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While the accuracy of feature measurements heavily depends on changing
environmental conditions, studying the consequences of this fact in pattern
recognition tasks has received relatively little attention to date. In this chapter
we discuss the effects of feature measurement uncertainty on classification and
learning rules. Such an approach can be particularly fruitful in multimodal fu-
sion scenarios, such as audiovisual speech recognition, where multiple streams
of complementary time-evolving features are integrated. For such applications,
provided that the measurement noise uncertainty for each feature stream can
be estimated, this framework leads to highly adaptive multimodal fusion rules
which are widely applicable and easy to implement. We further show that more
traditional multimodal fusion methods relying on stream weights fall under
this scheme under certain assumptions; this provides novel insights into their
applicability for various tasks and suggests new practical ways for estimating
the stream weights adaptively. The potential of the approach is demonstrated
in audiovisual speech recognition experiments using either synchronous or
asynchronous models.

4.1 Multimodal Fusion: Benefits and Challenges

Motivated by the multimodal way humans perceive their environment, com-
plementary information sources have been successfully utilized in many appli-
cations. Such a case is audiovisual speech recognition (AV-ASR) [413], where
fusing visual and audio cues can lead to improved performance in comparison
to audio-only recognition, especially in the presence of audio noise.

However, successfully integrating heterogeneous information streams is
challenging, mainly because multimodal schemes need to adapt to dynamic
environmental conditions, which can dissimilarly affect the reliability of the
separate modalities by contaminating feature measurements with noise. For
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example, the visual stream in AV-ASR should be discounted when the visual
front-end momentarily mistracks the speaker’s face.

A common theme in many stream integration methods is the utilization
of stream weights to equalize the different modalities. These weights operate
as exponents to each stream’s probability density and have been employed in
fusion tasks of different audio streams [344] and audiovisual integration [147,
412]. Such stream weights have been applied not only in conventional Hidden
Markov Models, but also in conjunction with Dynamic Bayesian Network
architectures which better account for the asynchronicity of audiovisual speech
[362]. Despite its favorable experimental properties, stream weighting requires
setting the weights for the different streams; although various methods have
been proposed for this purpose [184], a rigorous approach to adapt the stream
weights is still missing.

In this chapter, building on the recent work of [248, 404, 389], we ap-
proach the problem of adaptive multimodal fusion by explicitly taking feature
measurement uncertainty of the different modalities into account, both dur-
ing model training and testing. In single modality scenarios, modeling feature
noise has proven fruitful for noise-robust ASR [135, 442, 577, 130] and has
been further pursued in applications such as speaker verification [578] and
multi-band ASR [344]. We show in a probabilistic framework how multimodal
learning and classification rules should be adjusted to account for feature mea-
surement uncertainty. Gaussian Mixture Models (GMM) and Hidden Markov
Models (HMM) are discussed in detail and modified algorithms for classi-
fication and EM maximum-likelihood estimation under uncertainty are de-
rived. Uncertainty compensation leads to adaptive multimodal fusion rules
which are widely applicable and easy to implement. We demonstrate that
previous stream weight-based multimodal fusion formulations can be derived
from the uncertainty-aware scheme under certain assumptions; this unveils
their probabilistic underpinnings and provides novel insights into their appli-
cability for various tasks. In this context, new practical ways for estimating
stream weights adaptively are suggested. Regarding audiovisual speech, we
describe techniques to extract uncertainty estimates for the visual and audio
features and evaluate the method in AV-ASR experiments utilizing multi-
stream HMM, demonstrating improved performance. Applying the proposed
technique in conjunction with Product HMMs (P-HMM) [147, 312], which
better account for cross-modal asynchrony, can yield further improvements.

