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Collaborators for work in this talk

 U+V decomposition, PDE Watershed+Energy 
Segmentation:
Georgios Evangelopoulos (Univ. Houston), Anastasia Sofou

 Modulation features, Weighted Curve Evolution, Texture 
Segmentation: 
Iasonas Kokkinos (Ecole Central Paris), G. Evangelopoulos
 GACs on Graphs:

Kimon Drakopoulos (MIT)
 Patch-based PDEs & Tensor Diffusions:  

Anastassios Roussos (Queen Mary Univ. London)



Outline
 Overview of Morphological Operators 

(Euclidean & Lattice)
 PDEs and Variational Formulations
 U+V: Leveling Cartoons, Texture Energy
 U+V driven PDE-based (W+E) Segmentation
 Unsupervised Texture Segmentation sing AM-

FM models and Weighted Curve Evolution
 Patch-based PDEs, Tensor Image Diffusions



Overview of Morphological
(Euclidean and Lattice) 

Concepts

Emphasis on Connected 
Operators



• Classic  operations
~1900: Cantor - Minkowski (Volume Measures): Minkowski set addition
1957: Hadwiger (Integral Geometry): Minkowski set subtraction

• Euclidean Morphology (1960s, 1970s, 1980s  )
1960s: Binary Morphology, Cellular Logic (Boolean filters,Thresh. Convol.)
1970s: Gray Morphology via Level Sets, Stochastic Geometry
1970s: Fuzzy Logic Image Processing: Max-Min filtering

+ 1980s:  Morf/Rank/Stack Filtering,  Foundations of Sup/Inf Convolutions 
Weighted MM), 
+ Denoising, Feature Extraction, Shape Analysis, Watershed Segmentation
+ Morph. Representation Theory: Every TI Increasing Set (Function) Operator is 
a Union (Sup) of erosions or an Intersection (Inf) of Dilations.  

Minimal Representation when using a Basis.
• Lattice Morphology (1990s  )

Adjunctions , Fuzzy set MM,  + Connected Operators
Invariance w.r.t. Groups of Generalized Translations. 

• PDEs for Image Processing and Vision  (1990s  )
+ Differential Morphology: Nonl ScaleSpaces, PDEs, Variational (2000s)
+ Slope Transforms:  Convex analysis, Distance transforms
+ Curve Evolution: Level Sets, Hamilton-Jacobi PDEs

Active Contours:  Balloon force,  Curvature motion
• Minimax Algebra:  (Intro.Theory,  1980s ),  + Weighted Lattices (2000s)
• Graph Morphology: (Opers., 1990s),   + PdEs, Segm. & (2000s ) 



EUCLIDEAN MORPHOLOGICAL   SET  OPERATORS

Translation:                                               Symmetric:

Dilation (Minkowski addition):

Erosion (Minkowski subtraction):

Minkowski Opening: Closing:

{ : }zB b z b B+ = + ∈ { : }sB b b B= − ∈

{ : ( ) }s
z b

b B
X B z B X X+ +

∈
⊕ = ≠ ∅ = 

{ : }z b
b B

X B z B X X −
∈

= ⊆ = 

( )X B X B B= ⊕  ( )X B X B B= ⊕• 



LEVEL  SETS
• Image

• Level Sets (threshold sets):

• Level Curves: 

• Image Reconstruction:

( , )f x y

( ) {( , ) : ( , ) }hX f x y f x y h= ≥

( ) {( , ) : ( , ) }hL f x y f x y h= =

( , ) sup{ : ( , ) ( )}hf x y h x y X f= ∈

IMAGE

LEVEL SET 80 LEVEL SET 140
LEVEL SET 200

LEVEL CURVE 80 LEVEL CURVE 140
LEVEL CURVE 200



EUCLIDEAN MORPHOLOGICAL  FLAT  OPERATORS

Dilation:
Erosion:
Opening:
Closing: 

IMAGE

DILATION  9x9

CLOS. LEVEL CURVES

EROSION  9x9 OPENING  9x9 CLOSING  9x9

EROS. LEVEL CURVES OPEN. LEVEL CURVES CLOS. LEVEL CURVES

IM. LEVEL CURVES

 ( )( ) ( )inf y Bf B x f x y∈ +=

( )( ) ( )sup  y Bf B x f x y∈⊕ −=

( )f B f B B= ⊕ 
( )f B f B B= ⊕• 



EUCLIDEAN MORPHOLOGICAL WEIGHTED  OPERATORS

Dilation (Sup-plus convolution):

Erosion(Inf-plus correlation): 

Opening: Closing:

( )( ) ( ) ( )yf g x f y g x y⊕ = ∨ + −

( )( ) ( ) ( )yf g x f y g y x= ∧ − − 

( )f g f g g= ⊕   ( )f g f g g= ⊕•  
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SUP- INF REPRESENTATION OF  TI INCREASING  OPERATORS

Theorem  (Maragos 1985,  IEEE T-PAMI 1989):

Every operator   ψ on the set F of extended-real-valued functions 
that is translation-invariant (TI) and monotone increasing can be 
represented as a supremum (infimum) of  Minkowski erosions 
(dilations) of the input by functions in its kernel K.  If  F consists 
of  u.s.c. functions and the operator is also upper-semicontinuous, 
then ψ accepts a basis and the representation becomes minimal.

Applications: 
• Composite Morphological operators
• Median, Rank, Stack filters
• Linear filters
• Image Denoising
• Curve Evolution,  Curvature Motion

*
SUP   INF   ( )   
g K h K

f f g f h
∈ ∈

⊕= =ψ   



OPERATORS  ON  COMPLETE  LATTICES
(  = partial ordering,   V = supremum,  = infimum)≤ Λ

• is increasing iff

• is  dilation iff

• is  erosion iff

• is  opening iff increasing, antiextensive

and idempotent           

• is closing iff increasing, extensive

and idempotent 

• is adjunction iff

Then:      is erosion,      is dilation,        is opening.

 ( ) ( ).f g f gψ ψ≤  ≤

  ( ) ( ).i i i if f∨ = ∨δ δ

( ) ( ).i i i if f∧ = ∧ε ε

  ( ( ) ), f fα ≤

( ( ) ),f fβ ≥

( ) ( ).g f g fδ ε≤ ⇔ ≤

ψ
δ

ε

α
2( ).α α=

β
2( ).β β=

( , )ε δ

ε δ εδ

1980s: Matheron, Serra.    1990s:  Heijmans, Ronse, Roerdink



Slope Transform
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Slope Transform
Upper:

“Inverse”  Lower Slope Transform:

Lower: 

If  f (x) is differentiable, 
ST = Legendre transform.

