ICT-Supported Bath Robots

H2020-PHC-2014-single-stage, Grant # 643666, Duration: 2015-2018, website: www.i-support-project.eu/

Our Team's Contribution

®support

- Action/Gesture recognition
- Spoken Command Recognition
- Co-development of A-V data corpus
- Robotics control

Partners: ICCS-NTUA (Greece), Robotnik (Spain), SSSA(Italy), KIT (Germany), OMEGATECH (Greece), INRIA (France), Fondazione Santa Lucia (Italy), Bethanien (Germany), University of Applied Sciences (Germany)

Setup of the 3 Kinects - Legs

Setup for the task "Washing the Legs"

Setup of the 3 Kinects - Back

Setup for the task "Washing the Back"

ICT-SUPPORTED BATH ROBOTS

16-18 Nov 2016 75

Setup of Audio Sensors (Shure mics)

Data Collection

- ICCS and KIT implemented the system architecture for the audio-visual robot perception:
 - feedback from clinical partners for the A+G commands
- @ KIT: collection of the audio-gestural dataset
- @ ICCS: small audio-gestural development dataset, incl. 28 gestures (24 users) and 23 spoken commands from 8 users
- @ FSL: collection of 10 Italian A+G commands from 7 normal users and 5 patients for pre-validation experiments

wash legs

ICCS development dataset

Kinect 3 view for "Washing the Back"

Kinect 1 view for "Washing the Legs"

FSL pre-validation dataset

Kinect 3 view for "Washing the Back"

Kinect 1 view for "Washing the Legs"

Gesture Recognition – Depth Modality

Experiments with Depth and Log-Depth streams

• Extraction of Dense Trajectories performs better on the Log-Depth stream

RGB stream

Dense Trajectories

Log-Depth stream

Gesture Classification – Results

ICCS Dataset

- Two different setups
- Two different streams
- Different Encoding Methods
- Different Features

• KIT Dataset

- Two different setups
- Average gesture recognition accuracy:
 - •Legs (8 gestures): 83%
 - Back (10 gestures): 75%

FSL Dataset

- Train/Fine-tuning the models for audio-visual gesture recognition
- Average gesture recognition accuracy for the 5 gestures used in validation:
 - Legs: 85%, Back: 75%

* *	*
*	*
* •	*

		Task: Legs		Task: Back	
Feat.	Encoding	RGB	D	RGB	D
Traj.	BoVW	69.64	60.52	77.84	60.87
HOG		41.01	53.34	58.51	57.14
HOF		74.15	66.26	82.92	71.58
MBH		77.36	65.31	80.81	65.73
Comb.		80.88	74.41	83.92	75.70
Traj.		69.22	52.66	74.34	54.14
HOG	1	49.86	65.99	61.23	65.63
HOF	VLAD	76.54	72.88	83.17	78.07
MBH		78.35	75.12	82.54	73.09
Comb.	1	83.00	78.49	84.54	81.18

() support

Spoken Command Classification Results (4 languages)

Dataset	Microphones	# Users	# Commands	Language
FSL	Kinect	7 normal, 5 patients	10	Italian
KIT	Shure	7 normal	10	German
ICCS	Kinect	8 normal	19	German

FSL Preliminary first Validation Results

- 25 naïve patients
- 5 audio-gestural commands
- Task: Always-listening Online A-G Command Recognition
- Challenges: Acoustic noise, low voice, weak motions
- Multimodal Command Recognition Rate:

 $MCRR = \frac{\# \ commands \ correctly \ recognized \ by \ system}{\mu}$

commands correctly performed by user

position	System's MCRR%	User performance (speech)	User performance (gestures)	# false alarms
Back	87.16%	99.16%	78.15%	3
Legs	79.52%	98.29%	81.14%	3

EU Project: Baby Robot

BabyRobot: Child-Robot Communication and Collaboration: Edutainment, Behavioural Modelling and Cognitive Development

H2020-ICT-2015-1, GA # 687831, Duration: 2016-2018, website: http://www.babyrobot.eu/

Our Team's Contribution

- Human Localization/Tracking
- Gesture Recognition
- Action Recognition
- Behavioral modeling and intention

Partners: ICCS-NTUA (Greece), AthenaRC-RPI (Greece), KTH (Sweden), UH (U.K.), UNIBI (Germany), BlueOcean (Denmark), USTL (France), Furhat (Sweden)

BabyRobot project-Setup Room

Emotion recognition

Pantomime

Experimental Setup: Dialog Management for HRI

- IrisTK manages dialog through **events**:
 - *Sense:* what the system perceives
 - *Act:* things the system should do
 - *Monitor:* feedback from actuators

System Evaluation (submitted to ICRA-2018)

• Experiments with 28 TD children 6 – 10 years old

• Objective Evaluation

- 83.5% average classification accuracy for 8 gestures
- 74.5% average classification accuracy for 13 pantomimes
- 97.8% average word accuracy
- 97.0% average sentence accuracy
- Subjective Evaluation

Children:

- want to play with robots frequently
- feel good when playing with robots
- believe that it wasn't difficult to play with robots

Conclusions

Synopsis:

- Visual Action Recognition
- Gesture Recognition
- Spoken Command Recognition
- Fusion for improved recognition
- Gait Analysis

Ongoing work:

- Couple Human Localization & Pose with Activity recognition
- □ Activities: Actions Gestures SpokenCommands Gait
- Applications in Robotics (EU projects: MOBOT, BabyRobot, I-Support)

For more information, demos, and current results:

http://cvsp.cs.ntua.gr and http://robotics.ntua.gr

Collaborators and References

Arvanitakis, Antonis Chalvatzaki, Georgia Dometios, Thanos Efthymiou, Niki Filntisis, Panagiotis Kardaris, Nikos Katsamanis, Nasos Koutras, Petros Papageorgiou, Xanthi Pitsikalis, Vassilis Potamianos, Gerasimos Rodomagoulakis, Isidoros Theodorakis, Stavros Tsiami, Antigoni Tzafestas, Costas Zlatintsi, Nancy

For more information, demos, and current results:

http://cvsp.cs.ntua.gr and http://robotics.ntua.gr