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Motivations

 Graph problems in  Vision
 Graph representations of images/videos
 Network problems modeled with Graphs

(GIS, communications, social nets, …)
 Theory of graph-based signal/image

processing



Graphs in Computer Vision – I: Face
Local Active Appearance ModelsGlobal Active Appearance Model (AAM)



Graphs in Computer Vision – II:  Pose and HRI
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BabyRobot



Graphs in Network Science
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Signal strength of Cellular network
Rainfall Data, 4000 US cities

Average annual Wind speed data

Referendum 
results at 443 
sites over metro 
Athens area, 2015
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Using Arbitrary Graphs for Image Segmentation

 Visual data can be represented in various ways

 Regular grid representation for images: Simple but does not 
incorporate local image properties. Also high-dimensional.

 Arbitrary graphs can capture  intrinsic data structures. 

 We can use graph-clustering approaches for image segmentation. 
It also reduces dimensionality and extends to non-visual data.   

2D image graph point cloud



Previous Work: Graph-based Segmentation Approaches
 Normalized Cuts: 
 J. Shi and J. Malik, “Normalized Cuts and Image Segmentation”, T-PAMI, 2000.

 Random Walks:
 L. Grady, "Random Walks for Image Segmentation,” IEEE Trans. PAMI, 2006.

 Power Watershed:
 C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power watershed: A unifying graph-

based optimization framework,” IEEE Trans. PAMI., 2011.
 Supervised Graph Clustering/Machine Learning:
 D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local and 

global consistency,”  Proc. NIPS, 2004. 
 X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using Gaussian fields 

and harmonic functions,”  Proc. ICML, 2003. 
 Regularization and PDEs on arbitrary graphs: 
 A. Elmoataz, O. Lézoray  and S. Bougleux, “Nonlocal discrete regularization on weighted 

graphs,” IEEE Trans. Imag. Proc., 2008. 
 V.-T. Ta, A. Elmoataz and O. Lezoray, ``Nonlocal PDE-based Morphology on Weighted 

Graphs for Image and Data Processing", IEEE Trans. Im. Proc.,  2011.
 Graph Cuts:
 Y. Boykov and M.-P. Jolly, “Interactive Graph Cuts”,  ICCV 2001; 
 Y. Boykov,  O. Veksler & R. Zabih, “Fast Approximate Energy Mimimization”, TPAMI 2001.
 V. Kolmogorov and R. Zabih, “What Energy Functions can be Minimized”, TPAMI 2004. 
 C. Rother, V. Kolmogorov and A. Blake, “GrabCut”,  SIGGRAPH 2004.
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Outline of Talk
 I. Active Contours on Arbitrary Graphs
 Multiscale Morphology on Graphs
 Active Contours (GAC, ACWE) on Graphs
 Theoretical results: convergence and error bound
 Finite Elements

II. Graph-driven Diffusion and RW Schemes
 SIR epidemic propagation model and RW
 Normalized Random Walker (NRW)

Experimental results on graph segmentation



9

Active Contours on Euclidean plane/space
 Active Contours
 Snakes [Kass et al. 1987]
 Level set method for Curve Evolution [Osher & Sethian 1988]
 Deformable Templates [Yuille et al. 1989]
 Balloons [Cohen,  1991]
 Geometric Curve Evoln [Caselles et al. 1993, Malladi et al. 1995]
 Geodesic Active Contours [Caselles, Kimmel & Sapiro 1997]

 Active Regions
 Mumford-Shah Energy Minimization (1989) 
 Region Competition [Zhu & Yuille 1996]
 Active Contours Without edges [Chan & Vese 2001]
 Geodesic Active Regions [ Paragios & Deriche 2002]
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Curve Evolution via “Energy” Minimization
Active Contours: Evolution of curve Γ in 2D space under the influence 
of “energy” minimizing forces until convergence: 
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In the limit curve Γ  is 
identified with the 
boundary(ies) among the 
objects to be detected. 

edgessmoothness
external 

constraints

References:
- Snakes: Kass, Witkin & Terzopoulos (1987)
- Deformable Templates: Yuille et al (1989)
- Level sets: Osher & Sethian (1988)
- Geometric Models for ACs:  Caselles et al

(1993),  Malladi et al (1995)
- GACs: Caselles, Kimmel & Sapiro (1997)
- ACWE: Chan & Vese (2001)
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Level-set Method for Curve Evolution [Osher & Sethian 1988]
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Embed curve Γ as level-set of 
3D function Φ at level λ=0.

