

Computer Vision, Speech Communication & Signal Processing Group, National Technical University of Athens, Greece (NTUA) Robotic Perception and Interaction Unit,

Athena Research and Innovation Center (Athena RIC)



# **Petros Maragos**

SLT-2018, Keynote: IEEE Workshop on Spoken Language Technology, Dec. 2018

### Talk Outline

Audio-Visual Perception and Fusion

Applic 1: A-V-T Saliency & Video Summarization

Applic 2: Visual-Textual Concept Learning in Videos with Weakly Supervised Techniques

Applic 3: Audio-Gestural Recognition for Human-Robot Interaction

# Audio-Visual Perception and Fusion

**Perception**: the sensory-based inference about the world state

### Speech: Multi-faceted phenomenon



McGurk effect example

 $[ba - audio] + [ga - visual] \rightarrow [da]$ (fusion)

 $[ga - audio] + [ba - visual] \rightarrow [gabga, bagba, baga, gaba]$ (combination)

- Speech perception seems to also take into consideration the visual information. Audio-only theories of speech are inadequate to explain the above phenomena.
- Audiovisual presentations of speech create fusion or combination of modalities.
- One possible explanation: a human attempts to find common or close information in both modalities and achieve a unifying percept.

### **Multicue or Multimodal Perception Research**

#### McGurk effect: Hearing Lips and Seeing Voices [McGurk & MacDonald 1976]

Modeling Depth Cue Combination using Modified Weak Fusion [Landy et al. 1995]

- scene depth reconstruction from multiple cues: motion, stereo, texture and shading.
- Intramodal Versus Intermodal Fusion of Sensory Information [Hillis et al. 2002]
  - shape surface perception: intramodal (stereopsis & texture), intermodal (vision & haptics)

#### Integration of Visual and Auditory Information for Spatial Localization

- Ventriloquism effect
- Enhance selective listening by illusory mislocation of speech sounds due to lip-reading [Driver 1996]
- Visual capture [Battaglia et al. 2003]
- Unifying multisensory signals across time and space [Wallace et al. 2004]

#### Audio Visual Gestalts [Monaci & Vandergheynst 2006]

temporal proximity between audiovisual events using Helmholtz principle

# Temporal Segmentation of Videos into Perceptual Events by Humans [Zacks et al. 2001]

humans watching short videos of daily activities while acquiring brain images with fMRI

#### **Temporal Perception of Multimodal Stimuli** [Vatakis and Spence 2006]

# **Perceptual Aspects of Multisensory Processing**

**Multisensory Integration**: unisensory auditory and visual signals are combined forming a new, unified audiovisual percept.

Goal: Perceiving Synchronous and Unified Multisensory Events

**Principles**: Multisensory integration is governed by the following rules:

- **Spatial rule**,
- **Temporal rule**,
- **Modality Appropriateness:** 
  - Visual dominance of spatial tasks.
  - Audition is dominant for temporal tasks.
- □ Inverse effectiveness law:
  - In multisensory neurons, multimodal stimuli occurring in close space-time proximity evoke supra-additive responses. The less effective monomodal stimuli are in generating a neuronal response, the greater relative percentage of multisensory enhancement.
  - Is this the case for behavior? Recent experiments indicate that inverse effectiveness accounts for some behavioral data.

**Synchrony** and **Semantics** are two factors (structural and cognitive) that appear to favor the binding of multisensory stimuli, yielding a coherent unified percept. Strong binding, in turn, leads to higher stream asynchrony tolerance.

[E. Tsilionis and A. Vatakis, "Multisensory Binding: Is the contribution of synchrony and semantic congruency obligatory?", COBS 2016.]

# **Computational audiovisual saliency model**

Combining audio and visual saliency models by proper fusionValidated via behavioral experiments, such as pip & pop:



[A. Tsiami, A. Katsamanis, P. Maragos & A. Vatakis, ICASSP 2016]

### **Bayesian Formulation of Perception**

$$P(S|D) = \frac{P(D|S)P(S)}{P(D)}$$

S : configuration of auditory and/or visual scene of world D : mono/multi-modal data or features.

P(S): Prior Distribution, P(D/S): Likelihood, P(D): Evidence

*P*(*S*/*D*): Posterior conditional distribution

 $S \rightarrow D$ : World-to-Signal mapping

Perception is an ill-posed inverse problem

$$\hat{S}_{MAP} = \operatorname*{argmax}_{S} P(D|S)P(S)$$

# **Models for Multimodal Data Integration**

### **Levels of Integration:**

- *Early* integration (as in strong fusion)
- Intermediate integration
- *Late* integration (as in weak fusion)

### Time dimension:

 Static: CCA- Canonical Correlation Analysis: e.g. "cocktail-party effect" Max Mutual Information SVMs- Support Vector Machines: kernel combination

Dynamic: HMMs (Hidden Markov Models) DBNs (Dynamic Bayesian Nets) DNNs (Deep Neural Nets) Multimodal Hypothesis Rescoring

# 1. Audio-Visual-Text Saliency and Video Summarization

# Human Attention and Summarization

- Attention
  - Top-down, Task-driven
  - High level topics
- Saliency
  - Bottom-up, Data-Driven
  - Low level sensory cues
- Applications



- Systems for selecting the most important regions/segments of a large amount of visual data
- Video/Movie Summarization
- Frontend for other applications like action recognition.