4.2 Feature Uncertainty and Multimodal Fusion

Let us consider a pattern classification scenario. We measure a property
(feature) of a pattern instance and try to decide to which of N classes
ci, i = 1 . . . N it should be assigned. The measurement is a realization x of a
random variable X, whose statistics differ for the N classes. Typically, for each
class we have trained a model that captures these statistics and represents the
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class-conditional probability functions p(x|ci), i = 1 . . . N . Our decision is then
based on some proper rule, e.g ., the Maximum A Posteriori (MAP) criterion
ĉ = argmax p(ci|x) = argmax p(x|ci)p(ci).

One may identify three major sources of uncertainty that could perplex
classification. First, class overlap due to improper modeling or limited dis-
criminability of the feature set for the classification task. For instance, visual
cues cannot discriminate between members of the same viseme class (e.g .,
/p/, /b/) [413]. Better choice of features and modeling schemes can reduce
this uncertainty. Second, parameter estimation uncertainty that mainly orig-
inates from insufficient training. Using the Bayesian Predictive Classification
rule can possibly alleviate it [220]. Third, feature observation uncertainty due
to errors in the measurement process or noise contamination. This is the type
of uncertainty we mainly address in this chapter.

4.2.1 Feature Observation Uncertainty and its Compensation in
Classification

We can formulate feature observation uncertainty considering that the actual
feature measurement y is just a noisy/corrupted version of the inaccessible
clean feature x. More specifically, we adopt the measurement model

Y = X + E , (4.1)

which is graphically depicted in Fig. 4.1 and assume that the noise den-
sity pE(e) is known. This scenario of contaminated measurements corre-
sponds to the so-called measurement error models in statistics [172]. Un-
der the observation model of Eq. (4.1), classification decisions must rely on
p(ci|y) ∝ pY (y|ci)p(ci), and thus pY (y|ci) needs to be computed.

X

C C
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Y

Fig. 4.1. Pictorial representation of feature measurement scenarios, with hidden
variables denoted by squares and observed by circles. Left : Conventional case – we
observe the features x directly. Right : Noisy measurement case – we only observe
noisy features y.

To determine the desirable noisy feature probability density function
pY (y|ci), we need to integrate out the clean feature variable x
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pY (y|ci) =

∫
pX(x|ci)pE(y − x) dx. (4.2)

Although the integral in Eq. (4.2) is in general intractable, we can ob-
tain a closed-form solution in the important special case of Gaussian data
model, pX(x|ci) = N(x;µi, Σi), with Gaussian observation noise, pE(e) =
N(e;µe, Σe). Then one can show that pY (y|ci) is given by

pY (y|ci) = N(y;µi + µe, Σi + Σe), (4.3)

implying that we can proceed by considering our features y clean, provided
that we shift the model means by µe and increase the model covariances Σi

by Σe. A similar approach has been previously followed in [442, 578, 130].
To illustrate Eq. (4.3), we discuss with reference to Fig. 4.2 how ob-

servation uncertainty influences decisions in a simple 2-class classification
task. The two classes are modeled by 2D spherical Gaussian distributions,
N(µ1, σ

2
1I), N(µ2, σ

2
2I) and they have equal prior probability. If our obser-

vation y contains zero mean spherical Gaussian noise with covariance ma-
trix σ2

eI then the modified decision boundary consists of those y for which
N(y;µ1, σ

2
1I + σ2

eI) = N(y;µ2, σ
2
2I + σ2

eI). When σ2
e is zero, the decision

should be made as in the clean case. If σ2
e is comparable to the variances of

the models, then the modified boundary significantly differs from the original
one and neglecting observation uncertainty in the decision process increases
misclassifications.
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Fig. 4.2. Decision boundaries for classification of a noisy observation (square
marker) in two classes, shown as circles, for various observation noise variances.
Classes are modeled by spherical Gaussians of means µ1, µ2 and variances σ2

1I,
σ2

2I respectively. The decision boundary is plotted for three values of noise variance
(a) σe = 0 (i.e., no observation uncertainty), (b) σe = σ1, and (c) σe = ∞. With
increasing noise variance, the boundary moves away from its noise-free position.
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4.2.2 Multimodal Fusion