PDE for 2D curve evolution PDE for 3D function evolution
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Part I.A 
Active Contours and Multi-Scale 

Morphology on Graphs 

Main Refs:
• K. Drakopoulos and P. Maragos, “Active Contours on Graphs: Multiscale 

Morphology and Graphcuts”, IEEE Journal of Selected Topics in Signal 
Processing,  Nov. 2012.

• C. Sakaridis, K. Drakopoulos and P. Maragos, 
“Theoretical Analysis of Active Contours on Graphs”, 
SIAM J. Imaging Sciences, vol. 10, no. 3, pp. 1475-1510, 2017. 



 Εnergy Minimization (C=curve, I=image, g=edge-stop fcn)

 PDE for Curve Evolution: 

 Implementing Curve Evolution by propagating Level Sets 
of Embedding Level Function u(x,y,t) with a PDE:



Curvature motion Balloon force
(Dilation/Erosion)

Spring force

Edge-inhibited 
speed-control 
function
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Cluster Detection on Graphs w. Active Contours

[Drakopoulos & Maragos 2012]



Motion with Constant velocity
(Dilation/Erosion PDE)

u c u
t

∂ = ∇
∂

 
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PDE for 2D Multiscale Flat Dilations 
 initial image, multiscale flat convex structur. elems. (disks)  

 multiscale dilations by disks : 

 PDE: 

( , )f x y tB

( , , ) ( )( , )x y t f tB x yd = Å

2 2

t x y
d d dd
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Multiscale Disks

3t = 6t = 9t =

[Brockett & Maragos 1992]

[Alvarez et al. 1993]



Structuring Graph  A =  graph

with two nonempty subsets:  

( , )A A AG V E

roots:  ,   buds: ⊆ ⊆A A A AR V B V

Example: roots = {a,c},    
buds ={a,b}



structuring graph      ( , )= A A AA G V E

of node  in graph ( , ) :− ∈A v V G V ENeighborhood

( | ) { ( ) :  :  is homomorphism 
                                      and  ( )} 

θ θ
θ

= →

∈
A A A

A

N v G B G G
v R



 Graph dilation :

 Graph erosion :



 Levelsets on graph:

 Function reconstruction:

 Flat Graph Dilation :



 A possible choice for multiscale structuring 
graphs:



 Define scale r recursively as:

 Difference equation that models above:

 

 



 For the experiments in this presentation, 
choose the structuring graph A

 Corresponding Neighborhood at each node:
Set of 1-neighbors around each node



Signed distance function  multiscale dilations 
of a shape on graphs



Dilate circular initial curveSigned Distance Function

Domain: a geometric random graph  



Approximating the Full Motion



 Gradient Magnitude:

 Gradient orientation: unit Normal:

p(w) = position vector of node w
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[Drakopoulos  & Maragos, IEEE J-STSP 2012]



 Based on 

 Divergence of vector field:





Active Region Embedding Level 
Function



Run Algorithm Final Result

Rainfall Data over 4000 USA cities
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Ouestions

 How do the results scale with # of graph nodes?

 Do graph geometric quantities converge to 
Euclidean values?

 Is the error bounded?

 Segmentation:
- Stability ?



Part I.B 

Theoretical Analysis of 
Active Contours on Graphs

Main Reference:
• Christos Sakaridis, Kimon Drakopoulos and P. Maragos, 
    SIAM J. Imaging Sciences, vol. 10, no. 3, pp. 1475-1510, 2017. 



