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Abstract

Active contour models are among the most popu-
lar PDE-based tools in computer vision. In this pa-
per we present a new algorithm for the fast evolution of
geodesic active contours and compare it with other es-
tablished numerical schemes. The new algorithm employs
a full time-implicit and unconditionally stable numer-
ical scheme and applies multigrid methods for the ef-
ficient solution of the occurring sparse linear system.
When we utilize very big time-steps for the numerical evo-
lution of the front, the proposed scheme has increased
accuracy and better rotational invariance properties com-
pared with the alternative AOS scheme. This allows for the
rapid evolution and convergence of the contour to its fi-
nal configuration after only very few iterations. Standard
pyramidal and/or narrowband techniques can be eas-
ily integrated into our algorithm and further accelerate
the curve evolution. Experimental results in object bound-
ary detection demonstrate the power of the method.

1. Introduction

Active contour models (also called snakes), are one of
the most important tools in computer vision. They were in-
troduced by Kass, Witkin and Terzopoulos [10] in 1987 and
have been subsequently used heavily for machine vision
tasks such as object boundary detection and moving object
tracking [3]. In an active contour model an initial contour
evolves on the image plane towards the object boundaries.
This is achieved by minimizing an image-dependent energy
functional of the contour, designed specifically so that the
contour corresponding to a (local) minimum of the func-
tional coincides with the desired object boundaries. Regu-
larization of the contour is achieved by additional energy
terms which favour the smoothness of the curve and limit

the bending effect. The whole model is formulated in a vari-
ational framework and the minimization of the functional is
usually accomplished by steepest descent techniques, which
lead to curve evolution governed by a partial differential
equation (PDE).

Despite its success, the original active contour model has
some noticeable drawbacks. First of all, it depends not only
on the intrinsic properties of the contour but also on its
parameterization, which means that it is a non-geometric
model. Secondly it cannot naturally handle changes in the
topology of the evolving contour, which are necessary in sit-
uations where no a priori knowledge of the number of ob-
jects to be detected is available.

These drawbacks of standard active contours were ad-
dressed by geometric active contour models, which were
introduced in [5] and their further development led to the
geodesic active contours model [6], [23]. According to the
geodesic active contours model, an initial curve evolves to-
wards the minimum of an energy functional, which in this
case is a geodesic in a Riemannian manifold endowed with
a metric induced by image features. The geodesic active
contours model is thus parameterization-independent. In or-
der for it also to be topologically adaptable, level set ideas
[13] are utilized. Apart from object boundary detection, this
model has been successfully employed in other problems in
vision, such as moving object tracking [14].

Although the geodesic active contours model imple-
mented in the level set framework has many improvements
over classic snakes, these improvements come at higher
computational cost, which renders its utilization for time-
critical applications problematic. In order to limit compu-
tations in the neighbourhood of the evolving contour, nar-
rowband techniques in conjuction with reinitialization tech-
niques borrowed from the level set technology [2], [19],
[15] have been used [7]. Adopting a pyramidal approach
can lead to further improvement. For the purpose of remov-
ing the stability constraint on the size of the time-step asso-
ciated with the simple explicit numerical scheme, the addi-
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tive operator splitting (AOS) scheme [22] has been adapted
to the problem of geodesic active contours [7]. Although
no stability constraint on the time-step is present when the
AOS scheme is utilized, the size of the time-step cannot be
very large because, as we will see, splitting artifacts asso-
ciated with loss of rotational invariance will emerge. The
practical implication of this is that the number of iterations
needed for the contour to converge remains quite large.

The main contribution of our paper is that the algorithm
we propose remains sufficiently accurate and maintains its
rotational invariance even when very big time-steps are uti-
lized. This allows for the rapid evolution and convergence of
the contour to its final configuration after only very few it-
erations. The new algorithm is based on the full-matrix ver-
sion of the implicit scheme and is unconditionally stable as
far as the size of the time-step is concerned. In the core of
our algorithm is the efficient solution of a big sparse lin-
ear system which occurs at each time-step. For this purpose
we apply multigrid methods [20], which were also used re-
cently in a similar context in [1] and [11]. Although the
cost per iteration of the multigrid solver is now bigger than
in the case of the AOS scheme, the overall time of evo-
lution is now typically smaller due to the drastically re-
duced number of iterations needed for the convergence of
the evolving front. Standard pyramidal and/or narrowband
techniques can naturally fit into our algorithm and further
accelerate the curve evolution. Experimental results in ob-
ject boundary detection demonstrate the applicability and
performance of the method.