LST is the negative of the 
Fenchel conjugate
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Slope Response
Zero Impulse,  Zero Step

DTI / ETI Systems in Space/Time domain as Sup/Inf convolutions 

DTI, ETI  Systems in Slope domain:  Upper/Lower Slope Response

Maragos,  IEEE T-SP 1995,  T-IP 1996

Sup/Inf Convolutions in Space become Additions in Slope domain



16

Distance Transforms as Slope Filters

Lower Slope Response:

Sequential 
Distance 
Transform

Maragos,  T-IP 1996
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Slope Limiting and Lipschitz Regularization

Maragos,  SP 1994
Heijmans & Maragos, SP 1997
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Connected Image Operators
Definition (flat zones): The set of flat zones of a graylevel function f is the set
the connected components of the space where f is constant.

Definition (connected operators): A graylevel operator ψ is connected if the
partition of flat zones of its input f is always finer than the partition of the flat
zones of its output.

Properties of connected operators:

 If ψ is a connected operator, its dual ψ* (f)=- ψ(-f) is also connected

 If ψ1, ψ2 are connected operators, ψ1ψ2 is also connected

 If {ψi} are connected, their supremum i and infimum i are connected

Connected Operators:

 Act by merging flat zones

 Don’t create new image structures or new contours 

 Have excellent preservation properties (don’t modify region boundaries)

 

Salembier & Serra, IEEE T-IP 1995



IMAGE SIMPLIFICATION

• Noise Reduction
• Structure Simplification
• Redundant Information Removal 
• Preservation of Geometrical Structure and Objects’ Contours

Tool: Connected Operators
Properties:
• Merging connected components and flat zones 
• Preservation of  geometrical structure and objects’ contours
• No introduction of new contours

Elimination of dark components Elimination of bright components



CONTRAST FILTERING - Connected Operators Based on Reconstruction

Set Reconstruction (opening)
( )lim (... ( ( | ) | ) | )

B B Bn
M X X Xd d d

¥
=( | )M Xr- = Connected component of Χ that includes Μ

Binary Image Markers 120 iterations Final Result

( | ) lim ( | )n
n Bm f m fr d-
¥

=

( | ) ( )B m f m B fd = Å 

Reconstruction Opening
Greyscale image f Reconstruction Opening            

(m=f - 40)
Reconstruction Closing             

(m=f + 40)

60 iterations

( | ) ( )B m f m B fe = 

Reconstruction Closing

( | ) lim ( | )n
n Bm f m fr e+

¥
=



AREA FILTERING – Connected Operators based on Area

{ ) }: Area(i in i
X X na- ³=

Binary  Area Opening

Binary Image Area Οpening, n=200 Area Οpening n=1200
Upper Level Sets

( ) {( , ): ( , ) }X f x y f x yJ J= ³

Greyscale Image Area Οpening Area Closing

Binary Area Closing

( ) [ ]( )c c
n nX Xa a+ -=

( )( , ) sup{ :(x,y)  ( ( ))}n nf x y X fJa J a- -= Î

Greyscale Area Opening

( ) sup{ :( , ) ( ( ))}n nf x y X fJa J a+ += Î

Greyscale Area Closing



VOLUME FILTERING - Connected Operators Based On Volume

( )  και ( ( ))c
i ji j

X f X Y X f YJ J=È = =È

( )( , ) sup{ :( , )  ( ( ))}n nf x y x y X fJb J b- -= Î

Grayscale  Volume Opening

( )( , ) sup{ :( , ) ( ( ))}n nf x y x y X fJb J b+ += Î

Grayscale Volume Closing

( ) { :Area( ) }n i iX X X nb J- = ⋅ ³
Upper Level Set Volume Opening

( ) { :Area( ) }n j jY Y Y nb J+ = ⋅ ³

Upper Level Set Volume Closing

Grayscale  Image Area  Opening Volume Opening Area Closing Volume Closing



LEVELINGS – Self Dual Filtering
Self Dual Filtering: Symmetrical treatment of bright and dark image components

1 0( | ) lim ,   ( | ),   k k kk
m r f f f r f mλ −→∞

Λ = = =

( | ) ( ( ) ) ( )f r f r fλ δ ε= ∧ ∨

Leveling

ε erosion, δ dilation, with disk B
x

Λ(m|r)
tr

Mm

Image marker m Leveling

Image f ΨASF(f), n=6 ΨASF(f), n=10

ASF 2 2 1 1( ) ( (...( ( ( ( ( ))))...))
 closing,   opening

n nf fϕ γ ϕ γ ϕ γ
ϕ γ
Ψ =

Alternating Sequential Filtering



Tracking and Motion Feature Extraction in Sign Language 
Recognition 

 Skin mask extraction, morphological segmentation

 Hands and Head Tracking and labeling



Morphological PDEs:
Nonlinear  Scale-Spaces 

and
Variational formulation



PREVIOUS WORK RELATED 

• Erosion – Dilation PDEs:
Infinites. Gener. of Oper. Semigroups: Brockett & Maragos 1992 - 94.
Scale-Space Axiomatics: Alvarez, Guichard, Lions & Morel: 1992-93
Propagation of Boundaries: Boomgaard & Smeulders:  1992, 1994.