For many applications one can get improved performance by exploiting com-
plementary features, stemming from a single or multiple modalities. Let us
assume that one wants to integrate S information streams which produce
feature vectors xs, s = 1, . . . , S. If the features are statistically independent
given the class label c, the conditional probability of the full observation vec-
tor x1:S ≡ (x1; . . . ;xS) is given by the product rule; application of Bayes’
formula yields the class label probability given the features:

p(c|x1:S) ∝ p(c)
S∏

s=1

p(xs|c) . (4.4)

In an attempt to improve classification performance, several authors have
introduced stream weights ws as exponents in Eq. (4.4), resulting in the mod-
ified expression

b(c|x1:S) = p(c)

S∏

s=1

p(xs|c)
ws , (4.5)

which can be seen in a logarithmic scale as a weighted average of individual
stream log-probabilities. Such schemes have been motivated by potential dif-
ferences in reliability among different information streams, and larger weights
are assigned to information streams with better classification performance.
Using such weighting mechanisms has been experimentally proven to be ben-
eficial for feature integration in both intra-modal (e.g ., multiband audio [344])
and inter-modal (e.g ., audiovisual speech recognition [147, 184, 362]) scenar-
ios.

The stream weights formulation is however unsatisfactory in various re-
spects. From a theoretical viewpoint, the weighted score b in Eq. (4.5) no
longer has the probabilistic interpretation of Eq. (4.4) as class probability
given the full observation vector x1:S . Therefore it becomes unclear how to
conceptually define, let alone implement, standard probabilistic operations,
such as integrating-out a variable xs (in the case of missing features), or con-
ditioning the score on some other available information. From a more practical
standpoint, it is not straightforward how to optimally select stream weights.
Most authors set them discriminatively for a given set of environment con-
ditions (e.g ., audio noise level in the case of audiovisual speech recognition)
by minimizing the classification error on a held-out set, and then keep them
constant throughout the recognition phase. However, this is insufficient, since
attaining optimal performance requires that we dynamically adjust the share
of each stream in the decision process, e.g ., to account for visual tracking
failures in the AV-ASR case. Although there have been some efforts towards
dynamically adjustable stream weights [184], they are not rigorously justified
and are difficult to generalize.

We will now show that accounting for feature uncertainty naturally leads to
a novel adaptive mechanism for fusion of different information sources. Since
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in our stochastic measurement framework we do not have direct access to the
features xs, our decision mechanism depends on the noisy version ys = xs +es

of the underlying quantity. The probability of interest is thus obtained by
integrating out the hidden clean features xs, i.e.,

p(c|y1:S) ∝ p(c)
S∏

s=1

∫
p(xs|c)p(ys|xs)dxs . (4.6)

In the common case that the clean feature emission probability is modeled as
a Gaussian mixture model (GMM), i.e.,

p(xs|c) =

Ms,c∑

m=1

ρs,c,mN(xs;µs,c,m, Σs,c,m), (4.7)

and the observation noise at each stream is considered independent across
streams and Gaussian, p(ys|xs) = N(ys;xs + µe,s, Σe,s), it directly follows
that

p(c|y1:S) ∝ p(c)

S∏

s=1

Ms,c∑

m=1

ρs,c,mN(ys;µs,c,m + µe,s, Σs,c,m + Σe,s) , (4.8)

which, as in the single-stream case (4.3), involves considering our features ys

clean, while shifting the model means by µe,s, and increasing the model covari-
ances Σs,c,m by Σe,s. Using mixtures of Gaussians for the measurement noise
p(ys|xs) is straightforward and could be useful in case of heavy-tailed noise
distribution or for modeling observation outliers. Also note that, although
the measurement noise covariance matrix Σe,s of each stream is the same
for all classes c and all mixture components m, noise particularly affects the
most peaked mixtures, for which Σe,s is substantial relative to the modeling
uncertainty due to Σs,c,m. The adaptive fusion effect of feature uncertainty
compensation in a simple 2-class classification task using two streams is illus-
trated in Fig. 4.3.