Although multigrid techniques have been applied for the
solution of the geodesic active contours problem in [11],
our treatment is novel. In [11] a completely different dis-
cretization scheme is utilized, which leads to a nonlinear
system of equations per timestep, whose solution by a non-
linear multigrid solver might be complicated, requiring the
evolution of the contour on a denoised version of the im-
age (cf. Subsection 3.3). In our work the reinitialization of
the embedding function before every new step leads to a lin-
ear system which is easy to solve efficiently with multigrid
techniques. We additionally make a thorough comparison
between the multigrid approach and the AOS technique, il-
lustrating each one’s shortcomings and applicability.

2. Geodesic active contours model

Let C(q) ≡ (x(q), y(q)) : [0, 1] → R2 be a planar
curve with parameterq and I : [0, a] × [0, b] → R+ be
the intensity image on which we would like to detect the
object boundaries. The image-dependent non-parametric
curve functional to be minimized in the geodesic active con-
tours model is (see [6]):

LR = E(C) =
∫ L(C)

0

g(‖∇I(C(s))‖)ds, (1)

where s is the arc-length parameter, the edge indication
functiong : [0,+∞) → R+ is a decreasing function such
that g(0) = 1, g(r) → 0 while r → +∞, L(C) is the
Euclidean length of the contourC andLR is the geodesic
length of the contour induced by the new metricg(‖∇I‖),
which depends on the image and the form of the functiong.

The minimization of the functional in eq. (1) by means of
variational techniques leads to an Euler-Lagrange PDE. One
way to reach (local) minima is to start with an initial con-
tour and evolve it in the direction of steepest descent, intro-
ducing an artificial time variable. In order to allow the curve
to split and merge freely, the numerical implementation of
the geodesic active contours model needs to easily deal with
changes in the topology of the contour. This can be naturally
achieved utilizing level set techniques [13]. In the level set
framework the contour is defined implicitly by means of an
embedding scalar functionu(x, y, t) : R2 × [0,+∞)→ R,
which has the whole image as domain. More specifically,
the contour is defined as the zero level set of the embedding
function, i.e.C(t) = {(x, y) : u(x, y, t) = 0}. The exten-
sion ofu away from the contour is rather arbitrary, although
the signed distance transform from the contour (by conven-
tion, we assign negative values in the interior and positive
values in the exterior of the curve) is often chosen for its
good numerical properties. The evolution of the contour is
done implicitly as we evolve the embedding function under
a suitable law. In the case of geodesic active contours this
law can be shown to be [6]:

∂u(x, y, t)
∂t

= ‖∇u‖div
(
g
∇u

‖∇u‖

)
+ cg‖∇u‖, (2)

where t is the pseudo-time variable. In the last equation
we have added a “balloon” force term which acts like ero-
sion/dilation, favouring the inward (ifc > 0) or the outward
(if c < 0) motion of the contour, respectively.

3. Numerical solution of the model

While the geodesic active contours model of eq. (2) has
the advantage that it can easily deal with changes in the
topology of the evolving contour, its straightforward im-
plementation is typically less efficient than that of clas-
sic snakes. Improvements can be sought in two directions:
a) Reduction of the workload per iteration by limiting the
number of pixels on which we update the values of the em-
bedding functionu and b) Convergence of the contour in
fewer iterations by adopting numerical schemes which sta-
bly and accurately allow the evolution of the contour with
big strides. Our main focus is on the second direction by
proposing an implicit numerical scheme and an efficient
method to solve the occurring linear system. We then dis-
cuss how narrowband/pyramidal techniques can be com-
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bined with the proposed algorithm in order to reduce the
workload per iteration.

3.1. Discretization

We will first describe the discretization of eq. (2) with-
out the balloon force term. We will separately discuss the
inclusion of the balloon force term in Subsection 3.4.

In [7] Goldenberg et al. noticed the connection between
the equation of geodesic active contours evolution and the
diffusion equation. The first term in eq. (2) is of parabolic
nature and describes motion under geodesic curvature. This
can be seen clearly if we reinitialize the embedding func-
tion u to be a signed distance transform before each itera-
tion, which implies‖∇u‖ = 1. Then from eq. (2) forc = 0
we see that every step of the geodesic active contours evo-
lution corresponds to linear non-homogenous diffusion ac-
cording to the equation:

∂u(x, y, t)
∂t

= div
(
g(x, y)∇u

)
, (3)

where the conduction coefficientg(x, y) = g(‖∇I‖) de-
pends on the imageI and not on the evolving functionu.
Reflecting boundary conditions are applied.

