Multi-band Masking for Waveform-based Singing Voice Separation
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1. Introduction 5. Experimental Setup

e Singing voice separation: The task of isolating the vocals from a musical mixture.
e \Waveform-level architectures following an Encoder-Separator-Decoder schema,
such as the Conv-TasNet [1], are currently prominent in the literature.

e Dataset used: MUSDB18 [5] (predefined train-validation-test split)

e Training details: 150 epochs (early stopping at 20 epochs), Adam (Ir = 0.0001), L1
loss, on-the-fly augmentation (as in [4]).

e Evaluation protocol: Median-of-medians [6] as implemented by BSSEval4.

»  Separator

Masks
#sources "N x T’

Encoded

N Representatir - S 6. Results and Discussion
npu : ource
Méx)t(u_:_e —> Encoder >® Signals Decoder > Sci:g)r:a_ll_s Ml M3 M4 M6 Sl Sz
SDR 5.81 594  6.05 6.26 | 6.39 6.36
Voc. SIR  14.13 1423 14.61 15.21 | 14.39 14.92
SDR 11.78 11.76 11.66 11.91 | 12.23 12.03
e STFT-based architectures for singing voice separation have been shown to Acc. SIR - 16.01 16.01  16.04 16.54 | 17.57 17.51
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frequency bands [2]. e Models M2 and M5 record the overall best performance.
e Splitting the latent space into multiple sub-bands leads to improved performance,
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Goal: Transfer this multi-band set-up to waveform-based architectures.

3. Methodology
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e Encoder: Learns a latent representation, which is split into Q sub-bands
e Separators: Process each sub-band individually, each producing a mask for its
subspace. The masks are then concatenated before element-wise multiplication : . y
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e The top subspace of M2 contains more high-frequency and less narrow filters than
the bottom, but the overall filter distribution matches that of the M1 model.
e On the other hand, the sub-spaces of M4 have more visible differences in terms

e Decoder: Retrieves the source signals.

Variant including full-band masking: Similar to above, but additionally:
¢ Include an additional separator for the full latent space (Q+1 separators in total) | _
e Use a linear layer after mask concatenation to restore its dimensionality. of central frequencies and bandwidth.
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7. Conclusions

Separator

e Proposed a multi-band, multi-separator extension for waveform-based audio
source separation architectures.
e Improved performance in singing voice separation over a single-band Conv-TasNet.
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4. Model Configurations

M1: Conv-TasNet baseline [1], as Description
implemented in [3]. 1232‘];213:

M2-4: Models with a different number 5 Bands =1 FullBand
and structure of latent bands. 4 Bands

M5-6: Models with a pretrained latent 2 Bands + Frozen enc/dec
space, only training the separators. 2 Bands + Sorted enc/dec
S1-2: Models with the more complex SHUREE MU

_ Stronger enc/dec + 2 bands
encoder/decoder presented in [4].
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