Background, References

Active contours based on partial differential equations (PDEs)
• Osher and Sethian, J. Comp. Physics 1988: curve evolution with PDEs using 

level sets, balloon + curvature force, numerical implementation
• Caselles, Kimmel, and Sapiro, IJCV 1997: geodesic active contours, boundary 

detection/image segmentation, +spring force, uniqueness and stability of 
solution

PDE-based morphology and active contours on arbitrary graphs
• Ta, Elmoataz, and Lezoray, IEEE T-IP 2011: discretized morphological PDEs on 

graphs, nonlocal image processing
• Drakopoulos and Maragos, IEEE J-STSP 2012: geodesic active contours on 

graphs, gradient/curvature approximation, multiscale morphological 
operators on graphs

Graphcut-based optimization for image segmentation: Couprie, 
Grady, Najman, and Talbot, IEEE T-PAMI 2011: unification and generalization of 
graphcuts and watershed
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Geodesic active contour (GAC) model

38

The active contour is embedded in the evolving function u(x,y,t) as its 
zero level set.

How can we approximate gradient and curvature in the PDE on 
discrete structures like geometric graphs?

Edge-
inhibited 
speed-control 
function



Notation for geometric graphs
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Set of vertex neighbors with edge angles in ascending 
order: 

Neighbor 
angle



Geometric gradient approximation on graphs
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Threefold approximation:
1. Directional derivatives along edges are approximated with 

difference quotients.
2. The difference quotient along each edge is used as a constant 

approximation of all directional derivatives in those directions 
that “fall into” the respective neighbor angle.

3. The unit vector in the direction of each edge is used as a constant 
representative for all directions that “fall into” the respective 
neighbor angle.

Rationale: use information from closest direction about 
local change



Random geometric graphs (RGGs)
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Convergence of gradient approximation 
for RGGs
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 Stochastic nature of RGGs: only convergence of probabilistic kind 
can be established, e.g. convergence in probability

 Easy to handle RGGs theoretically due to their simple definition
 Asymptotic restrictions for radius required

Reminder:

Limit of large graphs:
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Required asymptotic behavior for ρ(n): 



Asymptotic analysis of error in gradient 
approximation for RGGs
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Threefold approximation
leads to threefold error:
1. Directional derivatives along 

edges are approximated with 
difference quotients.

2. The difference quotient along 
each edge is used as a constant 
approximation of all directional 
derivatives in those directions 
that “fall into” the respective 
neighbor angle.

3. The unit vector in the direction 
of each edge is used as a 
constant representative for all 
directions that “fall into” the 
respective neighbor angle.
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Strictest bound:



Smoothing filtering (on the gradient estimate)
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Geometric approximation 
exhibits local deviations 
from true gradient field
For smooth input functions 

u, average or median
filtering at neighborhood 
level can ameliorate the 
approximation.



Curvature approximation on graphs
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Based on approximate gradient values: a cascaded approximation

Approach 1: 
geometric

Approach 2: 
gradient-based

Both approaches rely on:



Geometric curvature approximation
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Constant value of approximate unit gradient field 
along each arc and line segment – closed forms for 
the respective line integrals:
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Gradient-based curvature approximation

51

 Partial derivatives are elements of the gradients of the unit 
gradient vector field’s components

 Use geometric gradient approximation on the approximate values 
of these components
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Gaussian smoothing

Approach 1: normalized 
Gaussian filtering

Approach 2: Gaussian derivative filtering 
with separate normalization
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 Similar for second component
 Normalize separately for positive and 

negative part of Gaussian derivative
 Differentiation of Gaussian instead of 

approximation

 Compute smoothed 
image explicitly

 Use approximation 
for its gradient

Plain convolution with Gaussian filter does not work 
due to non-uniformities in local vertex density
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Disk image on graph

Gaussian derivative filtering – stopping function Normalized Gaussian filtering – stopping function

Normalized Gaussian filtering – smoothed image



Final algorithm for graph segmentation 
with geodesic active contours
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Input:
1. Compute stopping function using normalized Gaussian filtering or 

Gaussian derivative filtering with separate normalization
2. Initialize the contour’s interior to a set of vertices which contains 

the clusters to be segmented and the embedding function to the 
signed distance function of this set