Although Eq. (4.8) is conceptually simple and easy to implement, given an
estimate of the measurement noise variance Σe,s of each stream, it actually
constitutes a highly adaptive rule for multisensor fusion. To appreciate this,
and also to show how our scheme is related to the stream weights formulation
of Eq. (4.5), we examine a particularly illuminating special case of our result.
We make two simplifying assumptions:

1. The measurement noise covariance is a scaled version of the model covari-
ance, i.e., Σes = rs,c,mΣs,c,m for some positive constant rs,c,m interpreted
as the relative measurement error. Intuitively, as the SNR for the s-stream
drops, the corresponding relative measurement error rs,c,m increases.

2. For every stream observation ys the Gaussian mixture response of that
stream is dominated by a single component m0 or, equivalently, there is
little overlap among different Gaussian mixtures.
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Fig. 4.3. Multimodal variance compensation leads to adaptive fusion. Figures de-
scribe a 2-class classification scenario, using two Gaussian feature streams, y1 and
y2, with equal model covariances Σs,c = σ2. The 1-D plots on the y1 and y2 axes
represent the measurement uncertainty in the corresponding stream. Left : Conven-
tional negligible measurement uncertainty scenario; the decision boundary lies on the
axes’ diagonal. Right : Significant measurement noise at the y2 stream, Σe,2 ≫ Σe,1,
in which case p(yS |c) (solid surfaces) differ significantly from p(xS |c) (transparent
surfaces); the decision boundary moves and classification is mostly influenced by the
reliable y1 stream.

Under these conditions the Gaussian densities in Eq. (4.8) can be approxi-
mated by N(ys;µs,c,m0

+µes, (1+rs,c,m0
)Σs,c,m0

); using the power-of-Gaussian
identity N(x;µ,w−1Σ) = (det(w(2πΣ)w−1))1/2N(x;µ,Σ)w ∝ N(x;µ,Σ)w

yields

p(c|y1:S) ∝ p(c)

S∏

s=1

[
ρ̃s,c,m0

N(ys;µs,c,m0
+ µe,s, Σs,c,m0

)

]ws,c,m0

, (4.9)

where
ws,c,m0

= 1/(1 + rs,c,m0
) (4.10)

is the effective stream weight and ρ̃s,c,m0
is a properly modified mixture weight

which is independent of the observation ys. Note that the effective stream
weights are between 0 (for rs,c,m0

≫ 1) and 1 (for rs,c,m0
≈ 0) and discount the

contribution of each stream to the final result by properly taking its relative
measurement error into account; however they do not need to satisfy a sum-
to-one constraint

∑S
s=1 ws,c,m0

= 1, as is conventionally considered by other
authors.

This is an appealing result. Our framework unveils the probabilistic as-
sumptions under stream weight-based formulations; furthermore, Eq. (4.10)
provides a rigorous mechanism to select for each new measurement ys and
uncertainty estimate (µe,s, Σe,s) all involved stream weights fully adaptively,
i.e., with respect to both class label c and mixture component m.
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4.3 Uncertainty in Expectation-Maximization Training

In many real-world applications requiring big volumes of training data, very
accurate training sets collected under strictly controlled conditions are very
difficult to gather. For example, in audiovisual speech recognition it is unre-
alistic to assume that a human expert annotates each frame in the training
videos. A usual compromise is to adopt a semi-automatic annotation tech-
nique which yields a sufficiently diverse training set; since such a technique
can introduce non-negligible feature errors in the training set, it is important
to take training set feature uncertainty into account in learning procedures.

