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What does TROPICAL mean?
• The adjective “tropical” was coined by French mathematicians Dominique 

Perrin and Jean-Eric Pin, to honor their Brazilian colleague Imre Simon, a 
pioneer of min-plus algebra as applied to finite automata in computer science.

• Tropical (Τροπικός in Greek) comes from the greek word «Τροπή» which 
means “turning” or “changing the way/direction”.

Polygonal lines 
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1. Elements of Tropical Geometry
“a marriage between algebraic geometry and polyhedral geometry” [Maclagan & Sturmfels 2015]

 Tropical semirings: Max-plus & Min-plus Arithmetic
 Tropical Polynomials
 Geometrical objects: tropical curves/surfaces, halfspaces, Newton polytopes
 Max-plus Matrix Algebra: “linear algebra of DP & Combinatorics” [O.R., Graphs: 

Cuninghame-Green 1979], [DES, Nonlinear Control: Baccelli et al. 2001, Butkovic 2010], 
Optimization [Gaubert et al, Max-plus group], Mathematical Morphology & Image Analysis,
Idempotent Mathematics [Maslov, Litvinov, et al]

2. Applications to Neural Networks:
 Tropical Geometry of NNs with PieceWise-Linear (PWL) Activations
 Advances in Morphological Networks: Training and Pruning
 NN Minimization via Tropical Polynomial Division and Zonotopes

3. Optimization and Tropical Regression:
 Optimal solutions of max-plus matrix equations 
 Tropical Regression: fitting tropical polynomials to data 

Outline (and some introductory references)
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Tropical Semirings 
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Maslov Dequantization  Log - Sum - Exp approximation 
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(Maslov "Dequantization" in idempotent mathematics [Maslov 1987, Litvinov 2007])

   lim log( ) max(

Log-Sum-Exp (LSE) a

, )

   lim( ) log( ) min(

pproximation

)

 

,

a T b T

T
a T b T

T

T e e a b

T e e a b
↓

− −

↓

⋅ + =

− + =

Effect of 
temperature 
parameter 𝑻



7

Graphs of Max-plus Tropical 1D Polynomials

Cubic polynomial
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Max-plus and Min-Plus Tropical 1D Polynomials 
Euclidean Max-plus Min-plus  
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Tropical Curve of Max/Min-Polynomials 
Tropical curve of  p(x,y) =
“Zero locus” of a max/min polynomial is the set of points where the max/min is attained by 
more than one of the  “monomial” terms of the polynomial.

Tropical curve of the max-polynomial Tropical curve of the min-polynomial
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Tropical Curve vs Newton Polytope
Max polynomial

Newton polytope N(p) of  max polynomial p
is the convex hull of its coefficients’ vectors.

“Zero locus” of a max polynomial is the 
set of points where the max is attained by 
more than two polynomial terms.

Tropical curve V(p) of  
p(x,y) = max(x,y,0) 

Duality between Newton polytope N(p)
and tropical curve V(p) 
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Graph and Trop Curve of a tropical “Conic” polynomial

Graph of  p(x,y) 
and
its Tropical Curve = set of (x,y) points 
where the min is attained by more than 
one terms.

2 2classical:  " "
tropical:   ( , ) min( 2 , , 2 , , , )   
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p x y a x b x y c y d y e f x
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Tropical Polynomial of degree 2 in two variables  
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Obtain Tropical Polynomials via Dequantization
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Tropical Half-spaces and Polytopes in 2D

The region separating boundaries are tropical lines (or hyper-planes).

Tropical Polyhedra are formed from finite intersections of tropical  
half-spaces. Polytopes are compact polyhedra.

maxTropical (affine) Half-space of  n [ Gaubert & Katz 2011]
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Tropical Halfspaces and Polyhedra in 3D 
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(Extended) Newton Polytope

Let 𝑝 𝒙 =  maxୀଵ,…,(𝒂் 𝒙 + 𝑏) be a max-polynomial.

Definition ((Extended) Newton Polytope): We define as the 
(Extended) Newton Polytope of 𝑝 the following:Newt 𝑝 = conv 𝒂, 𝑖 = 1, … , 𝑘ENewt 𝑝 = conv{(𝒂, 𝑏), 𝑖 = 1, … , 𝑘}
where conv denotes the convex hull of the given set.