### **Video Summarization**

Need for summarization:

- 400 hours of video are uploaded to YouTube every minute
- Need to search for relevant content quickly in large amounts of video
- Summarization goal: produce a shorter version of a video:
  - containing only the necessary and non-redundant information required for context understanding
  - covering the interesting and informative frames or segments
  - without sacrificing much of the original enjoyability

# Multimodal Saliency & Movie Summarization

#### **COGNIMUSE:** Multimodal Signal and Event Processing In Perception and Cognition

#### website: http://cognimuse.cs.ntua.gr/



### **Demo:** Movie Summaries

### Baseline System: MovieSum 1 (Bottom-Up, Low-dim Features)

LOR VA-SH-F, rate: x5 (6:50 min from 37:33 min) Inform: 78.7 % Enjoy: 80.9 %



**FNE MI-F,** rate: x5 (5:07 min from 30:17 min) Inform: 74.1 % Enjoy: 78.3 %



[G. Evangelopoulos, A. Zlatintsi, A. Potamianos, P. Maragos, K. Rapantzikos, G. Skoumas, Y. Avrithis, "*Multimodal Saliency and Fusion for Movie Summarization based on Aural, Visual, and Textual Attention*", IEEE Trans.-MM, 2013.]

# Summarization System MovieSum 2 (with Learning, improved frontend)



[P. Koutras, A. Zlatintsi, E. Iosif, A. Katsamanis, P. Maragos and A. Potamianos, *Predicting Audio-visual Salient Events based on A-V-T Modalities For Movie Summarization*, ICIP 2015]

### **COGNIMUSE** Database http://cognimuse.cs.ntua.gr/database

An evolving multimodal video database annotated with:

Saliency



Semantic events



"Good to see you again old friend!"

**Cross-media relations** 

Audio & Visual events Bell



Experimental Results using the MovieSum System-2: on 7 Hollywood movies clips (ca. 30 min./each), a full movie (ca. 100 min) and 5 travel documentaries (ca. 20 min./each).

[A. Zlatintsi et al., EURASIP J. on Image and Video Processing, 2017]

### Experimental results: (20) Human Evaluation on 7 movie clips



**Setup:** Summaries x5, ca. 6 min., 20 users

Evaluation on:

 $T_W$ 0.1: text weight  $T_W = 0.1$  $T_W$ 0.2: text weight  $T_W = 0.2$ FUS: fusion method [TMM 2013] FF: fast-forward (sub-sampling 2 sec. every 10 sec.)



#### **Results:**

- Different  $\mathbf{T}_{\mathbf{W}}$  is important and related to the movie genre
- Action movies need higher T<sub>W</sub>
- Boundary correction contributed to enjoyability:
- a) smoother transitions &
- b) semantically coherent events

# **Video Summarization Approaches**

- Automatic summaries can be created with:
  - key-frames, which correspond to the most important video frames and represent a static storyboard



video skims that include the most descriptive and

informative video segments



# Visual Saliency: Approaches, Evaluation

### Spatial Saliency

- predict viewers fixations in image plane
- static eye-tracking datasets: Toronto data set, MIT CAT200, SALICON, ...
- Spatio-Temporal Saliency
  - predict viewers fixations both in space and time
  - dynamic eye-tracking datasets: CRCNS, DIEM, DHF1K, ...
- Temporal Saliency
  - find the frames or segments that contain the most salient events
  - ❑ visual, audio and text streams → multimodal salient events
  - human annotated databases: COGNIMUSE multimodal video database

#### **Original Image**



#### **Spatial Saliency Map**



# Visual Saliency: Approaches, Evaluation

### Spatial Saliency

- predict viewers fixations in image plane
- static eye-tracking datasets: Toronto data set, MIT CAT200, SALICON, ...

### Spatio-Temporal Saliency

- predict viewers fixations both in space and time
- dynamic eye-tracking datasets: CRCNS, DIEM, DHF1K, ...

### Temporal Saliency

- find the frames or segments that contain the most salient events
- ❑ visual, audio and text streams → multimodal salient events
- human annotated databases: COGNIMUSE multimodal video database

#### Spatio-Temporal Saliency Map



# Visual Saliency: Approaches, Evaluation

### Spatial Saliency

- predict viewers fixations in image plane
- static eye-tracking datasets: Toronto data set, MIT CAT200, SALICON, ...
- Spatio-Temporal Saliency
  - predict viewers fixations both in space and time
  - dynamic eye-tracking datasets: CRCNS, DIEM, DHF1K, ...

### Temporal Saliency

- find the frames or segments that contain the most salient events
- ❑ visual, audio and text streams → multimodal salient events
- human annotated databases: COGNIMUSE multimodal video database



# Multimodal Salient Event Detection -Contributions

#### handcrafted features + classification algorithms



[P. Koutras, A. Zlatintsi and P. Maragos, IEEE Workshop on IVMSP, 2018.]