• Curve Evolution Implementation of Continuous-Scale MM:
Arehart, Vincent & Kimia 1993
Sapiro, Kimmel et al. 1993

• Levelings:
Leveling-based Scale-Spaces [Meyer & Maragos 1999]
PDE for Levelings: [Maragos & Meyer 1999]
Inf-Semilattice & Self-DualMorhology:[Keshet, Heijmans 1998, 2000]
Scale-Spaces of Triphase Operators Leveling PDE: [Maragos, IJCV
2003]



GAUSSIAN SCALE SPACE  AND  HEAT PDE

• initial image 

• multiscale Gaussian convolutions: 

• 2D (isotropic) heat diffusion PDE: 

( , )f x y

( , , ) ( , ) ( , )tu x y t f x y G x y= *

2 2
2

2 2
u u u

u
t y y

¶ ¶ ¶
= + = 

¶ ¶ ¶
 initial condition: ( , , 0) ( , )u x y f x y=

4t = 8t = 32t =



PDE FOR 2D MULTISCALE FLAT DILATIONS

• initial image         , multiscale flat struct. elements  

• multiscale dilations by disks : 

• PDE

( , )f x y

tB

( , , ) ( )( , )x y t f tB x yd = Å

2 2

2t x y
d d d

d
æ ö æ ö¶ ¶ ¶÷ ÷ç ç=  = +÷ ÷ç ç÷ ÷ç ç÷ ÷¶ ¶ ¶è ø è ø

Multiscale Disks

3t = 6t = 9t =

 ball p q
B

t
d

d
¶

=  = 
¶



Brockett  &  Maragos 1992,  IEEE T-SP 94



Function Evolution via Hypograph Dilation

0

( ) ,    + const.t
t

d A t C N ds
dt =

∝ 
 



Volume Extremization with Sup-Inf Constraints 

 0max   s.t.    u dxdy u u=  V V

0,        ( , ,0) ( , )tu u u x y u x y= ∇ =

 0min        s.t.     u dxdy u u= Λ  Λ

Theorem :  Maximizing the volume functional by keeping invariant the 
global supremum

has a gradient flow governed by the PDE generating flat dilation by disks

Similarly, the dual problem of minimizing the volume functional by keeping 
invariant the global infimum

has a gradient vector flow governed by the isotropic flat erosion PDE:

0,       ( , ,0) ( , )tu u u x y u x y= − ∇ =



Construction of a Leveling associated to 
a Reference function  f and a Marker m  

On {x: m(x)<f(x)}, the leveling increases m until creating a flat zone or hitting  f :  
hence on {x:g(x)<f(x)}, the function  g is flat.
On {x: m(x)>f(x)}, the leveling decreases m until creating a flat zone or hitting  f : 
hence on {x: m(x)>f(x)}, the function  g is flat.

g
m

f

x

Discrete Algorithm: k+1 0lim ,   g ( ( ) ) ( ),    .k B k B kk
g g g f g g mδ ε

→∞
= = ∧ ∨ =

Meyer  ISMM-1998



LEVELINGS:  DEFINITION via TRIPHASE OPERATORS

( | ) ( | ( | )) ( | ( | ))m f m m f m m f= =λ α β β αTriphase:

• A signal  g is defined as a l-Leveling of  f if it is a fixed point of 
the triphase operator  l, i.e :

• Levelings can be obtained as inf-semilattice  infimum of iterated 
self-compositions of  triphase  operators:

• Leveling operator                             is increasing and idempotent .

( | )g g f= λ

2( | ) ( | ) ... ... ( ) ( )f f f f f mm f m f m m∞Λ = λ λ λ    

( | )f m fΛ

( , ) is duality  is self-dualα β λ

,  are increasing,  is antiextensive,  is antiextensiveα β α β



MULTISCALE OPERATORS ON COMPLETE LATTICES

• Minkowski multiscale dilation/erosion by disks      at scales 

• Conditional multiscale dilation/erosion:

• Geodesic multiscale dilation/erosion:

• Additive Semigroups :

tB 0:t ≥

B( ) ,       ( )t t
B f f tB f f tBδ ε= ⊕ = 

( | ) ( ) ,     ( | ) ( )tB tBm f m tB f m f m tB f= ⊕ ∧ = ∨δ ε   

( | )( ) { : ( ( ) | ( ))},     (.)  Level Setst t
v v vm f x v x X m X f X= ∈ =δ δ

( | ) ( | )t tm f m f= − − −ε δ

( )

Unconstrained:   ( ) ( )
     Conditional:   ( ( | ) | ) ( | )

         Geodesic:   ( ( | ) | ) ( | )

t s s t
B B B

tB sB s t B

t s s t

f f
m f f m f

m f f m f

+

+

+

=
≠

=

δ δ δ
δ δ δ

δ δ δ



CONSTRAINED MULTISCALE OPERATOR

• Geodesic multiscale dilation

Binary images: 

X = marker, R = reference set, dR=geodesic metric of R

Graylevel images: is defined from threshold superposition of 

acting on level sets of   m and   f .

( | )t m fδ

( | )t X Rδ

{ }( | ) : ( , ) ,  some R
t X R x d x p t p Xδ = ≤ ∈

CONDITIONAL DILATIONSGEODESIC DILATIONS

(. | .)tδ



MULTISCALE TRIPHASE OPERATORS  LEVELINGS

( | ) ( | ) ( | ( | ))m f m f m m f∞ ∞ ∞Λ = =λ δ ε

• Conditional Triphase:

• Geodesic Triphase:

• Additive Semigroup

•Geodesic Leveling:

•Conditional Leveling:

( | ) [ ( )] ( ) ( | ( | ))t t
tB B B tB tBm f f m m m m f= ∧ ∨ =λ δ ε ε δ

( | ) ( | ( | )) ( | ( | ))t t t t tm f m m f m m f= =λ ε δ δ ε

       geodesic triphase:  ( ( | ) | ) ( | )t s s tm f f m f+=λ λ λ

 ( | ) ( | )  ( | )B B fm f m f m f∞Λ = Λλ 



PDE   FOR   2D   LEVELINGS

( , )  reference image,     m( , )  marker imagef x y x y= =

• Geodesic triphase scale-space:

• PDE

• Numerical Algorithm  (shock-capturing & entropy-satisfying for θ=Δt/ Δx ≤1)

Grid:

Conditional Triphase:

Iterate:

• Convergence to a unique leveling 

( , , ) ( | )( , )tu x y t m f x y= λ

( , , ) sign[ ( , , ) ( , )] ( , , )
( , ,0) ( , )
tu x y t u x y t f x y u x y t

u x y m x y
= − − ∇
=

, ( , , ).ˆn
i jU u i x j y n t= Δ Δ Δ

,( ) [ ( )] ( )i j ij ij ijM F M MΦ ≡ ∧ ∨β α
1 0

, , ,( ) ( ),     1,2,..., .n n n
i j i j i jU U U n−= Φ = Φ = ∞

0( ).U U∞ ∞= Φ

Maragos & Meyer, SS 1999
Maragos, IJCV 2003



PDE – GENERATED 1D LEVELINGS
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GAUSS &  LEVELING  SCALE - SPACE
Reference Reference: Level Curves