Theorem [Charisopoulos & Maragos, 2018; Zhang et al., 2018]:

Maxpolynomials with the same vertices in the upper hull of their 
Extended Newton Polytope correspond to the same function.
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Examples of  (Ext) Newton Polytopes

Figure: Polytopes ofmax (3𝑥, 2𝑥 + 1.5, 𝑥 + 1, 0). Figure: Polytopes ofmax (2𝑥, 𝑥 + 𝑦 + 1, 𝑥 + 1, 𝑦 + 1, 1).
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Newton Polytope and Maxpolynomial Function

• “Upper” vertices of ENewt 𝑝
define 𝑝(𝑥) as a function.

• Geometrically: max 3𝑥 + 1, 2𝑥 + 1.25, 𝑥 + 2, 0= max(3𝑥 + 1, 𝑥 + 2, 0)
(extra point is not on the upper hull).

ENewt(𝑝), 𝑝 𝑥 = max 3𝑥 + 1, 𝑥 + 2,0
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Tropical  Algebra of Max-plus Polynomials 
Tropical Geometry of their Newton Polytopes

Newton polytopes  of (a) two max-polynomials  
p1(x,y) = max(x+y, 3x+y, x+2y) and  p2(x,y) = max(0, -x, y, y-x), 

(b) their  max(p1 , p2),  and (c) their sum  p1 + p2 



References:
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Tropical Geometry of Neural Nets 
with Piecewise-Linear Activations
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[Charisopoulos & Maragos, 2017]
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[Charisopoulos & Maragos, 2018]
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[Charisopoulos & Maragos, 2018]
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Geometric Algorithm:  Randomized method for Sampling the Extreme Points of 
the Upper Hull of a Polytope  [Charisopoulos & Maragos 2019, arXiv:1805.08749v2], 
[Maragos, Charisopoulos & Theodosis, Proc. IEEE 2021]
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Geometry & Algebra of NNs with PWL Activations
Theorem (Wang 2004): A continuous piecewise linear 
function is equal to the difference of two max-polynomials.

Theorem (Charisopoulos & Maragos 2018): The essential 
terms of a tropical polynomial are in bijection 1 − 1 with the 
vertices on the upper convex hull of its extended Newton 
polytope.

Theorem (Zhang et al. 2018): A neural network with ReLU-
type activations can be represented as the difference of 
two max-polynomials, i.e. with a tropical rational function.
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Morphological Networks: 
Geometry, Training, and Pruning
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Motivation

 Explosion of ML research in the last decade (now models with near-
human or even human performance)

 Recent advances indicate shift towards nonlinearity, but…

 ...the “multiply-accumulate” (= linear) activations of the perceptron are 
still ubiquitous

Our Questions:

• Are dot products and convolutions the only biologically plausible models of 
neuronal computation?

• Can we use results and tools from “nonlinear” mathematics to reason 
about complexity and dimension of learning models in current literature?
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Rosenblatt's perceptron

 Introduced in 1943, still prevalent neural model
 Activation:
 Nonlinearity at the output (e.g logistic sigmoid, ReLU):

 Multiply-accumulate architecture → archetypal building block of all 
architectures (e.g. fully-connected, convolutional etc.)
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Max-
plus 

Matrix 
Algebra



Morphological Operators  on Lattices
(  = partial ordering,   V = supremum,  = infimum)≤ Λ

• is increasing iff

• is  dilation iff

• is  erosion iff

• is  opening iff increasing and antiextensive

and idempotent           

• is closing iff increasing and extensive

and idempotent 

• is adjunction iff

Then:   ε is erosion,   δ is dilation,  

δε  is opening (projection),  εδ is   closing (projection). 

 ( ) ( ).f g f gψ ψ≤  ≤

  ( ) ( ).i i i if f∨ = ∨δ δ

( ) ( ).i i i if f∧ = ∧ε ε

 ( ( ) ), f fα ≤

( ( ) ),f fβ ≥

( ) ( ).g f g fδ ε≤ ⇔ ≤

ψ
δ

ε

α
2( ).α α=

β
2( ).β β=

( , )ε δ

[ Serra  1988;  Heijmans & Ronse 1990 ]

(Galois connection) 
Residuation pair

(“Tropical Adjoints”)



Solve  Max-plus Equations
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Morphological Perceptron

 Introduced in the 1990’s. Instead of multiply-accumulate, computes a 
dilation  (max-of-sums):

 Ritter & Urcid (2003): argued about biological plausibility and proved that 
every compact region in n-dim Euclidean space can be approximated by 
morphological perceptrons to arbitrary accuracy.