### Hand-crafted Frontend



- Signal processing methods for feature extraction
  - unified energy-based framework for audio-visual saliency
  - perceptually inspired and carefully designed filterbanks
- Machine learning algorithms for salient events classification
- Postprocessing of the final scores

# Handcrafted Visual Saliency Model

### 3D Gabor Energy model

### **Visual Features**

- Both luminance and color streams:
  - Spatio-Temporal Dominant Energies (Filterbank of 400 3D Gabor filters)
  - Spatial Dominant Energies (Filterbank of 40 Spatial Gabor filters)

### Energy Curves

- Simple 3D to 1D Mapping
- Mean value for each 2D frame slice of each 3D energy volume
- 4 temporal sequences of visual feature vectors.



[P. Koutras and P. Maragos. A Perceptually-based Spatio-Temporal Computational Framework for Visual Saliency Estimation, Signal Proc.: Image Comm, 2015]

### Visual Saliency in Movie Videos - Demo

#### Original RGB Frames

#### Luminance STDE

#### Color SDE



COGNIMUSE Database: Lord of the Rings: The Return of the King

### Handcrafted Audio Analysis

Teager-Kaiser Operator:  $\Psi[t] = \dot{x}^2 - x\ddot{x}$ AM-FM Modulated Audio Signal (narrow-band):  $x(t) = \alpha(t) \cos \left( \int_{0}^{t} \omega(\tau) d\tau \right)$   $\frac{\Psi[x(t)]}{\sqrt{\Psi[\dot{x}(t)]}} \simeq |\alpha(t)| \qquad \frac{\sqrt{\Psi[\dot{x}(t)]}}{\sqrt{\Psi[x(t)]}} \simeq \omega(t)$ narrow-band  $\rightarrow$  Filterbank of 25 Mel arranged Gabor filters

- **Roughness** (or sensory dissonance)
  - expresses the "stridency" of a sound due to rapid fluctuations in the amplitude
- Loudness (perceived sound pressure level)
  - Loudness model for time-varying sounds by Zwicker & Fastl (1999)



[A. Zlatintsi, E.Iosif, P. Maragos and A. Potamianos. *Audio Salient Event Detection and Summarization using Audio and Text Modalities*, EUSIPCO, 2015]

### Salient Events Classification

- Multimodal features vectors:
  - standardize features (zero mean, unit covariance)
  - compute 1st and 2nd order derivatives (deltas)
  - concatenate audio and visual features
  - Classification based conventional machine learning:
  - binary classification problem (salient / non salient video segments)
  - K-Nearest Neighbor Classifier (KNN)
    - confidence scores for every classification result
    - continuous indicator function curve  $\rightarrow$  represents the most salient events
- Scores post-processing
  - median filtering and scene normalization of saliency measurement
  - sorting the frames based on saliency measurement
  - summarization algorithm

# **CNN-based Architectures for Saliency Detection**



- Two-stream Convolutional Networks: video and audio
  - inspired from two-stream CNNs for action recognition (RGB + Flow, RGB + Depth)
  - replace the stages of feature extraction and classification with one single network
  - softmax scores of the CNN output as visual and audio saliencies
- use monomodal or multimodal annotations as ground-truth labels
  - multinomial logistic loss for binary classification:

$$\mathcal{L}(\mathbf{W}) = -\sum_{j \in Y_+} \log P\left(y_j = 1 | X; \mathbf{W}\right) - \sum_{j \in Y_-} \log P\left(y_j = 0 | X; \mathbf{W}\right)$$

employ trained models for computing saliency curves in a new video

same postprocessing of the final scores as in handcrafted frontend

# **CNN** Architecture for Visual Saliency



- deep end-to-end CNN architecture
  - input: split video into 16-frame RGB clips
    - total ~18000 clips for training
  - output: softmax score as visual saliency curve
- Iearn filterbank parameters as a sequence of 3D convolutional networks (C3D)
  - convolutions and pooling operations are applied inside spatio-temporal cuboids
- learn spatio-temporal patterns related to visual saliency
- train end-to-end using the visual-only or the audio-visual human annotation

# Audio 2D Time-Frequency Representation



temporal window of 64 audio frames

- represent the raw audio signal in the 2D time-frequency domain
  - preserve locality in both time and frequency axis
  - conventional MFCCs representation cannot maintain locality to frequency axis due to the DCT projection
- employ log-energies using 25 ms frames with 10 ms shift
  - compute first and second temporal derivatives
- temporal segments of 64 audio frames
  - synchronized with the 16-frames video clips

# **CNN** Architecture for Auditory Saliency



- deep 2D CNN architecture
  - input: 3 channel 2D input, similarly to the RGB image
    - synchronized with visual clips
  - output: softmax score as auditory saliency curve
- 2D convolutional and 2D max-pooling operations over time and frequency
  - based on the VGG idea of small kernels
- train end-to-end using the audio-only or the audio-visual human annotation

### **CNN Estimated Audio-Visual Saliency Curves**





- Audio-Visual Saliency Curves
  - two-stream CNNs trained with the audio-visual annotation labels
  - average the softmax scores
- Keyframes extracted as local extrema of the audio-visual curve

# **COGNIMUSE** Database

### Saliency, Semantic & Cross-Media Events Database

http://cognimuse.cs.ntua.gr/database

### Including:

- Saliency annotation on multiple layers
- Audio & Visual events annotation
- COSMOROE cross-media relations annotation
- Emotion annotation