4.3.1 GMM Training Under Uncertainty

Under our feature uncertainty viewpoint, only a noisy version y of the under-
lying true property x can be observed. Maximum-likelihood estimation of the
GMM parameters θ from a training set Y = {y1, . . . , yN} under the EM algo-
rithm [129] should thus consider the corresponding clean features X , besides
the class memberships M, as hidden variables. The expected complete-data
log-likelihood Q(θ, θ′) = E[log p(Y, {X ,M}|θ)|Y, θ′] of the parameters θ in
the EM algorithm’s current iteration given the previous guess θ′ in the E-
step should thus be obtained by summing over discrete and integrating over
continuous hidden variables. In the single stream case this translates to

Q(θ, θ′) =

N∑

i=1

M∑

m=1

log πmp(m|yi, θ
′)+

N∑

i=1

M∑

m=1

∫
log p(yi|xi)p(xi,m|yi, θ

′)dxi+

N∑

i=1

M∑

m=1

∫
log p(xi|m, θ)p(xi,m|yi, θ

′)dxi . (4.11)

We get the updated parameters θ in the M-step by maximizing Q(θ, θ′)
over θ, yielding

rm =

N∑

i=1

ri,m, πm =
rm

N
, µm =

1

rm

N∑

i=1

ri,mx̂i,m,

Σm =
1

rm

N∑

i=1

ri,m

(
Σxi,m

+ (x̂i,m − µm)(x̂i,m − µm)T
)

, (4.12)

where (the prime denotes previous-step parameter estimates)

ri,m = p(m|yi, θ
′) ∝ π′

mN(yi;µ
′
m + µe,i, Σ

′
m + Σe,i) (4.13)

x̂i,m = Σxi,m

(
(Σ′

m)−1µ′
m + (Σe,i)

−1(yi − µe,i)
)
, (4.14)

Σxi,m
=
(
(Σ′

m)−1 + (Σe,i)
−1
)−1

. (4.15)
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Two important differences w.r.t. the noise-free case are notable: first, error-
compensated scores are utilized in computing the responsibilities ri,m in
Eq. (4.13); second, in updating the model’s means and variances, one should
replace the noisy measurements yi used in conventional GMM training with
their model-enhanced counterparts, described by the expected value x̂i,m

and variance Σxi,m
. Furthermore, in the multimodal case with multiple

streams s = 1, . . . , S, one should compute the responsibilities by ri,m ∝

π′
m

∏S
s=1 N(ys,i;µ

′
s,m + µs,e,i, Σ

′
s,m + Σs,e,i), which generalizes Eq. (4.13) and

introduces interactions among modalities.

4.3.2 HMM Training Under Uncertainty

For the HMM, similarly to the GMM case just covered, the expected complete-
data log-likelihood Q(θ, θ′) = E[log p(O, {Q,X ,M}|θ)|O, θ′] of the parame-
ters θ in the EM algorithm’s current iteration, given the previous guess θ′, is
obtained in the E-step as:

Q(θ, θ′) =
∑

q∈Q

T∑

t=1

log aqt−1qt
P (O, q|θ′)+

∑

q∈Q

T∑

t=1

∫
log p(ot|xt, qt, θ

′)P (O, q, xt|θ
′)dxt+

∑

q∈Q

T∑

t=1

M∑

m=1

∫
log p(xt|mt, qt, θ

′)P (O, q,m, xt|θ
′)dxt+

∑

q∈Q

T∑

t=1

M∑

m=1

p(m|qt, θ
′)P (O, q,m|θ′) +

∑

q∈Q

log πq0
P (O, q|θ′) . (4.16)

The responsibilities γt(i, k) = p(qt = i,m = k) are estimated via a forward-
backward procedure [420] modified so that uncertainty compensated scores are
utilized:

at+1(j) = P (o1:t, qt = j|θ′) =
[ N∑

i=1

αijat(i)
]
b′j(ot+1) (4.17)