3. Iterate until the embedding function has not changed sign at any 
vertex for several consecutive iterations:

Output: set of graph vertices where the final embedding function is 
positive
Parameters:



Separation of two close disks
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Legend: true positive, 
true negative, false 
positive, false negative

Disks on RGG Initial contour 80 iterations 120 iterations

Radius of RGG and scale of Gaussian filter have been adjusted to 
help distinguish between nearby edges at boundaries of disks



Segmentation of regular images using the 
graph framework
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To place the vertices, subsample the image:
1. Uniformly at random (agnostic)
2. Based on image content: watershed transformation – one vertex 

at each segment

Alternatives for defining the set of edges:
1. Vertices closer than a threshold – radius are connected (RGG rule)
2. Delaunay triangulation (DT)



Vertices via 
watershed 

transformation

DT RGG

Vertices 
uniformly at 

random

DT RGG
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F1 = 93.2%F1 = 95.0%

Source of original images: BSDS500 dataset

Performance is measured at the level of graph vertices
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F1 = 94.7%

F1 = 84.9%

Source of images: BSDS500 dataset

Performance is measured 
at the level of graph 

vertices



Segmentation of geographical data: 
average annual wind speed
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1000 
iterations 
(final)



Segmentation of geographical data: signal 
power of cellular network 
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40000 iterations (final)



Generality of approximation framework –
active contours without edges (ACWE)
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 Like in GAC, the active contour is embedded in the evolving 
function u(x,y,t) as its zero level set.

 Unlike GAC, there is no edge-stopping function. Instead, the 
image-driven force impels discrimination of intensity values 
between contour interior and exterior.

: regularized Dirac delta



Segmentation of regular images using the 
graph framework with ACWE
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Source of images: BSDS500 dataset



Contributions
Novel, neighborhood-based approximations for gradient and 

curvature on arbitrary graphs
Proofs of convergence in probability of proposed approximations 

to the true value of the operators for the class of random 
geometric graphs
Asymptotic upper bound for error of gradient approximation for 

the class of random geometric graphs
Neighborhood-based average and median filtering on graphs
Two variants of Gaussian smoothing with normalization on graphs 

that handle non-uniform vertex distributions
Applicability of our active contour framework on graphs for 

different level set-based models (GAC, ACWE)
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Future work
Further theoretical study of curvature approximation on graphs – 

establishment of asymptotic upper bound for error ideally
Theoretical examination of graph structures that have greater 

regularity than random geometric graphs, such as Delaunay 
triangulations
Anisotropic smoothing on graphs for faithful preservation of 

predominant edges in computation of stopping function

66
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Part I.C 
A Finite Element Computational 

Framework for Active Contours on Graphs

Main Reference:
• Nikos Kolotouros and P. Maragos,  

https://arxiv.org/abs/1710.04346



Delaunay Graphs
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 Planar graphs that are constructed from the Delaunay 
triangulation of a set of points

 The Delaunay triangulation divides the convex hull of the points in triangles in a way that avoids the creation of sharp triangles.
 Good convergence properties for the solution of PDEs
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Express the GAC evolution in a suitable form to use the Finite 
Element Method

and then transform it to an equivalent integral formඵ 1| 𝛻𝑢 | 𝜕𝑢𝜕𝑡 𝜙ஐ = − ඵ 𝑔 𝐼ஐ 𝛻𝑢𝛻𝑢 ⋅ 𝛻𝜙 + ඵ 𝛽𝜙ஐ∀𝜙 ∈ 𝐻ଵ Ω (Sobolev space)

1| 𝛻𝑢 | 𝜕𝑢𝜕𝑡 = div 𝑔 𝐼 𝛻𝑢𝛻𝑢 + 𝑔 𝐼𝛻𝑢 ⋅ 𝐧 = 0 on the boundary

GAC (Revisited)



Galerkin approximation
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Let 𝑆ଵ be an 𝑛-dimensional subspace of 𝐻ଵ Ω  with basic functions {𝜙௜}௜ୀଵ௡
We approximate 𝑢 by 𝑢ത = ෍ 𝑐௜ 𝑡 𝜙௜ (𝑥, 𝑦)௡