 Related to a Maxout unit.

or an erosion:
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Feasible Regions & Separability Condition for Max-plus Percepton

[ Charisopoulos & Maragos, 2017 ]

Max-plus perceptron

Feasible Region = Tropical Polyhedron

Separability Condition, equivalent 
to Nonempty Trop. Polyhedron
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Morphological Neural Nets (MNNs) and Training Approaches
• Constructive Algorithms
Dendrite Learning [Ritter & Urcid, 2003], Iterative Partitioning / Competitive Learning [Sussner & Esmi, 
2011]: combine (max, +) and (min, +) classifiers, build “bounding boxes” around patterns

- "perfect" fit to data, no concept of outlier
• Morphological Associative Memories
Introduce a Hopfield-type network, computing (noniteratively) a morphological/fuzzy response (e.g. 
Sussner & Valle, 2006):

• Gradient Descent Variants
Min-max classifiers [Yang & Maragos, 1995], MRL nodes [Pessoa & Maragos, 2000], Dilation-Erosion 
Linear Perceptron [Araujo et al. 2012].

• Recent Approaches:
Convex-Concave Programming (CCP) for Max-plus Perceptron and DEP  (Binary Classification) 
[Charisopoulos & Maragos 2017 ]
Reduced Dilation-Erosion Perceptron (r-DEP)  trained via CCP  for Binary Classification [Valle 2020]
Dense Morphological Networks [Mondal et al. 2019] 
Deep Morphological Networks [Franchi et al. 2020]
r-DEP for Multiclass Classification via CCP,  L1 Pruning on Dense MNNs [Dimitriadis & Maragos 2021]
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Our Approach for Training MP on Non-separable Data

Training a (max, +) perceptron can be stated as a difference-of-convex (DC) optimization 
problem. Solved iteratively (but global optimum not guaranteed) by the Convex-Concave 
Procedure (CCP) [Yuille & Rangarajan, 2003], implemented via DCCP [Shen et al. 2016]

Given a sequence of training data

Some measure of "being outlier"
Positive only if misclassification occurs at k-th pattern

Negative

Positive 
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Gradient Descent vs. CCP for Training (max,+) Perceptron

Two Binary Classification Experiments.
Gradient descent with fixed N = 100 epochs vs. CCP using the DCCP toolkit 
for CvxPy (default parameters).

CCP: more robust results
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Dilation-Erosion Perceptron (DEP)

Convex combination of one dilation and one erosion neuron:𝑦 = 𝑓 𝒙 = 𝜆𝛿௪ 𝒙 + 1 െ 𝜆 𝜖(𝒙)
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Dilation-Erosion Perceptron Training

𝑦 = 𝑓 𝒙 = 𝜆𝛿௪ 𝒙 + 1 െ 𝜆 𝜖 𝒙 = 𝜆𝛿௪ 𝒙 െ 1 െ 𝜆 െ𝜖 𝒙= 𝑐𝑜𝑛𝑣𝑒𝑥 െ െ𝑐𝑜𝑛𝑐𝑎𝑣𝑒= 𝑐𝑜𝑛𝑣𝑒𝑥 െ 𝑐𝑜𝑛𝑣𝑒𝑥
Training as Difference-of-Convex Optimization via Convex-Concave Programming
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Effect of 𝓝 ⇆ 𝓟 and Ordering Vector Data

Reversed labels Correct labels

Double Moons example

Reduced ordering [Valle 2020] for better ordering feature patterns: 
Let 𝑉 be a nonempty set, ℒ be a complete lattice and 𝜌: 𝑉 → ℒ be a surjective mapping. 
A reduced ordering is defined as: 𝒙 ≤ఘ 𝒚 ⇔ 𝜌 𝒙 ≤ 𝜌 𝒚  ∀𝒙, 𝒚 ∈ 𝑉.
Can be obtained via a supervised training on a set of  positive and negative examples.
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Experiments:  Multiclass r-DEP, CCP training

• Performance similar to MLP-ReLU architectures trained via SGD
• CCP training is more robust

[Dimitriadis & Maragos 2021]
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Dense Morphological Networks

Dense Morphological Network with 2 hidden layers [similar to Mondal et al. 2019]

Focus on Sparsity [Dimitriadis & Maragos 2021]  Apply ℓଵ Pruning



46

Experiments: Pruning Dense MNN vs MLP-ReLU
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Qualitative Perspectives on Sparsity

Examples of hidden layer activations for various NN models  (MNIST dataset)

𝛿, 𝜖 െ 𝐴𝑑𝑎𝑚

𝛿, 𝜖 െ 𝑆𝐺𝐷 FF-ReLU െ𝑆𝐺𝐷

FF−ReLU െ 𝐴𝑑𝑎𝑚
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Minimization of Neural Nets via 
Tropical Division and Newton 

Polytope Approximation
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Tropical Polynomials

Tropical Polynomials

Tropical Semiring 

Real coefficients
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Newton Polytopes

Newton Polytopes

Polytope computation
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Example: Polytope Computation
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General idea for Geometric NN Minimization

Original Network Polytope Approximate Network Polytope
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Maxpolynomial Division
Problem: Assume we have two maxpolynomials 𝑝(𝒙), 𝑑(𝒙)
(dividend and divisor). We want to find two maxpolynomials𝑞(𝒙), 𝑟(𝒙) (quotient and remainder) such that:𝑝(𝒙)  =  max (𝑞(𝒙)  +  𝑑(𝒙), 𝑟(𝒙))
However! The above is not always feasible (non-trivially).