βt(i) = P (ot+1:T |qt = i, θ′) =

N∑

j=1

αijb
′
j(ot+1)βt+1(j), (4.18)

where b′j(ot) =
∑M

m=1 ρmN(ot;µ
′
j,m + µet

, Σ′
j,m + Σet

). Scoring is done sim-
ilarly to the conventional case by the forward algorithm, i.e., P (O|θ) =∑N

i=1 aT (i). The updated parameters θ are estimated using formulas simi-
lar to the GMM case in Section 4.3.1. For µq,m, Σq,m the filtered estimate for
the observation is used as in (4.12).
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4.3.3 Some Insights into Training Under Uncertainty

Focusing on the simpler GMM model and similarly to the analysis in Sec-
tion 4.2, we can gain insight into the previous EM formulas by considering
the special case of constant and model-aligned errors Σe,i = Σe = λmΣm.
Then, after convergence, the covariance formula in Eq. (4.12) can be written
as

Σm =
1

1 + λm
Σ̃m, or, equivalently, Σm = Σ̃m − Σe , (4.19)

where we just subtract from the conventional (non-compensated) covariance

estimate Σ̃m = 1
rm

∑N
i=1 ri,m(yi−µm)(yi−µm)T the noise covariance Σe. The

rule in Eq. (4.19) has been used before as heuristic for fixing the model covari-
ance estimate after conventional EM training with noisy data (e.g ., [117]). We
see that it is justified in the constant and model-aligned errors case; otherwise,
one should use the more general rules in Eq. (4.12).

Another link of our training under uncertain measurements scenario is
to neural network training with noise (or noise injection) [487], where an
original training set is artificially supplemented with multiple noisy instances
of it and the resulting enriched set is used for training. Monte-Carlo-based
noise injection training should be contrasted to the analytic integration over
the noise distribution suggested by our approach. Our interpretation thus
shows that noise injection can be motivated under the noisy measurements
viewpoint. Training with noise is also related to Tikhonov regularization [65]
and is known to be relatively immune to over-fitting, thus leading to classifiers
with improved generalization ability. Similar advantageous properties should
be expected for our training under uncertain measurements technique.

4.4 Audio-Visual Speech Recognition

A challenging application domain for multimodal fusion schemes is Audio-
visual Automatic Speech Recognition (AV-ASR), since it requires modeling
both the relative reliability and the synchronicity of the audio and visual
modalities. We demonstrate that the proposed fusion scheme can be naturally
integrated with multi-stream HMMs or other multimodal sequence processing
techniques and clearly improve their performance in AV-ASR.

4.4.1 Visual Front-End

Salient visual speech information can be obtained from the shape and the
texture (intensity/color) of the speaker’s visible articulators, mainly the lips
and the jaw, which constitute the Region Of Interest (ROI) around the mouth
[413].

We use Active Appearance Models (AAM) [107] of faces to accurately track
the speaker’s face and extract visual speech features from it, capturing both
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Fig. 4.4. Visual Front-End. Upper-Left : Mean shape s0 and the first eigenshape
s1. Upper-Right : Mean texture A0 and the first eigenface A1. Lower : Tracked face
shape and feature point uncertainty.

the shape and the texture of the face. AAM, which were first used for AV-
ASR in [329], are generative models of object appearance and have proven
particularly effective in modeling human faces for diverse applications, such as
face recognition or tracking. In the AAM scheme an object’s shape is modeled
as a wireframe mask defined by a set of landmark points {xi, i = 1 . . . N},
whose coordinates constitute a shape vector s of length 2N . We allow for
deviations from the mean shape s0 by letting s lie in a linear n-dimensional
subspace, yielding s = s0 +

∑n
i=1 pisi. The deformation of the shape s to the

mean shape s0 defines a mapping W (x; p), which brings the face exemplar
on the current frame I into registration with the mean face template. After
canceling out shape deformation, the face appearance (color values) registered
with the mean face can be modeled as a weighted sum of “eigenfaces” {Ai},
i.e., I(W (x; p)) ≈ A0(x) +

∑m
i=1 λiAi(x), where A0 is the mean texture of

faces. Both eigenshape and eigenface bases are learned during a training phase.
The first few of them extracted by such a procedure are depicted in Fig. 4.4.