Gaus. Marker  1  (σ=4) Marker 1: Level Curves Leveling  1 Leveling 1: Level Curves

Gaus. Marker  2  (σ=8)

Gaus. Marker  3  (σ=16)

Marker 2: Level Curves

Marker 3: Level Curves

Leveling  2

Leveling  3

Leveling 2: Level Curves

Leveling 3: Level Curves

Meyer & Maragos, JVCIR 2000

r



1 2 2 1 0( , ) ( , , ) ( , , ) ( , )f f ft t f x y u x y t u x y t u x y<    

0

0

{( , ) : ( , ) ( , )}
{( , ) : ( , ) ( , )}

i i

i i

R x y f x y u x y R
R x y f x y u x y R

− −

+ +

= ≥ =

= < =




0 0 and ,        
i i i iR R R R
u u u u

− − + +
= =V V Λ Λ

Create a cartoon  simplification of  a reference image               consisting of 
several parts by using a marker                  that intersects some of these parts and 
evolves towards     in a monotone way such that all evolutions                   satisfy:

Partition the regions         and         formed by zero-crossings of              :

Evolution of        is done by maintaining all local min/max of        inside 

subregions              :                    

( , )f x y

0 ( , )u x y
f ( , , )u x y t

R− R+
0f u−

u 0u
/ i iR R− +

f is a inf-semilattice order w.r.t. a reference f

0( , ) ( , , ) ( , ) ( , )    f x y u x y t f x y u x y t − ≤ − ∀



Variational Formulation of Levelings

0 0min    s.t.    ,     
i i i iR R R R

u f dxdy u u u u
− − + +

− = = V V Λ Λ

0

( , , ) / sgn( )
( , ,0) ( , )
u x y t t u f u

u x y u x y
∂ ∂ = − − ∇

=

Theorem:  The gradient flow  for the optimization problem

is given by: 

0

0

{( , ) : ( , ) ( , )}
{( , ) : ( , ) ( , )}

i i

i i

R x y u x y f x y R
R x y u x y f x y R

− −

+ +

= ≥ =

= < =




Maragos, IJCV 2003



U+V Decomposition and
related PDE-based 

Watershed & T-Energy 
Image Segmentations

References:
• P. Maragos & G. Evangelopoulos,  ISMM-2007
• G. Evangelopoulos & P. Maragos,  CVPR-2008.
• A. Sofou & P. Maragos,  IEEE T-IP 20008



Image decomposition
 Image (u+v) model
 «cartoon» u (edges, contours, objects, shapes)
 texture v (oscillations, details, noise)

 Inverse problem: image decomposition
 Energy minimization

 Total variation, convex optimization, PDE’s 
 Wavelets and projections on function bases, dictionaries

 Applications: image restoration, inpainting, analysis

2, , , :f u v f u v= + Ω ⊂ℜ →ℜ



Variational schemes 

 Mumford-Shah image simplification

 Total Variation minimization (Rudin, Osher & Fatemi):

 Texture = Oscillatory functions (Y. Meyer):

 u+v (Vese & Osher):

2

TV 2
( )ROFE u u u fλ= + −

( ) ( ) 2

TV 2
, divVO p

E u g u f u g gλ μ= + − + +  

ROF

VO

cartoon texture

1 2div x yv g g g= =∂ +∂

TV
u u dxdy

Ω

= ∇

image



Leveling-based cartoons
 Leveling cartoon approximations
 u: leveling of image f 
 M: marker (e.g. Gaussian, anisotropic)

 Residual
 finer scales information 
 contains texture v 

 Multi-scale levelings
 hierarchy of cartoons/residuals

 causality property:  uj is a leveling of ui for j>i

 markers are samples of a scale-space 

( )|u M f= Λ

r f u= −

( )1| , 1, 2,...,i i iu M u i n−= Λ =

0u f=

iiM f Gσ= ∗

i ir f u= −

level 1 (σ1=4)

level 2 (σ2=16)

level 0 (image)



Multiscale leveling decomposition (example)

image leveling residualmarker

 2-level cartoons and residuals via levelings with markers-samples of an isotropic 
Gaussian scale-space

1 1M f Gσ= ∗

2 2M f Gσ= ∗

( )1 1 |M fu = Λ

( )2 2 1|M uu = Λ

1 1f ur = −

2 2f ur = −

f

1 2u u−

level 1, 
(σ1=4) 

level 2, 
(σ2=8)



Leveling cartoons
a. preserve regional maxima & 

minima and do not create new 

b. preserve the sense of variation 
between neighbour pixels

c. TV norm decreases monotonically

d. scale controlled by (the scale) of 
the marker image

TV cartoons
a. preserve the global mean

b. preserve the global variance

c. scale controlled by the 
regularizing constant

Comparisons with TV cartoons
 Levelings decrease the Total Variation norm

1i iu u f+∇ ≤ ∇ ≤ ∇  



Levelings for Smoothing-Decomposition

OSV (U+V)ROF (TVmin) Leveling (Gauss) Leveling (Anis.) 

# iter = 50 # iter = 50 σ = 4 K = 20

|U|TV =10.7 |U|TV =10.2 |U|TV =13.4 |U|TV =16.3

# iter = 100# iter = 100 σ = 16 K = 40

|U|TV =8 |U|TV =9.1 |U|TV =8.4 |U|TV =14.5



 Locally narrowband image texture (Bovik, Havlicek etal.)

 analogies between AM-FM and Y.Meyer’s oscillating functions for texture

 Inst. Amplitude & Frequency estimation (Maragos & Bovik , JOSA1995):
 Multiband Gabor filtering

 2D Energy Operator  

 Demodulation via the Energy Separation Algorithm (ESA):

AM-FM Texture Model 

( )
( ) ( )

( ),a x y
f

f x f y
Ψ

Ψ Ψ
≈

+∂ ∂ ∂ ∂

( ) 1( ) ( , ) ,f x f x yωΨ ∂ ∂ Ψ ≈ ( ) 2( ) ( , )f y f x yωΨ ∂ ∂ Ψ ≈

( ) ( ), ,x y x yφ ω∇ =


( ) 2 2f f f fΨ ∇ − ∇=

( ) ( ) ( ), , cos , ,f x y a x y x yφ = ⋅  



Multiband Texture Energy Tracking (I)
 Texture modulation energy of a locally narrowband component 