Approximate Division: We relax the requirements, so that 
the polynomials we want to find satisfy:𝑝 𝒙 ≥  max (𝑞(𝒙)  +  𝑑(𝒙), 𝑟(𝒙))
We also require that 𝑞(𝒙), 𝑟(𝒙) satisfy the above maximally. 
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Algorithm for Approximate Maxpolynomial Division

1. Let 𝐶 be the set of possible 
vectors 𝒄 by which we can h-shift Newt(𝑑) (each of which 
corresponds to a linear term in 𝑞).

2. We raise the shifted version of ENewt(𝑑) as high as possible so 
that it still lies below ENewt(𝑝), 
and we mark the vertical shift as 𝑞𝑐.

3. We set the quotient equal to:𝑞(𝒙)  = max𝒄∈ (𝑞𝒄 + 𝒄்𝒙)  
and add all terms not covered by
a h-shift 𝒄 to the remainder 𝑟(𝒙).

Figure: Division Method 
Division of  𝑝 𝑥 = max 3𝑥, 2𝑥 + 1.5, 𝑥 + 1, 0  

by  𝑑(𝑥) = max(𝑥, 0). 
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Division Example (1)

Figure: Division of 𝑝(𝑥)  =  max (3𝑥, 2𝑥 + 1.5, 𝑥 + 1, 0) by 𝑑(𝑥)  =  max (𝑥, 0).

Note: The Newton Polytope of the divisor is raised as much as possible, but it cannot 
match the polytope of the dividend exactly. Thus, only 3 out of the 4 vertices are 

perfectly matched.
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Division Example (2)

Figure: Division of 𝑝(𝑥)  =  max (3𝑥, 2𝑥 + 1.5, 𝑥 + 1, 0) by 𝑑(𝑥)  =  max (𝑥 + 1, 0).

Note: In this case, the polytope of the divisor can match that of the dividend 
perfectly, so all vertices are covered.
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Application to Neural Network Minimization
General idea: Our algorithm seeks to minimize the network by 
matching the most important vertices of the Newton Polytopes 
of its maxpolynomials.

2-layer 1-output NN:
The NNs considered are the difference of two maxpolynomials.
For each of the two (+,-) maxpolynomials 𝑝(𝒙) of the network, 
we first find a divisor 𝑑(𝒙). This is done by:
Finding the most important vertices of ENewt(𝑝), via the 
weights of the network (based on which combination of neurons 
is activated).
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Method for Single Output Neuron

• Final polytope (right) is precisely under the original (left).
• The process is a “smoothing” of the original polytope. 

(From the 8 vertices of the original-yellow polytope we keep only the 
4 blue which comprise the vertices of the final-red polytope.)
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Properties of Trop. Div. Approximation  Method

1. Approximate polytope contains only vertices of the original.
2. The input samples activating the chosen vertices have the same output in 

the two networks.

3. At least    ே∑ ೕసబ 𝑂(log 𝑛′)  samples retain their output 

(𝑁 is # of samples, 𝑛 and 𝑛′ the # of neurons in hidden layer before and after 
the approximation). Note: this is not a tight bound.

Original Network Polytope Approximate Network Polytope
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Extension with Multiple Output Neurons

• What we have: Multiple polytopes (one pair for each output 
neuron), interconnected (Minkowski sums of same hidden 
neurons but with different scaling weights).

• What we want: Simultaneous approximation of all polytopes.