For the time derivative in eq. (3) a forward time differ-
ence can be used:

∂u

∂t
≈ un+1 − un

τ
, (4)

whereτ is the size of the time-step.
The right hand side parabolic term of eq. (3) can be

approximated by central differences (see [22], [21]). For
hx = hy = 1 this gives:

div(g∇u)|ij ≈ gi+ 1
2 ,j(ui+1,j − uij)− gi− 1

2 ,j(uij − ui−1,j)
+ gi,j+ 1

2
(ui,j+1 − uij)− gi,j− 1

2
(uij − ui,j−1)

(5)

We can setgi+ 1
2 ,j ≈ (gi+1,j + gij)/2 and use analogous

expressions for the other similar terms.
If we number the pixels in a row-major order, we can

write eq. (5) compactly in matrix-vector notation as:

div(g∇u) ≈ Au (6)

whereA = [aij ] is theN × N (N = NxNy is the num-
ber of pixels of the image) time-independent matrix with
elements:

aij =


gi+gj

2 j ∈ N(i)
−

∑
k∈N(i)

gk+gi

2 j = i

0 otherwise,

(7)

whereN(i) denotes the 4-neighborhood of pixelPi. This
matrix is extremely sparse, having only 5 non-zero elements

per row (apart from the rows corresponding to pixels on the
sides or corners of the image where it has 4 or 3 non-zero el-
ements, respectively).

3.2. The proposed scheme

Combining the expressions in eqs. (4) and (6) we end up
with the following general discretization formula:

(un+1 − un)/τ = Au (8)

In eq. (8) we have not yet determined when the right
hand side should be evaluated. The explicit scheme(un+1−
un)/τ = Aun is the most straightforward and easy to im-
plement choice, but it is stable only forτ ≤ 0.25 [22]. This
constraint is practically very restrictive, since it typically
leads to the need for thousands of iterations before the con-
tour converges to a geodesic.

On the other hand, one can prove that the semi-implicit
scheme(un+1 − un)/τ = Aun+1 is stable no matter how
large the time-step is (see [22]). However at each iteration
the following linear system needs to be solved:

[I − τA]un+1 = un (9)

The system matrixI − τA is very large and it inherits the
sparse structure ofA described in Subsection 3.1. This spe-
cific sparse structure is not susceptible to the application
of efficient elimination techniques (the matrix doesn’t have
small bandwidth). Simple iterative methods such as Jacobi
or Gauss-Seidel converge slowly for such big systems. The
number of iterations of these iterative methods required to
reduce the error by a predefined factor is proportional to
the number of pixelsN [16]. Since the per iteration cost of
these iterative methods is alsoO(N), this leads to aO(N2)
cost for each step of (9), which is quite prohibitive.

In order to avoid solving the full-blown system (9), the
authors in [7] and [21] adopt the AOS scheme:

un+1 =
1
2

∑
l∈{x,y}

[I − 2τAl]−1un (10)

The AOS scheme is unconditionally stable and was first in-
troduced in the context of non-linear diffusion [22]. It is a
simplified version of the semi-implicit scheme (9) in which
a 2-dimensional diffusion process is approximated as the
average of two independent 1-dimensional ones. The ad-
vantage of this approach is that the two linear systems in-
volved in eq. (10) are tridiagonal and can be solved effi-
ciently (with costO(N) per step) by means of the Thomas
algorithm. The disadvantage is that when the time-stepτ
gets very big, splitting artifacts emerge due to significant
loss in rotational invariance. This constrains the size of the
time-step and keeps the number of iterations needed for the
contour to converge still large.
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In the algorithm we propose, we choose to attack the
semi-implicit scheme in its complete form (9). In order
to efficiently solve the full-blown system (9) we resort to
multigrid techniques, which are described briefly in Sub-
section 3.3. While the cost of each step is now larger, this is
compensated by the fact that really big values of the time-
stepτ give results of good accuracy and rotational invari-
ance. Using such large values forτ leads to the rapid evo-
lution of the contour to its final configuration after very few
iterations (typically less than 5, as we will see in Section 4).

We should briefly mention here that we also tested the
behaviour of the Crank-Nicholson scheme (see e.g. [17])
(un+1−un)/τ = 0.5A(un +un+1) in our problem . While
the solution remains bounded no matter how largeτ gets,
undesirable oscillations emerge with big time-steps. Since a
linear system analogous to (9) is involved in this case, too,
the Crank-Nicholson scheme is not competitive as a candi-
date for the fast evolution of geodesic active contours and
will not be examined any more in this paper.