### Database Content:

- 7 30-min movie clips from: Beautiful Mind (BMI), Chicago (CHI), Crash (CRA), The Departed (DEP), Gladiator (GLA), Lord of the Rings III: The return of the king(LOR), Finding Nemo (FNE)
- **5** 20-min **travel documentaries**
- **1** 100-min **movie**: Gone with the Wind (GWTW)

# Database Annotation: Saliency & Structure

### **Movie Structure:**

- Shots 370-699 (~540/movie)
- Scenes 7-23 (~14/movie)

### **Generic Sensory Saliency:**

- 1) Audio-only
- 2) Visual-only
- 3) Audio-Visual (AV)

- Based on movie elements that capture the viewers' attention instantaneously or in segments
- Done quickly/effortlessly & without any focused attention or though
- Little or no searching required

### **Attentive Saliency (Cognitive Attention):**

1) Semantics: segments that are conceptually important, e.g., phrases, actions, symbolic information, sounds....

#### **Salient Event Detection: Evaluation Metric** 0.8 multiple 0.8 thresholds € 8.0 Becall 0.6 0.4 0.4 0.2 0.2 0 0.2 0.4 0.6 0.8 0 False Positive Rate

- Compare continuous saliency curves with binary annotations
- Area Under Curve (AUC)
  - apply threshold to saliency curves
  - area under the Receiver Operating Characteristic (ROC) curve (False Positive Rate – Recall)
  - binary classification problem: (salient / non salient segments)
## **Evaluation Results – Hollywood Movies**

| A Beautiful Mind | Gladiator         |                      |        |       |        |       |              |                                                                                         |  |  |
|------------------|-------------------|----------------------|--------|-------|--------|-------|--------------|-----------------------------------------------------------------------------------------|--|--|
|                  |                   | AUC                  | V-V    |       | A-A    |       | AV-AV (mean) |                                                                                         |  |  |
|                  |                   | Results              |        |       |        |       |              |                                                                                         |  |  |
|                  |                   | videos               | Hndcr. | CNN   | Hndcr. | CNN   | Hndcr.       | CNN                                                                                     |  |  |
| Chicago          | Lord of the Rings | Six Hollywood Movies |        |       |        |       |              |                                                                                         |  |  |
|                  |                   | BMI                  | 0.718  | 0.765 | 0.823  | 0.844 | 0.842        | 0.839                                                                                   |  |  |
|                  |                   | GLA                  | 0.739  | 0.772 | 0.840  | 0.849 | 0.850        | 0.830                                                                                   |  |  |
|                  |                   | CHI                  | 0.645  | 0.706 | 0.847  | 0.815 | 0.819        | 0.820                                                                                   |  |  |
| Crash            | The Departed      | LOR                  | 0.688  | 0.738 | 0.873  | 0.872 | 0.811        | 0.832                                                                                   |  |  |
|                  |                   | CRA                  | 0.720  | 0.726 | 0.848  | 0.874 | 0.804        | 0.799                                                                                   |  |  |
|                  |                   | DEP                  | 0.778  | 0.741 | 0.822  | 0.861 | 0.824        | V (mean)   r. CNN   2 0.839   0 0.830   0 0.820   1 0.832   4 0.799   4 0.856   5 0.830 |  |  |
|                  |                   | Aver.                | 0.715  | 0.742 | 0.842  | 0.853 | 0.825        | 0.830                                                                                   |  |  |

six fold cross-validation

- five movies were used for training and tested on the sixth
- CNN-based architecture outperforms the hand-crafted frontend
  - for audio modality only in CHI we did not achieve improvement:
    - musical containing mostly music segments
    - CNN training on the other movies that do not contain this information

## **Evaluation Results – Travel Documentaries**





GoT - London

AR - Rio



| AUC<br>Results            | V-         | V     | A      | A     | AV-AV (mean) |       |  |  |  |  |
|---------------------------|------------|-------|--------|-------|--------------|-------|--|--|--|--|
| videos                    | Hndcr. CNN |       | Hndcr. | CNN   | Hndcr.       | CNN   |  |  |  |  |
| Five Travel Documentaries |            |       |        |       |              |       |  |  |  |  |
| LON                       | 0.650      | 0.806 | 0.794  | 0.830 | 0.777        | 0.814 |  |  |  |  |
| RIO                       | 0.668      | 0.718 | 0.690  | 0.737 | 0.821        | 0.805 |  |  |  |  |
| SYD                       | 0.621      | 0.771 | 0.726  | 0.787 | 0.734        | 0.863 |  |  |  |  |
| TOK                       | 0.767      | 0.831 | 0.796  | 0.849 | 0.819        | 0.856 |  |  |  |  |
| GLN                       | 0.657      | 0.679 | 0.809  | 0.894 | 0.693        | 0.810 |  |  |  |  |
| Aver.                     | 0.673      | 0.761 | 0.763  | 0.819 | 0.769        | 0.830 |  |  |  |  |

five fold cross-validation

- four movies were used for training and the fifth for testing
- CNN-based architecture outperforms the hand-crafted frontend
  - Greater improvements for visual modality