 Bandpass filter the “texture image part” to isolate components 

 Impulse Responses of a 2D Gabor filterbank  

 k-filter: 
 Bandwidth parameters              , 
 central frequency vector

 Filterbank design
 polar arrangement in spectral domain
 octave bandwidth, equal bandwidth params
 typical design (40 filters, 5 scales, 8 orientations) 

[ ] 22cos( )a aφ φΨ ≈ ∇

( ) ( )( ) ( ), , ( , ),k k k kf x y v g x y v g x y= ∗ ≈ ∗

( ) ( ) ( ), , cos , ,f x y a x y x yφ = ⋅  

( ) { } ( ){ }2 2 2 2, exp exp ,k k k kh x y a x b y j x y= − − Ω ⋅


( , )k ka b

kΩ




Multiband Texture Energy Tracking (II)

MAT energy

 Maximum Average Teager (MAT) energy 
 Energy tracking  from the set of filtered, narrowband texture components

 ha: local averaging filter,  hk: the k-th Gabor filter-channel

 Indicates texture structure (analysis, detection, classification)
 Criterion for the extraction of the texture dominant component
 Dominant modulation features (amplitude, frequency, energy) 

( ) ( )( )( ){ }mat ( , ) argmax ,k a
k

v x y v h h x yΨ = Ψ ∗ ∗

grayscale3D

image dominant component



MAT energy for Texture detection
 Texture energy measurements for texture markers

 indicate texture areas 
 quantify region ‘texturdeness’  
 roots of the MAT energy

 Markers extracted from the texture image part (e.g. leveling residual)
 absence of large scale, geometric structures and features (edges, contours, blobs, contrast)
 f=u + v: texture + objects, v: texture, details, oscillations

1 1f ur = −

f
image 

leveling (σ=2) 
residual 

( )( )1 4
matΨ ⋅( )matΨ ⋅( )matΨ ⋅



Leveling-based decomposition (Gaussian Markers)

 Cartoon = second-order leveling by Gaussian markers
 1st level 
 2nd level

 Texture = residual from ‘leveling on residual’
 1st level 
 residual   

( )1 1 | ,u M f= Λ

cartoon

texture

( )2 2 1| ,u u M u= = Λ
1 1M f Gσ= ∗

2 2M f Gσ= ∗
1 1r f u= −

( )3 1| ,ru M r= Λ
3 1 3 3 1 2,M r Gσ σ σ== ∗

1 rv r u= −

1u u

1 1f ur = −

f 1 2u u−

1st level

residual reconstruction

ru u v+v



Leveling-based decomposition (Energy markers)

 Texture component v is retrieved by
a. leveling the ‘cartoon’ residual                                      using texture-based markers
b. keeping the ‘new’ residual 

 Energy-based texture markers 
 mappings/transforms of the texture MAT operator (e.g. signed roots) 

( )( )( )1
1 1 mat 1 1sign( ) | , 1,2

k
v r r r r k = − Λ Ψ =

 


Texture components 

Markers 

( )1 mat 1T r= Ψ 2 1sign( )T r T=

( )1 1 |r f M f= −Λ

3 1T T= 4 1sign( )T r T=

( )1 1-Λ |v r T r=

T



Application (Prehistoric Wall-Painting Restoration)

Section of ‘Potnia’ prehistoric wall painting in Thira, Acrotiri   

Image f Cartoon (u2) u1-u2 u1

residual (r1) Texture (v) u+v energy marker

f-u-v cartoon (VO) f-u-v (VO) texture (VO)



Generalized Watershed and PDEs for 
Geometric-Textural Segmentation

 Image Preprocessing and Simplification
 Image Decomposition into Constituent Components 
 Feature Extraction
 Generalized Watershed and PDEs
 Coupled Contrast-Texture Segmentation

Sofou & Maragos, IEEE T-IP,  2008



IMAGE DECOMPOSITION INTO CONSTITUENT COMPONENTS

: cartoon,   :  texture,  : noise
f u v w
u v w
= + +

( | ),     u m f v f= Λ = −Λ

Image = geometrical structure + texture + noise

1 1 1( | ),..., ( | )n n nu m f u m u −= Λ = Λ
Levelings Pyramid

u+v Decomposition 

Image Leveling cartoon Texture

Image Leveling cartoon Texture

Cartoon u: geometrical structure 
information, partly smooth with flat plateaus
Texture v: texture information, texture 
oscillations (quick variation of intensity)

m1

m2

m3

Λ1

Λ2

Λ3



REGION MARKERS
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FLOODING PROCESS

marker g

function f

 The gradient image is flooded from pre-selected sources (marker set).
 A lake is created from each flooding source.
 The water altitude rises inside each lake.
 The segmentation boundaries are formed at points where the emanating

waves meet.

Selected minima



FLOODING CRITERIA AND TYPES OF WATERSHED FLOODING

Flooding Criterion: characteristic that
all lakes (associated with the flooding
sources) share with respect to water.
By varying the flooding criterion
different types of segmentation can be
obtained.

 Altitude /height (contrast criteria)
=> Height Watershed Flooding.

 Area (size criteria)
=>Area Watershed Flooding.
 Volume (contrast and area criteria)

=>Volume Watershed Flooding.

Flooding with constant height criterion

Flooding with constant volume criterion



Level Function Evolution PDE:

: space-dependent speed function given by

( , )
( , )
cV x y

f x y
=



( , )V x yt
f f¶ = 
¶

( , )V x y

UNIFORM HEIGHT FLOODING - 2D CASE

Level Curve Evolution PDE:

Level Set formulation

: evolving space function

x

y

C

N

Γ(t)

Γ Δ(t+ t)
ΔA

A(t)

Planar projection of a lake of a 2D function

: closed planar curve  of the lake boundary 
: position vector of the closed planar curve

( )tG
( )C t


C c Nt f
¶ = ⋅
¶ 

 

( , , )x y tf
{ }( ) ( , ): ( , , ) 0t x y x y tfG = =



UNIFORM VOLUME FLOODING - 2D CASE

: wave emanating from a lake flooded under the constraint of uniform 
volume speed.

becomes        => area enclosed by the propagating wave at time t

Level Curve Evolution PDE:

Level Function Evolution PDE:

time and space dependent speed function

x

y

C

N

Γ(t)

Γ Δ(t+ t)
ΔA

A(t)

Planar projection of a lake of a 2D function

C


( )L t ( )A t

( )
C c Nt A t f

¶ = ⋅
¶ 

 

( , , )V x y tt
f f¶ = 
¶

( , , )
( ) ( , )

cV x y t
A t f x y

=




MULTI-CUE SEGMENTATION

( )
C c Nt A t f

¶ = ⋅
¶ 

 

Intensity 
contrast

size

Texture 
Quantification ?