3.3. Multigrid evolution of the contour

Multigrid methods (see e.g. [4], [8], [20]) are one of the
most general tools for the efficient solution of large sparse
linear systems that arise during the numerical solution of
PDEs. They have already been used in a similar context in
[1] and [11]. In many cases their complexity can be shown
to beO(N). We have experimentally verified this for the
case of our problem, too.

The main drawback of standard iterative methods for the
solution of linear systems (e.g. Jacobi, Gauss-Seidel) is that,
while they eliminate the high-frequency (spatially speak-
ing) part of the error quickly, they are particularly inefficient
in the suppression of its low-frequency part. For these rea-
sons these methods are called smoothers. The idea behind
multigrid is to attack both high- and low-frequency compo-
nents of the error in a multiresolution framework. Few iter-
ations of a smoother on the finest grid will smooth the er-
ror. The residual is then restricted to a coarser representa-
tion of the problem where it appears more oscillatory be-
cause of the coarser sampling. This means that a new appli-
cation of the smoother at this coarser scale (which also has
reduced cost) effectively eliminates a lower-frequency part
of the error. The process goes on recursively until we reach
a scale coarse enough for Gaussian elimination to be ap-
plied. Then the error estimates computed at the coarser lev-
els are prolonged and correct the solution at the finer levels,
until the solution at the original resolution is reached.

For two levels this translates to the following multigrid
cycle (the superscript()h denotes fine grid quantities while
the()2h denotes coarse grid quantities):

1. Relax onAhuh = fh and then compute the residual
rh = fh −Ahuh in the fine grid.

2. Restrict the residualr2h = Rrh to the coarse grid.

3. Solve directly the systemA2he2h = r2h in the coarse
grid.

4. Prolong the error to the fine grideh = Pe2h.

5. Correct the solution at the fine griduh ← uh + eh.

In geometric multigrid one needs to define both the prob-
lem in all resolutions, specifying the corresponding sys-
tem matrices, and the way the intergrid transfers are carried
out, specifying the restriction/prolongation operatorsR and
P . This is cumbersome when dealing with non-rectangular
geometries, such as the narrowband case in our problem.
Moreover, since the ”diffusion coefficient”g(‖∇I‖) is an
abruptly varying function, the convergence rate for geo-
metric multigrid with simple, matrix-independent restric-
tion/prolongation operators can be poor, a phenomenon well
studied in the multigrid community (see e.g. [20]). This
might be the reason why [11] had to use a denoised ver-
sion of the image, effectively smoothingg(‖∇I‖).

Algebraic multigrid techniques [18], [20] are particularly
convenient in this case because they require as input only
the system matrix corresponding to the finest grid. The ma-
trices for the coarser grids and the intergrid transfer oper-
ators are then computed automatically. Additionally, alge-
braic multigrid is very robust in the presence of discontinu-
ous coefficients, which is our case. Therefore we have used
algebraic multigrid in our implementation.

The proposed reinitialization ofu to be a signed distance
transform before every new step, apart from leading to the
linearized eq. (3), has the additional advantage that the coef-
ficients (7) of the system matrixA do not change over time.
This means that the process of building up the hierarchy of
grids in our multigrid solver needs only be done once, which
is another important advantage of our approach in compari-
son to [11].

3.4. Details and extensions

One important extension of the model is to integrate nar-
rowband techniques into it. This is straightforward since we
utilize algebraic multigrid methods in our algorithm. Now
the matrixA defined in (7) contains only rows correspond-
ing to pixels in the narrowband and a pixel needs to be in
the narrowband in order to belong to the neighborhoodN(i)
of pixel Pi. The integration of pyramidal techniques is also
straightforward and need not be further discussed here. Ex-
tension to the 3-dimensional case is also possible.

We examine next how the balloon force can be incorpo-
rated into the proposed algorithm. A simple idea is to per-
form the evolutions due to the two different terms of eq. (2)
sequentially. Isolating the balloon force term from eq. (2),
we get the hyperbolic equationut = cg‖∇u‖, correspond-
ing to adaptive dilation/erosion [12]. In order to derive an
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reference initial(77 pix) 1it(3.6sec-59pix)

2it(4.5sec-39pix) 3it(5.4sec-28pix) 4it(6.4sec-3pix)

Figure 1. Example on a 256x256 noisy synthetic im-
age withτ = 5 × 104 andσ = 0.01. In parentheses
the execution time and the Hausdorff distance to the
reference contour. Convergence after 4 iterations.

unconditionally stable numerical scheme for the evolution
of the zero level setC(t) under this law, we cast it in station-
ary form asC(t) = {(x, y) : T (x, y) = −ct}, where the
functionT (x, y) satisfies the eikonal PDE‖∇T‖g(x, y) =
1. We then apply the fast marching algorithm [19] to ef-
ficiently computeT . The combined algorithm utilizes the
fast marching algorithm twice per iteration: once for the
evolution of the front under the balloon force and once for
the reinitialization ofu to be a signed distance transform.
We should however note here that utilization of the balloon
force with the big time-steps typically used in the context
of our algorithm can be problematic, because the contour
evolving under the balloon force may skip over and miss
the object boundaries, something also noticed in [7].