௜ୀଵ
If we substitute 𝑢ത  in the integral equation and demand that it holds 
for all 𝜙௜ in this subspace, we obtain a nonlinear system of ODEs,𝐀 𝐜 𝐜ሶ = 𝐛(𝐜) 



Choice of subspace and basis
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 Approximation in the space of continuous, piecewise linear 
functions

 The basis functions should have minimal common support to 
simplify calculations

 We choose the pyramid functions with the following properties

 𝜙௜ 𝑣௜ = 1
 𝜙௜ 𝑣௝ = 0, 𝑗 ് 𝑖
 𝜙௜ is linear in each triangle



Computational complexity
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 A is a 𝑁 × 𝑁 sparse band matrix with a band length 𝑁
 Solution of the system of ODEs

 Solution of the system of ODEs using the explicit Euler method 
requires 𝑂 𝑁ଶ operations per time step

 Too expensive for large graphs!

 Later on we will present a method to reduce it to linear complexity 



General active contour models
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 The proposed can solve more general active contour models of 
the form 𝐹 𝑢 𝜕𝑢𝜕𝑡 = div 𝐺 𝑢 𝛻𝑢 + 𝐻 𝑢

 We can build on the previous framework to solve locally 
constrained active contour models of the form𝐹 𝑢 𝜕𝑢𝜕𝑡 = 𝛿ఢ(𝑢) div 𝐺 𝑢 𝛻𝑢 + 𝐻 𝑢

 Active Contours Without Edges are a special case of the above 
model



Locally constrained active contours (1)
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 Inspired from the Active Contours Without Edges

 At each time step we evolve the levelset function in a small area 
around the curve

 The vertices of the graph in this area are called active points

 Using an appropriate transformation, locally constrained models 
require 𝑂 𝑁 computations on average per time step, because we 
only need to consider the submatrix of the active points



Locally constrained active contours (2)
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 This modified framework can be used to speed up significantly our 
initial Active Contours algorithm

 Important observation: the levelset function evolves in a way 
such that points outside or inside the curve will not change status 
until the moment that the active contour reaches them.

 As a result, general Active Contour models can be approximated 
by their locally constrained counterpart.

 𝑂 𝑁  instead of 𝑂 𝑁ଶ  computations 



Results - Geodesic Active Regions
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Example of supervised segmentation.
Area inside the red contour: Foreground seeds.

Area outside the blue contour: Background seeds



Some numbers…
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Results – Comparison with GrabCut
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Columns 1-4: GrabCut dataset. Columns 5-8: Pascal dataset
Top row: Ground truth. Middle row: GrabCut
Bottom row: GAR



Results - Active Contours Without Edges
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ACWE contour evolution using our framework



Results - GAC on graphs
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Example of segmentation in a Delaunay graph. 
Blue curve: Initial position of the contour.
Red curve: Position of the contour after convergence.
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Part II. 
Graph-driven Diffusion and 
Random Walk Schemes for 

Image Segmentation

Main Reference:
• Christos Bampis, P. Maragos and A.C. Bovik, 
    IEEE Transactions Image Processing, vol.26, pp.35-50, Jan. 2017
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Supervised Graph Clustering
gr

ap
h 

re
pr

es
en

ta
tio

n

graph clustering 
output

input input seeds



main references
 Random Walks for Image Segmentation

 L. Grady, "Random Walks for Image Segmentation,” IEEE Trans. PAMI, 2006
 Power Watershed

 C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power watershed: A unifying 
graph-based optimization framework,” IEEE Trans. PAMI., 2011.