MAT
( )f+Ψ

texture

• Watershed flooding term 
(uniform  height or volume) 
stops curve at strong edges

•Texture modulation energy 
term pushes curve away from 
areas of high energy without 
trapping it in-between  texture 
edges

Texture Modulation 
Energy



COUPLED MULTI-CUE SEGMENTATION

MAT

1
2 ( )

Area( )
v

C N
t t u


l

l
æ ö¶ ÷ç ÷= + Y ⋅ç ÷ç ÷÷ç¶ è ø

MAT (.)Ψ

Component Decomposition f u v= +

= +

f u v

(.)∇

Coupled Multicue 
segmentation Scheme

MAT
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v
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PARAMETER  ESTIMATION

MAT

1
2 ( )

Area( )
v

t t u
l

l
æ ö¶F ÷ç ÷= + Y Fç ÷ç ÷÷ç¶ è ø

1λ 2λ

2
1

2
2

( , ) [ *( ) ]( , )
( , ) [ *( ) ]( , )
x y G f v x y
x y G f u x y

σ

σ

λ
λ

= −

= −
1 2 1λ λ+ =

Normalization

1 20.3,  0.7λ λ= =

1.258 (opt fix)

1 2( , ), ( , )x y x yλ λ

1.200
(adaptive)

1 21, 0λ λ= =

1.259
(fixed)

1 20, 1λ λ= =

1.315
(fixed)Μumford- Shah quality criterion



QUALITY EVALUATION OF SEGMENTATION RESULTS

2

1 iArea

N
i

i

eF N
=

= 
Liu –Yang Global Cost Function (LY)

22( , ) ( ) | |
R R

E g g f dxdy g dxdyμ ν
−Γ

Γ = − + ∇ + Γ 

Mumford –Shah functional (MS)

N: number of regions, 
ei

2 =(f-μi)2 

 tradeoff  between preservation of 
level of detail and  suppression of non-
homogeneity.

 Punishes small regions, big number of 
regions and regions with high variance.

g: smooth  image

Γ: region contours
Mosaic Segmentation Image 

 region homogeneity
 smoothness of contours



SEGMENTATION RESULTS AND QUALITY MEASURES

Segmentation  Method
FloodingMulticue Segmentation

Quality 
Criterion

Uniform 
volume

Uniform 
height

u+v
Area(t)≠1

u+v
Area(t)=1

1.92.411.731.622.44LYTissue image
0.1550.1510.1500.1390.156MS

1.212.951.112.422.9LYAerial image

0.1850.1840.1820.1700.182MS

1 ( )MAT f
f
+Ψ

∇

Image Markers

Segmentation results

Flooding
height volume
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Region Cardinality

REVISITING QUALITY CRITERIA

Selection of criteria that  evaluate geometrical information as well as texture 
information

Total Weighted Variance of Cartoon component

Total Weighted Variance of texture component

2
2 ΜΑΤ

ΜΑΤ ΜΑΤ
1 1
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Mean texture modulation energy of the i-th region 



RESULTS

multicue

f u+v

Flooding

height volume

Comparison of region 
growing watershed-type 

methods

&

Quality criteria 
measurements



COMPARISONS WITH GROUND TRUTH DATA

Ground Truth data from Berkeley University Image Database

image segmentation Reference data (ground truth) BCE



Texture Analysis & Segmentation Using
Modulation Features, Generative Models,

and Weighted Curve Evolution

Reference:
I. Kokkinos, G. Evangelopoulos & P. Maragos, IEEE T-PAMI  2009



Modulation-feature based Region Competition-GAR

 Efficient low-dimensional texture features for segmentation based 
on the AM-FM image model. 

 Unsupervised segmentation using: 
 Curve Evolution & Level-Set methods combine efficiency & elegance 
 Region-based Terms guarantee robustness.

Advances in two directions

 Regularized demodulation, for noise-discretization robustness.  

 Probabilistic cue Integration based on generative models for 
features (edges vs. texture).

Kokkinos, Evangelopoulos & Maragos, IEEE T-PAMI, 2009



 Image AM-FM Modulation Model 

 Estimate instantaneous amplitude & frequency signals via
• Multiband Gabor filtering         Narrowband image components 

• Demodulation using 2D Energy Operator

and the ESA

( ) ( ) ( )
1

, , cos , ,
K

k k
k

I x y a x y x yφ
=

 = ⋅  

Modulation Features for Texture Analysis (I)
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Ψ
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Refs:  Maragos & Bovik,  JOSA 95,      Daugman,  JOSA 85,     Havlicek, Harding &  Bovik, 96, 00.               
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
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Modulation Features for Texture Analysis (II)
 Dominant Components Analysis (DCA) chooses at each pixel the most 

prominent channel, j

 Maximize criterion for choosing                         , among K channels

Amplitude-DCA

Teager Energy-DCA

 Using a single channel amounts to locally modeling the texture with a 
Gabor-like ‘texton’ whose characteristics are described by the DCA 
components.

( ) ( ) ( ), ,k kx y I h x y Γ = Ψ ∗ 

( )
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,
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,
max |
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k
k x y
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( ) ( ), , ,ja x y a x y= | ( , ) | | ( , ) |jx y x yω ω=
 

{ }
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arg max k
k K

j
≤ ≤
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Modulation Feature Extraction Examples

( ),a x y ( )1 ,x yω
Real Modulation Parameters

DCA Estimated( )2 ,x yω
Synthetic 

AM-FM

A-DCA E-DCA

Amplitude

Frequency 
Magnitude



 Functional expressing segmentation cost (Region Competition):

 Euler-Lagrange equations:

 Level Set Implementation & Edge-based terms (Geodesic Active Regions):

 Active Contours without Edges, Statistical approach to Snakes

( )( )
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2

;
i i
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i iC Ri
J C ds P Iμθ θ
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θ
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   

( )
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;
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;
ii

j

P IC N N
t P I

θ
μκ

θ
∂ = − +
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Unsupervised Variational Texture Segmentation