Given a trained AAM, model fitting amounts to finding for each video
frame It the parameters p̃t ≡ {pt, λt} which minimize the squared texture
reconstruction error It(W (pt))−A0−

∑m
i=1 λt,iAi; efficient iterative algorithms

for this non-linear least squares problem can be found in [107]. The fitting
procedure employs a face detector [158] to get an initial shape estimate for the
first frame. To extract information mostly related to visual speech, we utilize
a hierarchy of two AAM. The first ROI-AAM spans only the area around the
mouth and is used to analyze in detail the ROI’s shape and texture; however,
the ROI-AAM covers too small an area to allow for reliable tracking. To
pinpoint the ROI-AAM we use a second Face-AAM which spans the whole
face and can reliably track the speaker in long video sequences. As visual
feature vector for speech recognition we use the parameters p̃t of the fitted
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ROI-AAM. We employ as uncertainty in the visual features the uncertainty
in estimating the parameters of the corresponding non-linear least squares
problem [415, Chapter 15]; plots of the corresponding uncertainty in localizing
the landmarks on the image for two example faces are illustrated in Fig. 4.4.

4.4.2 Audio Front-End

We use the Mel Frequency Cepstral Coefficients (MFCC) to represent audio,
as it is common in contemporary ASR systems. Uncertainty is considered
to originate from additive noise to the audio waveform. To get estimates of
the clean features we employ the speech enhancement framework proposed in
[130], adapted to work with MFCCs along the lines of [186]. The enhanced
features are derived from the noisy ones by iteratively improving a guess
based on a prior clean speech model and Vector Taylor Series approximation
[171]. The uncertainty of the resulting clean feature estimates is assumed to
be zero-mean Gaussian and for each such feature estimate a rough approxi-
mation of its uncertainty is also available at the output of the enhancement
module. In this way, fusion by uncertainty compensation is facilitated. Alter-
native enhancement procedures could equivalently be applied provided that
the variance of the enhanced features could also be roughly estimated.

4.4.3 Experiments and Discussion

The novel fusion approach proposed above is evaluated via classification ex-
periments on the Clemson University Audiovisual Experiments (CUAVE)
database [391]. Experiments are performed on the section of the database
comprising audiovisual recordings of 36 speakers uttering 50 isolated digits
each. The speakers are standing naturally still and they are framed including
their shoulders and head, as shown in Fig. 4.5. Digit models are trained on
data from 30 speakers who have been randomly selected. The rest of the data
is held out for testing. For the tests in noise, the audio recordings in this test-
ing subset have been contaminated with babble noise from the NOISEX-92
database at various SNR levels.

Mel frequency cepstral coefficients (MFCC) are extracted from 25 ms Ham-
ming windowed frames of the preemphasized (factor: 0.97) audio stream at
a rate of 100 Hz. Per audio frame, 13 coefficients are extracted. A visual fea-
ture vector is estimated per video frame, consisting of 6 shape and 12 texture
features and the visual feature stream is upsampled from the video frame
rate (29.97 FPS) to the audio rate of 100 Hz by linear interpolation. Mean
Normalization is applied to both the audio and visual features.

To demonstrate the benefits of compensating for feature uncertainty for
multimodal fusion we performed a series of digit classification experiments
and the results are summarized in Fig. 4.6. For these experiments, the first
derivatives of the audio and visual features have also been included in the
corresponding feature vectors. Uncertainty estimates for the visual features
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Fig. 4.5. Sample speaker images from the CUAVE database.

are acquired as discussed in Section 4.4.1. For the audio features, uncertainty
is computed as the squared difference between each feature and the corre-
sponding clean feature, which is considered to be available as well in this
proof-of-concept scenario.
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Fig. 4.6. Classification results with or without Uncertainty Compensation (UC)
for fusion. Simple multistream models (AV) and product-HMMs (P-AV) have been
evaluated at various SNR levels.