## **Evaluation Results – Full Length Movie**

Gone with the Wind – Part 1



| AUC<br>Results    | V-'        | V     | A      | A     | AV-AV (mean) |       |  |  |  |
|-------------------|------------|-------|--------|-------|--------------|-------|--|--|--|
| videos            | Hndcr. CNN |       | Hndcr. | CNN   | Hndcr.       | CNN   |  |  |  |
| Full Length Movie |            |       |        |       |              |       |  |  |  |
| GWW*              | 0.589      | 0.644 | 0.714  | 0.706 | 0.664        | 0.735 |  |  |  |
| GWW**             | 0.626      | 0.660 | 0.706  | 0.740 | 0.648        | 0.710 |  |  |  |

For the "Gone with the Wind" movie two different setups were adopted:

- i. only the six Hollywood movies were used for training (GWW\*)
- ii. all data was used for training (GWW\*\*), thus six movies and five travel documentaries
- CNN-based architecture outperforms the hand-crafted frontend for all modalities
  - Better improvements when CNN models are trained in all data

## Video summaries: travel doc & gwtw (system 2)

AR London ca 16% ca 3'40"



GWTW ca 3% ca 3' (3min from full duration movie)



3.

Multimodal (Visual + Textual) Concept Learning in Videos with Weakly Supervised Techniques

## **Visual Concepts**

Detect and recognize visual concepts in videos in a weakly supervised manner, mining their labels from an accompanying descriptive text.

1

2.

3.

4.

Visual Concepts: Spatio-temporally localized video segments that carry a specific structure in the visual domain.



G. Bouritsas, P. Koutras, A. Zlatintsi and P. Maragos, Multimodal Visual Concept Learning with Weakly Supervised Techniques, CVPR 2018

## Weak Supervision with Natural Language

#### Motivation:

- Why Natural Language?
- Rich semantics interpretable easy to extract.

#### Why Weak Supervision?

Reduce the time-consuming and costly procedure of manual annotation.

a) Achieve recognition in data annotated sparsely/imprecisely.

b) Collect new data to train fully supervised models.

#### Challenges:

- Spatio-Temporal ambiguity: absence of specific spatio-temporal correspondence between visual and textual objects.
- Semantic ambiguity: Words/sentences may have several different meanings.

#### **Multimodal Visual Concept Learning**

> **Dual Modality scheme:** Two data streams flowing in parallel.



Textual Objects

## Weakly Supervised frameworks

#### **Fuzzy Sets MIL (FSMIL):** Fuzzy bags of Multiple Instances.



Visual objects overlapping with the textual one

Membership grade



#### Probabilistic Label MIL (PLMIL):





## Multimodal Visual Concept Learning with Weakly Supervised Techniques

Discriminative clustering model (DIFFRAC):

• Ridge regression with linear classifier  $|\mathbf{f}(\mathbf{x}) = \mathbf{x}^T \mathbf{\omega} + \mathbf{b}$ 

$$\min_{\boldsymbol{Z},\boldsymbol{\omega},\boldsymbol{b}} \frac{1}{2V} \|\boldsymbol{Z} - \boldsymbol{X}^T\boldsymbol{\omega} - \boldsymbol{1}_V\boldsymbol{b}\|_F^2 + \frac{\lambda}{2}Tr(\boldsymbol{\omega}^T\boldsymbol{\omega})$$

#### Closed form w.r.t classifier

Loss + Regularizer
$$\begin{split} & \underset{Z,\xi}{\mathcal{Y}_w = \{y \mid \psi_w(y) \neq 0\}} \\ & \underset{Weighted bagmembers - FSMIL \end{split}$$
$$\begin{split} & \underset{Z,\xi}{\min} Tr(ZZ^TA(X,\lambda)) + \kappa \sum_{w \in \mathcal{W}} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{Y}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{W}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{W}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{W}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{W}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{W}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{W}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{W}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal{W}_w} f(\psi_w(y))\xi_{wy}^2, \\ & \underset{w \in \mathcal{W}}{\sum} \sum_{y \in \mathcal$$

## **Results: Face Recognition**

#### COGNIMUSE Dataset: 5 movies + scripts

| Set                               | De    | evelopme | ent   | Test  |       |       |       | All   |
|-----------------------------------|-------|----------|-------|-------|-------|-------|-------|-------|
|                                   | DEP   | LOR      | MAP   | BMI   | CRA   | GLA   | MAP   | MAP   |
| Text+MIL                          |       | 0.656    | 0.544 | 0.551 | 0.434 | 0.437 | 0.474 | 0.502 |
| SIFT+MIL [Bojanowski et al. 2013] |       | 0.879    | 0.755 | 0.724 | 0.644 | 0.681 | 0.683 | 0.711 |
| SIFT+FSMIL                        |       | 0.881    | 0.787 | 0.770 | 0.691 | 0.746 | 0.736 | 0.756 |
| VGG+MIL                           |       | 0.954    | 0.894 | 0.825 | 0.696 | 0.830 | 0.784 | 0.828 |
| VGG+FSMIL (Ours)                  |       | 0.952    | 0.908 | 0.857 | 0.731 | 0.901 | 0.830 | 0.861 |
| [Miech et al. $2017$ ]+VGG: fg    | 0.788 | 0.898    | 0.843 | 0.666 | 0.479 | 0.577 | 0.574 | 0.682 |
| [Miech et al. 2017]+VGG+FSMIL: fg | 0.810 | 0.913    | 0.862 | 0.696 | 0.505 | 0.651 | 0.617 | 0.715 |
| [Miech et al. 2017]+VGG: bg       | 0.185 | 0.189    | 0.187 | 0.304 | 0.047 | 0.052 | 0.134 | 0.155 |
| [Miech et al. 2017]+VGG+FSMIL: bg | 0.184 | 0.189    | 0.187 | 0.269 | 0.278 | 0.038 | 0.195 | 0.192 |

Bojanowski et al. 2013: treats both ambiguities with hard constraints (MIL).