As far as the reinitialization ofu to be a signed distance
transform is concerned, apart from the fast marching algo-
rithm, we have also considered another method [15] which
is based on the PDEdt + sign(d)(‖∇d‖ − 1) = 0. This
method gives worse results in our case, because the uti-
lization of big time-steps causes tou big deviations from
the signed distance transform, which results to slow conver-
gence of the previous PDE.

4. Experiments and comparisons

The performance of the proposed algorithm has been
tested in object boundary detection experiments performed
on both synthetic and natural images. As edge indicator
function we usedg = g(‖∇I‖) = exp

(
− ‖∇Is‖

σ

)
, where

Is denotes a smoothed version of the image produced af-
ter convolution with a Gaussian of variances. In all the ex-
periments that follows = 2. The Hausdorff distance [9] is
utilized whenever quantitative measures regarding the qual-

Im
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S

straight shape rotated by45o u values

Figure 2. Rotational invariance test. The rotation has
no effect on the result of the semi-implicit scheme.
The AOS scheme with largeτ gives different results
after a45o rotation of the image. This anisotropicity
is caused by the “shading effect” of the AOS scheme,
better visualized in the graph of the embedding func-
tion (third column). The curve evolutions have con-
verged withτ = 1000 in both cases.

ity of the results are supplied. In our implementation we
use the algebraic multigrid codeamg1r5 [18]. The tim-
ing measurements refer to overall execution time with I/O
for our implementation running on a Pentium 2 at 700 MHz
under Linux. No balloon force term has been used.

In Fig. 1 we demonstrate the rapid convergence and qual-
ity of result in the case of a noisy synthetic image with ad-
ditive Gaussian noise. We use as reference the final position
of the contour in the case of non-noisy image.

In Fig. 2 we show a demonstration of anisotropicity of
the AOS scheme which we call “shading effect”. Since dif-
fusion is carried out only parallel to the x- and y- direc-
tions, cavities with interior not completely visible by an ob-
server who scans the image only in these directions don’t
get ”lit” properly and the contour cannot get into them. The
semi-implicit scheme faces no such problem because it per-
mits omni-directional diffusion.

What is notable in the previous experiments, where our
algorithm with very large time-steps is utilized, is that the
contour overcomes the noisy spurious details in Fig. 1 and
manages to get into cavities in Fig. 2, reaching in both cases
the real object boundaries, despite the absence of a balloon
force term. This is due to the fact that the contour prop-
agates in big strides and thus does not get stuck easily in
shallow local minima. Although this behavior is not consis-
tent with that of the continuous model of eq. (2) withc = 0,
it is usually highly desirable. It is also remarkable that this
phenomenon does not exhibit any a priori inclination to-
wards inward or outward motion, in contrast to curve evo-
lution under the balloon force. The only case where the bal-
loon force seems to be indispensable is when we want to
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Figure 3. Multigrid combined with narrowband and
pyramidal techniques.Up right: Original1024× 768
image.Left collumn: The narrow band.Right collumn:
The contour. (Exec. time10.2 sec.)

initialize the contour from a point in the interior of an ob-
ject. Since in that case we usually cannot utilize very big
time-steps due to the problems reported in Subsection 3.4,
the AOS-based methods seem to be preferable in that par-
ticular scenario because of their smaller cost per iteration.

Finally, in Fig. 3 we apply our multigrid algorithm along
with narrowband and pyramidal techniques and accelerate
the contour evolution on a big image. We performed one
step per pyramid level, starting from the coarsest one.

5. Conclusions

In this paper we presented a novel algorithm for the
rapid evolution of geodesic active contours. It utilizes a
semi-implicit and unconditionally stable numerical scheme
which exhibits increased rotational invariance and relies
on multigrid methods for the efficient solution of a sparse
linear system per step. We discussed both its applicabil-
ity in various scenarios and its performance in comparison
with the AOS scheme. The experimental results we have
presented show that the new algorithm can be a promis-
ing enabling tool in the adoption of geodesic active con-
tours methods in time-critical applications.
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