Audiovisual observations are modeled by digit left-right multistream Hid-
den Markov Models (AV), each with 8 states and with a single multidimen-
sional Gaussian observation probability distribution per stream and per state.
Single modality 8-state digit HMMs have also been evaluated for reference.
Further, to better account for asynchrony between the modalities, these single-
modality HMMs have been merged in product-HMMs (P-AV) as described in
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[312]. Asynchrony has been limited to two states only, while stream weights
are assumed to be equal to unity in all cases (multistream or product-HMMs).
The multimodal models have been evaluated both with and without uncer-
tainty compensation. Compensation has been implemented in the HMM de-
coder by increasing the observation variance in the modified forward algorithm
described in Section 4.3.3.

Models with uncertainty compensation in general outperform those with-
out. The best overall performance is demonstrated by the uncertainty com-
pensated product HMMs (P-AV-UC), which at 5 dB SNR yields 89.1% accu-
racy, an absolute 2.3% over the conventionally decoded product HMM. The
corresponding results for state-synchronous multi-stream HMMs are 87.2%
for uncertainty compensated decoding and 84.5% for conventional decoding.
We see that accounting for uncertainty clearly favors multimodal fusion, by
approximately 2.5% absolute, and has a cumulative beneficial effect when
combined with asynchrony modeling through product HMMs, which give an-
other 2% absolute accuracy improvement. As expected, the beneficial effect
of uncertainty compensation gets increasingly important for decreasing audio
SNR.

In a separate series of experiments we evaluate uncertainty compensation
for fusion in the training phase. The compensated models are trained on clean
audio data, while for the visual training data their corresponding variances
are taken into account into the modified EM algorithm of Section 4.3.3. This
time, both the first and the second derivatives of the audiovisual features are
also utilized. Testing with uncertainty compensation is implemented as before.
In this case however we have utilized more realistic estimates of the uncer-
tainty of the audio features following the procedure sketched in Section 4.4.2
Our experimental results summarized in Table 4.1 show that accounting for
uncertainty in the case of audiovisual fusion, either solely in testing or both
in training and testing, AV-UC and AV-UCT, respectively, improves AV-ASR
performance in most cases. Again, for the baseline audiovisual setup we used
multistream HMMs with stream weights equal to unity for both streams. The
proposed approach (AV-UC, AV-UCT) seems particularly effective at lower
SNRs.

4.5 Conclusions

The chapter has shown that taking the feature uncertainty into account con-
stitutes a fruitful framework for multimodal feature analysis tasks. This is
especially true in the case of multiple complementary information streams,
where having a good estimate of each stream’s uncertainty at a particular
moment facilitates information fusion, allowing for proper training and fully
adaptive stream integration schemes. In order for this approach to reach its
full potential, reliable methods for dynamically estimating the feature obser-
vation uncertainty are needed. Ideally, the methods that we employ to extract
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SNR A V AV AV-UC AV-UCT

clean 99.3 75.7 90.0 - -

15 dB 96.7 - 88.0 88.3 88.0

10 dB 91.3 - 88.3 88.7 87.7

5 dB 82.0 - 87.0 88.0 87.7

0 dB 62.7 - 84.3 87.0 87.3

-5 dB 40.3 - 81.7 82.0 83.0

Table 4.1. Word Percent Accuracy (%) of classification experiments on CUAVE
database for various noise levels on the audio stream; experiments have been con-
ducted for: Audio (A), Visual (V) and Audio-Visual (AV) features, with stream
weights equal to unity, with Uncertainty Compensation in the testing phase (UC),
and with Uncertainty Compensation both in the testing and training (UCT).

features in pattern recognition tasks should accompany feature estimates with
their respective errorbars. Although some progress has been done in the area,
further research is needed before we fully understand the quantitative behav-
ior under diverse conditions of popular features commonly used in pattern
analysis tasks such as speech recognition.