- Miech et al. 2017: extra constraint for background concepts.
- Bouritsas et al. 2018: FSMIL extension

## **Results: Action Recognition**

#### COGNIMUSE Dataset: 5 movies + scripts

mean per sample accuracy curves for 6, 8 & 10 action classes.



## 3.

# Audio-Visual Gesture Recognition and Human-Robot Interaction

#### **Multimodal HRI: Applications and Challenges**

#### assistive robotics



## Chailenges

- Speech: distance from microphones, noisy acoustic scenes, variabilities
- Visual recognition: noisy backgrounds, motion, variabilities
- Multimodal fusion: incorporation of multiple sensors, integration issues
- Elderly users, Children

#### **Multimodal Gesture Signals from Kinect-0 Sensor**

(from CHALEARN 2013 Database: 20 Italian gesture phrases, 22 users, ~20 repetitions)

#### **RGB Video & Audio**



#### Skeleton (vieniqui - *come here*)



Depth (vieniqui - *come here*)



User Mask (vieniqui - *come here*)



## **Overview: Multimodal Hypothesis Rescoring + Segmental Parallel Fusion**



[V. Pitsikalis, A. Katsamanis, S. Theodorakis & P. Maragos, JMLR 2015]



- Audio and visual modalities for A-V gesture word sequence.
- Ground truth transcriptions ("REF") and decoding results for audio and 3 different fusion schemes.
- Achieved top performance (93.3%) in gesture challenge CHALEARN (ACM ICMI 2013).

## **EU Project MOBOT:** Motivation



Experiments conducted at Bethanien Geriatric Center Heidelberg



Mobility & Cognitive impairments, prevalent in elderly population, limiting factors for *Activities of Daily Living* (ADLs)

Intelligent assistive devices (robotic Rollator) aiming to provide *contextaware* and *user-adaptive* mobility (walking) assistance



**MOBOT** rollator

## Audio-gestural command recognition: Overview of our multimodal interface



## **Multi-Sensor Data for HRI**

#### Kinect1 RGB Data Kinect Depth Data



Kinect1 RGB Kinect1 Depth **MEMS Audio Data** 



#### Go Pro RGB Data HD1 Camera Data HD2 Camera Data









## **Visual action recognition pipeline**



#### Action Recognition Results (4a, 6p): Descriptors + Post-processing Smoothing

Dense Trajectories + BOF Encoding





Results improve by adding Depth and/or advanced Encoding

∎SVM

SVM + Viterbi

#### Applying Dense Trajectories on Gesture data



#### **Extended results on Gesture Recognition**



# Spoken Command Recognition

# Distant Speech Recognition in Voice-enabled Interfaces



https://dirha.fbk.eu/

## **Spoken-Command Recognition Module for HRI**

integrated in ROS, always-listening mode, real-time performance



[ I. Rodomagoulakis, A. Katsamanis, G. Potamianos, P. Giannoulis, A. Tsiami, P. Maragos, "Room-localized spoken command recognition in multi-room, multi-microphone environments", *Computer Speech & Language*, 2017. ]

## **Online Spoken Command Recognition**

#### Greek, German, Italian, English



# Audio-visual Fusion for Multimodal Gesture Recognition

## Multimodal fusion: Complementarity of visual and audio modalities

Similar audio, distinguishable gesture

#### Distinguishable audio, similar gesture





 $\begin{aligned} & \mathsf{MAX}(w_a \times score(A_1) + w_v \times score(V_3), w_a \times score(A_2) + w_v \times score(V_1)) \\ & w_a, w_v : \mathsf{modality weights} \end{aligned}$ 

## **Offline Multimodal Command Classification**

Leave-one-out experiments (Mobot-I.6a data: 8p,8g)

Unimodal: audio (A) and visual (V)



Multimodal confusability graph

#### Audio-Visual gesture recognition Online processing system – Open Source Software

http://robotics.ntua.gr/projects/building-multimodal-interfaces





[N. Kardaris, I. Rodomagoulakis, V. Pitsikalis, A. Arvanitakis and P. Maragos, *A platform for building new human-computer interface systems that support online automatic recognition of audio-gestural commands*, Proc. ACM Multimedia 2016.]