Refs:  Zhu & Yuille,  T-PAMI 96,    Paragios & Deriche IJCV 02,    Vese & Chan T-IP 01,   Yezzi, Chai & Willsky ICCV 99



DCA Features for Unsupervised Variational Segmentation

 DCA Features provide a low-dimensional and rich texture descriptor, that 
contains local information about 
• Oscillation Amplitude, (Contrast) 
• Frequency Magnitude       (Scale)
• Direction of Phase Variation (Orientation)

 Features Used for Segmentation:                                   (OR)

 Distribution                in each region is modeled as a
 multivariate Gaussian for 
 von-Mises for the orientation  

 Initialize and Iterate: 
 Estimate the parameters for each region, using the front’s current position 
 Evolve fronts in the direction dictated by region competition 

(statistics force + geometrical information)                       

1 2[ , , , ]a Iw w T [ ,| |, , ]a I w w T

( ).; iP θ
[ , ,| |]I a w

w



2D Gabor ESA
 2D energy operator with Gabor bandpass filtering  

 Gabor Energy Operator

 Differential operators are replaced by derivatives of Gabor

 Estimation of inst. amplitude and frequency by ESA

 2D Gabor ESA: need seven Gabor differential formulae 

( ) ( ) ( )( )2 2f I h I h I h I hΨ = Ψ ∗ = ∗∇ − ∗ ∗∇

( ) ( ) ( )2 2 ,x x x x xf I h I h I h I hΨ = ∗ = ∗∇ − ∗ ∗∇ ( )y yf I hΨ = ∗

( , ) ( , ) ( , )f x y I x y h x y= ∗

( )2 2, , , , , ,x y xx yy xy x yh h h h h h h∇ ∇



Regularized ESA
 Reduce complexity of applying Gabor ESA to all filters   

 Bandpass Image 

 Regularized  Energy Operator

REO needs three convolutions of      with                          of the Gaussian

 Apply Regularized ESA to each channel  

( ) ( )2 2
k k k kf f G f f Gσ σ σΨ = ∗∇ − ∗∇

( , ) ( , ) ( , )k kf x y I x y h x y= ∗

( ) ( ) ( )2 2/ ,k k x k k xf x f G f f Gσ σ σ Ψ ∂ ∂ = ∗∇ ∂ − ∗∇ ∂ 

kf 2/ , / ,x y∂ ∂ ∂ ∂ ∇

( )/kf yσΨ ∂ ∂



Cue Integration Problem

 Ubiquitous zebra image:

 In the interior,        can get the curve evolution stuck on one of the stripes.

 Along the object border the estimated amplitude of A is large and impedes the 
accurate localization of the borders.

 How can we combine different cues in an automated manner?

 The usefulness of features depends on the validity of the underlying 
model (if any).

g∇



Probability Assignments to Features
 Three simple classes of generative models corresponding to the 

texture/edge/smooth local image models are used

 A spatially varying confidence measure accounts for locality.

 A lower bound on the log likelihood can be estimated using convolution operations

 A ‘posterior probability’ for each model class is derived, offering a confidence 
measure for the related features.

 Simple and efficient method for deriving confidence measures.
Refs:  Kokkinos, Evangelopoulos, Maragos, ICIP 04   Kokkinos & Maragos, Texture workshop, 05

( | ,0) ( ) ( ( ) | ( )) (1 ( ))TP I T G x P I x S x G x c
x
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Model-based Signal/Hypothesis Reconstruction
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Model-based Cue Probabilities 
Intensity P(texture) P(edge)



 How can we introduce the confidence measures in the evolution?

 Modified RC with probability assignments to features 

: cue weight,               : edge.
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Cue Integration for Region Competition
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Features and Segmentation 

Features for Segmentation:  Intensity,  Amplitude,  Freq. Magnitude,  Freq. Orientation

Segmentation Results - Comparisons 

[ ,| |, ]a Iw T[ ,| |, , ]a I w w T [ ,| |, , ]a I w w T

Weighted RC-GAR Weighted RC-GARRC-GAR

Diffusion featuresFeats:  

I a | |w w

RC-GAR 



85

Segmentation Comparisons 

[ ,| |, , ]a I w w T

[ ,| |, , ]a I w w TWeighted RC-GAR+

RC-GAR+

RC-GAR+ Diffusion features



Unsupervis. Segmentation w. Weighted Curve Evolution



 Texture representation by simple, information rich, low-dimensional 
feature vector.

 Unsupervised segmentation scheme that combines the merits of 
Region Competition/GAR and Modulation/DCA.

 Regularized modulation feature estimation (Gabor EO, REO). 

 Probabilistic cue integration based on generative models for 
features (texture, edge, smooth areas) for improved AM-FM Region 
Competition (e.g. suppress orientation feature in smooth areas or 
amplitude along edges). 

 Segmentation of wide variety of natural textures, systematic 
evaluation on the Berkeley test set for unsupervised segmentation.

http://cvsp.cs.ntua.gr

Summary



CONCLUSIONS

• Two Nonlinear Geometric Approaches for Image Analysis and
Vision: Mathematical Morphology and Geometric PDEs/Variational .

• Applications to Multiscale Analysis and Segmentation Problems

• Morphological Operators: (i) Algebraic aspects and (ii) Variational
Formulation and related PDEs.

• Links/Synergy between MM and nonlinear PDEs for vision .

• Multi-cue approaches

Future directions:
•Minimax Algebra: Weighted Lattices
•Graph Morphology: PdEs, ACs on Graphs
• Patch-based PDEs and variational problems



Multiscale Morphology
and Geodesic Active Contours 

on Arbitrary Graphs 

References:
• P. Maragos & K. Drakopoulos,  Proc. 2011  Dagstuhl Symp. on Shape
• K. Drakopoulos & P. Maragos,  IEEE JSTSP, 2012



Tensor-based Image Diffusions Derived from Generalizations 
of the Total Variation and Beltrami Functionals 

29 September 2010
International Conference on Image Processing 2010, Hong Kong

Anastasios Roussos and Petros Maragos

Computer Vision, Speech Communication and Signal Processing Group,
School of Electrical & Computer Engineering,

National Technical University of Athens, Greece

http://cvsp.cs.ntua.gr



A. Roussos, P. Maragos Tensor-based Image Diffusions Derived from 
Generalizations of the TV & Beltrami Functionals

2

Motivation (1/2)

…
…

 Nonlinear diffusion models for Computer Vision
 Class A: Directly-designed PDEs

 Perona-Malik method [ieeeT-PAMI’90]
 CLMC regularized PDE [Catte et al, siamJNA’92]
 Coherence-enhancing diffusion [Weickert, IJCV’99]
 Method of [Tschumperlé & Deriche, ieeeT-PAMI’05]

 Class B: Variational Methods
 Total Variation [Rudin, Osher & Fatemi, PhysicaD’92]
 Vectorial Total Variation [Sapiro, CVIU’97]
 Color Total Variation [Blomgren & Chan, ieeeT-IP'98]
 Beltrami Flow [Sochen, Kimmel & Maladi, ieeeT-IP’98]

 For some methods of Class A: known connection with 
Class B, e.g. :
 Perona-Malik model

 .