 SIR epidemic modeling
 E. B. Postnikov and I. M. Sokolov, “Continuum description of a contact 

infection spread in a SIR model,” Math. Biosci., 2007.
 Supervised Graph Clustering/Learning

 D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with 
local and global consistency,” in Proc. NIPS, 2004

 X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using 
Gaussian fields and harmonic functions,” in Proc. ICML, 2003

 Regularization on arbitrary graphs
 A. Elmoataz, O. Lézoray, and S. Bougleux, “Nonlocal discrete regularization 

on weighted graphs: A framework for image and manifold processing,” IEEE 
Trans. Imag. Proc., 2008. 
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The Random Walker Algorithm

 Considers the trajectories of a random walker starting from un-marked 
pixels and ending at marked points (seeds). Each unmarked pixel is 
assigned to the most probable type of seed.

 The original formulation is computationally hard; instead minimize:

𝐽 𝒙 = 12 ෍ 𝑤௜௝ே
௜,௝ୀଵ 𝑥௜ − 𝑥௝ ଶ = 12 𝒙𝑻𝑳𝒙

given the seeds, the weights 𝑤௜௝, the number of nodes 𝑁 and the Graph 
Laplacian 𝑳 = 𝑫 − 𝑾, where 𝑫 = 𝑑௜ is the degree matrix, 𝑑௜ = ∑ 𝑤௜௝௝~௜ , 𝑗~𝑖 denotes that 𝑗 is adjacent to 𝑖 and 𝑾 = 𝑤௜௝

probability of node 𝑗
assigned to a given label 

encodes node similarity
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 The Random Walker (RW) is related to graph-diffusion: it minimizes the 
smoothness term 𝐽 𝒙 to derive probabilities 𝒙 for each seed type.

 𝒙 satisfies the following:

 sums to 1 over all seeds

 ∈ 0, 1
 𝑥௜ = ଵௗ೔ ∑ 𝑤௜௝𝑥௝௝~௜

 𝑤௜௝ models node similarity: 𝑤௜௝ = 𝑒𝑥𝑝 ௚೔ି௚ೕ మఙ೒మ , 𝑔௜: color feature vector 

for 𝑖
 RW can be extended to arbitrary graphs and use other feature types

well-defined 
probability

(combinatorial) 
harmonic function
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RW Demo
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RW and Epidemiological Analogues

 RW considers the interactions between nodes: if 𝑤௜௝ is large, 𝑥௜ and 𝑥௝ 
will be similar

 An analogue of node interactions can be made in epidemiological 
modeling:

nodes humans

edges
infection 

transmission

 The graph diffusion underlying RW can be formulated as the evolution of 
infectious wavefronts governed by a contact/local infection mechanism: 
the more similar or close friends two persons are, the more likely they are 
to infect each other.
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Susceptible-Infected-Recovered (SIR) model and RW

SIR Diffusion:

RW Diffusion:

2 2( , , ) ( , , )[4 ( , , ) ( , , )]
4
kI x y t S x y t I x y t I x y t tαΔ = + ∇ Δ

SIR epidemic propagation modeling: 
E. B. Postnikov and I. M. Sokolov, 
“Continuum description of a contact 
infection spread in a SIR model,” Math. 
Biosci., 2007.

𝐼௜,௧ାଵ = 𝐼௜,௧ + ෍ 𝑤௜௝𝑑௜௝~௜ 𝐼௝,௧ − 𝐼௜,௧
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 Graph-based RW diffusion:𝐼௜,௧ାଵ = 𝐼௜,௧ − ∆௜,௧
infection probability

of node 𝑖 at time 𝑡 ෍ 𝑤௜௝𝑑௜௝~௜ 𝐼௜,௧ − 𝐼௝,௧
 Intuition: 𝐼௜,௧ changes until it becomes the weighted average of the 

neighboring nodes (steady state)

 Resembles a gradient descent approach.

 The RW gives a steady solution to this diffusion by minimizing: 

𝐽 𝑰 = ଵଶ 𝑰்𝑳𝑰, 𝑰 = 𝐼ଵ⋮𝐼ே
𝑥௜ ⟶ 𝐼௜
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Incorporating the Importance of Nodes

 The RW diffusion assumes that in the neighborhood A-B-C, 
B and C have an equal contribution to A and its local 
infection profile.