## **Clinical Studies (MOBOT)**





#### Kalamata – Diaplasis (30 patients)





Speech, Gestures, Combination: 3 repetitions of 5 commands



#### **Gesture & Spoken Command Recognition**



#### dense trajectories of visual motion









## Multimodal Fusion and On-line Integration

#### Multimodal "late" fusion



• ROS (Robot Operating System) based integration






### Validation results



CRR

(= accuracy only on **well** performed commands)

### Bethanien @ Heidelberg

| (no training, audio-gestural scenario) Back 73.8% (A)* |
|--------------------------------------------------------|
| Back 73.8% (A)*                                        |
|                                                        |
| Legs 84.7%                                             |

| Round 2<br>("back" position) |       |                            |  |  |  |
|------------------------------|-------|----------------------------|--|--|--|
| Gesture-only<br>scenario     |       | Audio-gestural<br>Scenario |  |  |  |
| Without<br>training          | 59.6% | 86.2%                      |  |  |  |
| With<br>training             | 68.7% | 79.1%                      |  |  |  |

#### Fondazione Santa Lucia @ Rome

| Round 1                                |       |  |  |  |
|----------------------------------------|-------|--|--|--|
| (no training, audio-gestural scenario) |       |  |  |  |
| Back                                   | 87.2% |  |  |  |
| Legs                                   | 79.5% |  |  |  |

#### Round 2

(no training, audio-gestural scenario, "legs" position)

83.5%







## I-SUPPORT system video





### EU project BabyRobot: Experimental Setup Room





## **Action Branch: Developed Technologies**

#### 3D Object Tracking



#### Speaker Localization and Distant Speech Recognition



#### **Multiview Gesture Recognition**



#### **Multiview Action Recognition**





### AudioVisual Localization Evaluation



- Track multiple persons using Kinect skeleton.
- Select the person closest to the auditory source position.
- Rcor: percentage of correct estimations (deviation from ground truth less than 0.5m)
  - Audio Source Localization: 45.5%
  - Audio-Visual Localization: 85.6%



## **Multi-view Gesture Recognition**



- Multiple views of the child's gesture from different sensors
- Extract Dense Trajectory features from each view
- Encoding Frameworks:
  - Bag of Visual Words (BoW)
  - Vector of Locally Aggregated Descriptors (VLAD)
- Employ different FusionSchemes



## **Gesture Recognition – Vocabulary**

Nod



Sit

Greet



Stop

Come Closer



Point











## **Multi-view Gesture Recognition - Evaluation**

|       | Single Camera |           |           | e<br>S | Fusion |       |
|-------|---------------|-----------|-----------|--------|--------|-------|
| Feat. | Kinect #1     | Kinect #2 | Kinect #3 | MEAN   | MIN    | MAX   |
| Traj. | 68.75         | 66.90     | 65.74     | 76.62  | 75.00  | 71.53 |
| HOG   | 40.74         | 33.33     | 29.40     | 39.58  | 36.57  | 39.58 |
| HOF   | 70.83         | 70.37     | 69.21     | 78.01  | 77.55  | 76.39 |
| MBH   | 76.85         | 67.82     | 68.29     | 83.80  | 80.09  | 78.24 |
| Comb. | 77.78         | 73.84     | 73.61     | 81.94  | 83.56  | 77.55 |

- 7 classes (+1 Bg): nod, greet, come closer, sit, stop, point, circle
- Average classification accuracy (%) for the employed gestures performed by 28 children (development corpus).
- Results for the five different features for both single and multistream cases.
- Results on spontaneous corpus (31 children): ~74%



# Multi-view Gesture Recognition -Children vs. Adults

- different training schemes
  - Adults models
  - Children models
  - Mixed model

Employed Features: MBH

|        |           | Gesture Recognition -Training scheme |          |       |  |
|--------|-----------|--------------------------------------|----------|-------|--|
|        |           | Adults                               | Children | Mixed |  |
| Test   |           | Acc.                                 | Acc.     | Acc.  |  |
|        | Kinect #1 | 84.79                                | 60.21    | 87.81 |  |
| lts    | Kinect #2 | 89.27                                | 53.13    | 92.19 |  |
| Adul   | Kinect #3 | 85.42                                | 55.63    | 82.08 |  |
|        | Avg       | 86.49                                | 56.32    | 87.36 |  |
|        | Fuse      | 92.19                                | 62.08    | 95.10 |  |
|        | Kinect #1 | 60.42                                | 76.85    | 77.31 |  |
| ildren | Kinect #2 | 46.99                                | 67.82    | 68.75 |  |
|        | Kinect #3 | 42.36                                | 68.29    | 70.83 |  |
| Ch     | Avg       | 49.92                                | 70.99    | 72.30 |  |
|        | Fuse      | 56.25                                | 83.80    | 80.09 |  |

A. Tsiami, P. Koutras, N. Efthymiou, P. Filntisis, G. Potamianos, P. Maragos, "*Multi3: Multi-sensory Perception System for Multi-modal Child Interaction with Multiple Robots*", ICRA 2018.