 But, for several types of PDE-based diffusion methods 
no variational interpretation existed



Motivation (2/2)
 Advantages of variational interpretation of diffusion 

methods
 conceptually clear formalism
 helps with the reduction of model parameters
 easier application to problems that can be formulated as 

constrained energy minimization, e.g.:
 image restoration, inpainting, interpolation

 can lead to efficient implementations based on 
optimization techniques

3

structure tensor

diffusion tensor

 Advantages of using tensors in image 
diffusion
 Structure tensor

measure of the image variation & geometry 
in the neighborhood of each point

 Diffusion tensor 
flexible adaptation to the image structures

A. Roussos, P. Maragos Tensor-based Image Diffusions Derived from 
Generalizations of the TV & Beltrami Functionals



Contributions
 We propose a novel generic functional that:

 is designed for vector-valued images
 generalizes several existing variational methods
 is based on the structure tensor
 leads to tensor-based nonlinear diffusions that 

contain regularizing convolutions

 As special cases, we propose 2 novel diffusion 
methods:
 Generalized Beltrami Flow
 Tensor Total Variation

 These methods:
 combine the advantages of variational and tensor-

based diffusion approaches
 yielded promising performance measures in denoising

experiments

A. Roussos, P. Maragos Tensor-based Image Diffusions Derived from 
Generalizations of the TV & Beltrami Functionals

4



 Original Beltrami Flow 
[Sochen, Kimmel & Maladi, IEEE T-IP 98]
 Interpretation of a vector-valued image 

u with n channels as a 2D surface 
embedded in          :

 Flow towards the minimization of the 
surface area: tensor-based diffusion

Generalization of the Beltrami Functional (1/2)

example for the simplest case n=1
embedded  surface instant from the flow

noisy image
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 It offers an elegant way to: 
 couple the image channels and
 extend in the vector-valued case the properties of Total Variation

 But, the diffusion tensor is not regularized (no neighborhood info)
 limitations on the robustness to noise & edge enhancement

 To overcome these limitations, we generalize the 
Beltrami Functional …

A. Roussos, P. Maragos Tensor-based Image Diffusions Derived from 
Generalizations of the TV & Beltrami Functionals
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 Proposed generalization of the Beltrami functional:

 We use higher dimensional mappings of the form:

 In this way, each  x contributes to the area of the 
embedded surface by considering the image variation in 
its neighborhood

 If the patch sampling step  0, the area of the embedded 
surface tends to:

 : eigenvalues of the
structure tensor

Generalization of the Beltrami Functional (2/2)

6

image patch [Tschumperle & Brun, ICIP'09],
that contains weighted image values
not only at point x
but also at points in a window around it 



 .

 : cost function (increasing)

 : 2x2 structure tensor with:

 eigenvalues           ,  eigenvectors                (depend on K)

 Difficulty in the theoretical analysis:
In contrast to most variational methods, Euler-Lagrange
equations not applicable here

 Theorem: we have shown that the functional minimization 
leads to:

novel general type of anisotropic diffusion 7

Generalized Functional based on the Structure Tensor



Tensor Total Variation
 1st special case of the novel generic functional:

with

 Steepest descent (applying the proved theorem):

 Classic TV: special sub-case with: N=1(graylevel images) and

A. Roussos, P. Maragos Tensor-based Image Diffusions Derived from 
Generalizations of the TV & Beltrami Functionals
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Tensor Total Variation: Example

Application of Tensor Total Variation in a sequence of X-ray images

Input sequence

Output sequence

A. Roussos, P. Maragos Tensor-based Image Diffusions Derived from 
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Generalized Beltrami Flow
 2nd special case of the novel generic functional:

with

 Steepest descent (applying the proved theorem):

 Classic Beltrami flow [Sochen et. al, IEEE T-IP 98]: special sub-case with  
and minimization in the space of embeddings
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Generalizations of the TV & Beltrami Functionals

10



 Other special cases of the novel generic functional:

,  with:

 : Steepest descent:

novel regularization of the Perona-Malik model
regularization of  Sapiro’s Vectorial TV:

 (no regularizing convolution):
 Studied in [Blomgren & Chan T-IP’98, Tschumperlé & Deriche, T-PAMI’05]
 The corresponding diffusion is anisotropic only if the image 

channels are
 No incorporation of neighborhood info

Other Interesting Special Cases

11
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Denoising Experiments: Framework
 Experimental Framework

 take a noise-free reference image
 add gaussian noise
 input in the compared diffusion methods
 compute PSNR during each PDE flow and 

output the image with the maximum PSNR 
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 This framework has been repeated for 
reference images from a dataset of CIPR:
www.cipr.rpi.edu/resource/stills/kodak.html

 Both graylevel & color versions of images have been used

23 natural images of 
size 768 x 512 pixels

…

outputs



Denoising Experiments: Performance Measures
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Summary & Conclusions
 We introduced a generic functional that

 is based on the image structure tensor
 generalizes Total Variation & Beltrami Functionals

 We proved that its minimization leads to a novel 
general type of anisotropic diffusion

 We proposed two novel anisotropic diffusion methods
 Several denoising experiments showed the potential 

of the novel approach

 The proposed framework opens various new 
directions for future research 
 Many other special cases of the generic functional might be 

promising
 Thanks to the variational interpretation, such regularized 

tensor-based diffusions can be applied to other problems, 
e.g.: 
 image restoration, inpainting and interpolation
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For more information, demos, and current results:  

http://cvsp.cs.ntua.gr  

Thank you 

for your attention