 But B is more important: it has 7 connections while C has 
only 3.

for A,   B is a more important neighbor than C
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To account for the node importance, consider a different 
diffusion: 𝐼௜,௧ାଵ = 𝐼௜,௧ − ∆௜,௧

infection probability

of node 𝑖 at time 𝑡 ෍ 𝑤௜௝௝~௜ 𝐼௜,௧𝑑௜ − 𝐼௝,௧𝑑௜𝑑௝
Old steady state                New steady state𝐼௜,௧ಮ = ଵௗ೔ ∑ 𝑤௜௝௝~௜ 𝐼௝,௧ಮ 𝐼௜,௧ಮ = ଵௗ೔ ∑ ௪೔ೕௗೕ௝~௜ 𝐼௝,௧ಮ

RW Normalized 
RW (NRW)

𝑡ஶ: 
steady 
state
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New properties:

• 𝐼௜,௧ಮ ∉ 0, 1
• 𝐼௜,௧ಮ no longer sums to 1 across different seeds

• 𝐼௜,௧ಮ is no longer a weighted average of 𝐼௝,௧ಮ for 𝑗~𝑖
• In practice, we compute 𝐼௜,௧ಮ by minimizing:𝐽௡ 𝒙 = 12 ෍ 𝑤௜௝௜~௝ 𝑥௜𝑑௜ − 𝑥௝𝑑௝

ଶ = 12 𝒙𝑻𝑳𝒏𝒙
where 𝑳𝒏 = 𝑫ି𝟎.𝟓(𝑫 − 𝑾)𝑫ି𝟎.𝟓 denotes the Normalized 
Graph Laplacian

• For each node 𝑖 pick the label maximizing 𝐼௜,௧ಮ .



94

Why this is useful:

• simple and efficient extension of RW which is readily 
deployable

• using a node degree-aware for arbitrary graph segmentation 
methods, gives us more information about the local graph 
structure which is rich in images (images are locally 
correlated) and highly non-regular

• this degree-aware term can be also incorporated to other 
minimization schemes

• NRW is designed to adapt to any arbitrary graph structure for 
performing graph-based segmentation
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Practical Considerations

 constructing the image graph: oversegment the image using watershed, 
then pick nodes for each region. Assign color/texture features to each node 
(e.g. average RGB values in each region)

 creating the edge set (e.g. RAG or k-nn graphs)

RAG: only the contingent regions are connected

RAG 8-nn
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Visualizing the Steps

1. original image

2. watershed transform

3. assign nodes and use RAG

4. NRW graph clustering

5. pixel level segments

6. boundaries
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Qualitative Experiments (Pixel)

e: segmentation

    error rate

RI: rand index

even for pixel 
based methods, 
NRW is very 
competitive
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Qualitative Experiments (Node)

RI
(Rand Index)

introduced 
erroneous seeds both affected by seed quality 

(L2-norm outlier sensitivity), 
but NRW performs better
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Quantitative Experiments (Node)

G1 and G2: GrabCut dataset with different input seed sets

W1 and W2: Weizmann Dataset (one and two objects)

S: Semantic Dataset

V: Pascal VOC12 Dataset

E: ECSSD Dataset

1: row better than 
column

0: column better 
than row

- : statistically 
indistinguishable
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Point Clouds
original Kinect 

point cloud 8-nn graph

RW NRW
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Conclusions
 I. Active Contours on Graphs: Theory
 Novel neighborhood-based approximations for gradient and curvature 

on arbitrary graphs. 
 Proofs of convergence in probability of proposed approximations to 

true value of operators for RGGs. 
 Asymptotic upper bound for error of gradient approximation for RGGs. 
 Neighborhood-based smoothing on graphs. 
 Εfficient computation with Finite elements

 II. Graph-driven Diffusion and RW Schemes
 Use of arbitrary graphs allows us to consider data-driven 

representations of visual data with reduced dimensionality.
 In this context, NRW encodes the local neighborhood statistics and 

delivers highly performing results. 

 Promising Experimental results
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For more information, demos, and current results:  
http://cvsp.cs.ntua.gr    and    http://robotics.ntua.gr 