Upper hull of polytope, Neuron 1 Upper hull of polytope, Neuron 2
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One-Vs-All Framework

Duplicate Compress
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TropDiv Method, 
St. Deviation

TropDiv Method, 
Avg. Accuracy

Neurons Kept

0.02798.604Original
1.24596.56075%
1.17796.39250%
2.35695.15425%
2.57293.74810%
2.58992.9285%

TropDiv Method, 
St. Deviation

TropDiv Method, 
Avg. Accuracy

Neurons Kept

0.53888.658Original
2.88583.55675%
2.79983.30050%
2.84582.22425%
3.26780.43010%

Fashion-
MNIST

Dataset

Experiments: Trop. Division NN Minimization
MNIST
Dataset

[G. Smyrnis & P. Maragos, “Multiclass Neural Net Minimization, Tropical Newton Polytope Approximation”, ICML 2020]
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Neural Network Tropical Geometry

Tropical polynomial

Tropical rational function

th hidden layer neuron

th output layer neuron

1 hidden layer with ReLU
activations
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Neural Network Tropical Geometry

Generators of the zonotopes

is a linear segment

Positive and Negative 
zonotopes – or polytopes 
for deeper NNs
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Approximate Extended Newton Polytopes

vertices of the upper envelope of the 
extended Newton polytopelinear regions

Approximate extended Newton 
polytopes

Approximate tropical 
polynomials
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Approximating Tropical Polynomials

Hausdorff distance
of polytopes

Proposition Let                               and consider 
the polytopes                                                        . 
Then,
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Neural Network Approximation Theorem

Theorem: Consider two neural networks         with 
output size      and                           be the positive and 
negative extended Newton polytopes of         
respectively. Then,

Approximately equal 
zonotopes 

Approximately equivalent 
networks 
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Zonotope K-Means

K-means on the positive and negative zonotope generators
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Neural Path K-means

K-means on the vectors associated 
with the neural paths

Generalization for multi-output 
networks
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Performance Results

[ P. Misiakos, G. Smyrnis, G. Retsinas and P. Maragos, “Neural Network Approximation based on Hausdorff distance of 
Tropical Zonotopes”, Proc. ICLR 2022 ]

Binary Classification Experiments

Multiclass Classification Experiments
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Comparison with ThiNet and Baselines
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Comparison with baselines
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Tropical Regression and 
Piecewise-Linear Surface Fitting

References:
 P. Maragos and E. Theodosis, “Multivariate Tropical Regression and

Piecewise-Linear Surface Fitting”, Proc. ICASSP, 2020.

 P. Maragos, V. Charisopoulos and E. Theodosis, “Tropical Geometry and
Machine Learning”, Proceedings of the IEEE, 2021.
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Optimal Regression for Fitting Euclidean vs Tropical Lines
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Solve  Max-plus Equations

Sparse solutions: [Tsiamis & Maragos 2019], 
[Tsilivis et al. 2021]
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Optimally Fitting Tropical Lines to Data

1,...,

i

: Fit a tropical line  to noisy ,   1,..., ,
where    by minimizing  norm of error

Greatest Subsolution 

max( ,

(GLE)

) data ( , )
+err :

ˆ ˆˆ ˆ ˆ:  ( , ),   MIN  ,  MIN

or
Problem i i

i

i ii i

i

y a i m

w a b a f x

x f

b

x b
f y

f

 ∞

=

= =

=

−

+

=

=

 ˆ:  ,   GLE error /2
                                
Min Max Abs. Error (MMAE) Solution w w  μ μ ∞= + =



77

Numerical Examples of Optimally Fitting Tropical Lines to Data

1,...,

i

: Fit a tropical line  to noisy ,   1,..., 200,
where    by minimizing  of error:

Greatest Subsolution ( ˆ ˆˆ ˆ ˆ:  ( , ),   MIN  

max( , ) data ( , )
+error

,GLE)

M

  MIN

Problem i

i

i
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x f
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b f
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= +
=
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 i ˆ:  ,   GLE error /2
                                

n Max Abs. Error (MMAE) Solution w w  μ μ ∞= + =

Ground Truth:
y = max(x-2,3)
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Optimal Fitting Max-Plus Tropical Planes to Data

1,...,

: Fit a   to noisy ,
where  +error, 1,..., 100,  by minimizing  norm of error:

ˆˆ ˆ ˆ:   ( , ,

tropical plane max
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GLE MMAE

Ground Truth:
z = max(x + 5, y + 7, 9)
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 Tropical Geometry, and its underlying  max-plus algebra, 
provide many effective and insightful tools for the analysis of 
NNs with PWL activations and other ML systems. 

 Morphological NNs (with max-plus & min-plus nodes): show 
similar performance and superior compression ability compared 
to their linear counterparts. (Trained via CCP or SGD/Adam.)

 Tropical Regression: Tropical Polynomials for multidimensional 
data fitting using PWL functions. Low-complexity algorithm 
based on optimal solutions of systems of max-plus equations.

 Approximation of NNs: Tropical geometry offers effective and 
insightful tools for compression of NNs.

 Future work: extensions to deeper networks and to more general 
functions using max-* algebra on weighted lattices.

Conclusions
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