# **Distant Speech Recognition System**



• DSR model training and adaptation per Kinect (Greek models)



# Spoken Command Recognition – Children vs Adults

- different training schemes
  - Adults models
  - Children models
  - Mixed model

|        |           | DSR-Adaptation scheme |              |              |       |  |
|--------|-----------|-----------------------|--------------|--------------|-------|--|
|        |           | No-adapt              | Adults       | Children     | Mixed |  |
| Test   |           | SCOR                  | SCOR         | SCOR         | SCOR  |  |
|        | Kinect #1 | 91.76                 | 98.95        | 94.52        | 98.69 |  |
| lts    | Kinect #2 | 90.60                 | 98.70        | 90.99        | 97.85 |  |
| Adul   | Kinect #3 | 91.39                 | 98.95        | 94.11        | 98.75 |  |
|        | Avg       | 91.25                 | <b>98.87</b> | 93.20        | 98.43 |  |
|        | Fuse      | 92.41                 | <b>99.82</b> | 94.42        | 99.77 |  |
|        | Kinect #1 | 70.53                 | 72.31        | 95.95        | 82.95 |  |
| ildren | Kinect #2 | 72.48                 | 73.85        | 95.95        | 82.52 |  |
|        | Kinect #3 | 66.83                 | 67.63        | 94.60        | 80.70 |  |
| CP     | Avg       | 69.95                 | 71.20        | 95.50        | 82.06 |  |
|        | Fuse      | 64.17                 | 66.02        | <b>98.97</b> | 95.51 |  |



# Action Recognition – Vocabulary



Painting a wall



Swimming





Working Out







Playing the guitar





Dancing





### From Single-view to Multi-view Action recognition



Kinect #1 Side view 45° left

Kinect #2 Side view 45° right Kinect #3 Top view

Example of the extracted Dense Trajectories for the "Swimming" pantomime

## **Multi-view Action Recognition - Evaluation**

|       | Single Camera |           |           | Fusion |       |       |
|-------|---------------|-----------|-----------|--------|-------|-------|
| Feat. | Kinect #1     | Kinect #2 | Kinect #3 | MEAN   | MIN   | MAX   |
| Traj. | 63.08         | 48.62     | 45.54     | 64.00  | 61.23 | 62.15 |
| HOG   | 39.69         | 32.00     | 27.69     | 43.38  | 35.38 | 41.85 |
| HOF   | 68.31         | 56.31     | 48.62     | 68.31  | 65.54 | 68.92 |
| MBH   | 70.77         | 60.92     | 61.85     | 74.46  | 73.54 | 72.31 |
| Comb. | 73.85         | 63.38     | 60.00     | 74.46  | 74.46 | 73.85 |

- 13 classes of pantomime actions
- Average classification accuracy (%) for the employed gestures performed by 28 children (development corpus).
- Results for the five different features for both single and multisteam cases.
- Results on spontaneous corpus (31 children): ~69%



### Multi-view Evaluation for Action: Dense Trajectories

| Dense Trajectories (DT) Features |                |       |                  |       |              |       |  |
|----------------------------------|----------------|-------|------------------|-------|--------------|-------|--|
| Fusion                           | Feature Fusion |       | Encodings Fusion |       | Score Fusion |       |  |
| Desc.                            | BoVW           | VLAD  | BoVW             | VLAD  | BoVW         | VLAD  |  |
| Traj.                            | 59.38          | 54.15 | 65.85            | 64.62 | 63.02        | 65.23 |  |
| HOG                              | 43.08          | 45.54 | 44.00            | 50.15 | 42.60        | 45.54 |  |
| HOF                              | 62.46          | 65.84 | 68.31            | 70.77 | 67.16        | 70.15 |  |
| MBH                              | 73.85          | 75.38 | 74.77            | 76.31 | 73.08        | 74.46 |  |
| Comb.                            | 74.46          | 77.54 | 74.46            | 75.69 | 73.08        | 75.08 |  |
|                                  |                |       | 2                |       |              |       |  |

- Fusion schemes improve the performance of the best single-view cases (74.2%).
- Early fusion has the best performance.





# Children-Robot Interaction: TD video-Rock Paper Scissors



A. Tsiami, P. Filntisis, N. Efthymiou, P. Koutras, G. Potamianos, P. Maragos, "Multi3: Multi-sensory Perception System for Multi-modal Child Interaction with Multiple Robots", *Proc. Int'l Conf. Robotics* & *Automation*, 2018.



### Conclusions

### Synopsis:

- Audio-visual saliency and fusion for improved detection and recognition
- □ More Big Data  $\rightarrow$  Needs for Automatic Summarization & Video Understanding
- Multimodal Action Recognition and Human-Robot Interaction
  - Gesture Recognition
  - Spoken Command Recognition
  - Gait Analysis

### Ongoing work:

- Fuse Human Localization & Pose with Activity Recognition
- Activities: Actions Gestures SpokenCommands Gait
- Applications in Perception and Robotics

For more information, demos, and current results: <a href="http://cvsp.cs.ntua.gr">http://cvsp.cs.ntua.gr</a> and <a href="http://robotics.ntua.gr">http://robotics.ntua.gr</a>

### **Collaborators, References, Research Projects / Sponsors**

Efthymiou, Niki Filntisis, Panagiotis Kardaris, Nikos Koutras, Petros Rodomagoulakis, Isidoros Tsiami, Antigoni Zlatintsi, Nancy Pitsikalis, Vassilis Katsamanis, Nasos Potamianos, Gerasimos Potamianos, Alexandros Tzafestas, Costas

For more information, demos, and current results: http://cvsp.cs.ntua.gr and http://robotics.ntua.gr

