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A. Rendering of NMFC and Detailed Shape
Images

As mentioned in Sec. 3.3 of the main paper, we fol-
low [5] and map the manipulated 3D face geometry to a
convenient representation for our Neural Face Renderer.
In more detail, we render an RGB image of the 3D face
mesh under the manipulated expressions and pose of each
given frame using the following semantically-meaningful
color-coding scheme: Every vertex of the 3D mesh trian-
gulation of the adopted FLAME face model [9] is uniquely
colored with RGB values that are directly mapped from the
XYZ coordinates of the mean face’s 3D mesh, after nor-
malizing them to [0, 1], see e.g. 3rd row of Fig. 1. As
in [5], we use the term NMFC (Normalized Mean Face
Coordinate) images for these rendered RGB images (i.e.
NMFC ∈ R256×256×3).

As also mentioned in the main paper, we use the so-
called detailed shape images as additional conditional in-
put for our Neural Face Renderer. In more detail, DECA [6]
estimates not only a standard 3D face reconstruction but
also a person-specific detail vector δ ∈ R128 for each
frame, which improves upon previous methods by adding
mid-frequency details to the face geometry through a UV
displacement map. We take advantage of this and deviate
from [5] (which is based on older 3D face modelling ap-
proaches) by adding the resultant detailed shape images S
as an extra conditional input for the face renderer. To be
more precise, the detail vector δ is used in combination
with the manipulated expressions to generate detailed 3D
face shapes, which we then render (using conventional 3D
graphics as in the case of NMFCs) to create the so-called
detailed shape images S ∈ R256×256×3, see e.g. 4th row of
Fig. 1. In contrast to NMFCs, for this rendering we use con-
stant gray colouring of the 3D mesh and standard smooth
shading, since we want fine geometric details (wrinkles,
dimples, etc.) to be clearly visible and help in the condi-

tioning of the neural renderer, in terns of photo-realism of
the synthesized face images.

An illustration example of all types of conditional inputs
that we feed our Neural Face Renderer with is provided in
Fig. 1.

B. Face alignment

In this section, we provide more details about face align-
ment, which is one of the main steps in the 3D Face Analy-
sis module of our pipeline (see Sec. 3.1 of the main paper).
Face alignment is an essential step in most face-swapping
methods (e.g. [12]), where combining footage from 2 dif-
ferent actors in totally different poses requires their faces
being brought in correspondence. Although our main aim
is to generate the target actor under similar conditions to
those seen during training, we found that face alignment is
still useful, as it boosts our Neural Face Renderer’s gen-
eralization ability. In particular, we observed that the ren-
derer struggles to produce novel expressions if those are not
present in the training footage under the same pose and po-
sition. Therefore, at each given frame, we use Procrustes
analysis to estimate a 2D similarity transformation matrix
between the 68 extracted landmarks and the corresponding
landmarks of a mean face template. The masked input face
images, as well as the NMFC, detailed shape, and eye-gaze
images are then warped according to this transformation,
see e.g. last 4 rows of Fig. 1. Furthermore, to avoid jit-
tering artifacts in the aligned images we follow [11] and
average the landmarks extracted from multiple slightly dis-
placed versions of the original face image.

C. Blending

Here, we provide more details about Blending, the fi-
nal step of our Photo-realistic Synthesis “in the wild” mod-
ule (see Sec. 3.3 of the main paper). The seamless com-
position of the generated face onto the original scene is



Figure 1. Example frames of cropped face images (1st row), their masking after face segmentation (2nd row) as well as their corresponding
NMFC, Detailed Shape and Eye images (next 3 rows). The last 4 rows visualize the warped versions of the Masked face, NMFC, Detailed
Shape and Eye images, as a result of the face alignment that we apply. Note that the last 3 rows (aligned versions of NMFC, Detailed
Shape and Eye images) correspond to the conditional inputs for our Neural Face Renderer. Note also that in this visualization, no emotion
manipulation has been applied, which corresponds to the self-reenactment scenario used during training of our Neural Face Renderer.

achieved through multi-band blending [1]. In particular, we
construct the Laplacian pyramids of both images and per-
form blending on each level of the pyramid independently
using a softly eroded version of the face mask. The blended
image is then obtained by reconstructing it from the final
pyramid and is placed in the exact same position of the full
frame from where it was cropped, thus, fully reproducing
the original video, independently of its spatial resolution.

D. Training of the Emotion Manipulator: Loss
Functions

In Sec. 3.2.1 of the main paper, we briefly describe the
adopted loss functions for training our Emotion Manipula-
tor. Here, we expand the presentation providing more de-
tails and the relevant mathematical formulas:

The networks of the Emotion Manipulator (Translator G,
Style Encoder E, Mapping network M and Discriminator



D) are updated based on the following loss functions:
• Adversarial loss: We use LSGAN [10] with labels b=c=1
for real samples and label a=0 for fake ones, resulting in the
following adversarial objectives for the Discriminator D:

LD
adv =

1

2
Es,y[(Dy(s)−1)2]+

1

2
Es,ỹ,d̃[Dỹ(G(s, d̃))2] (1)

... and the Translator G:

LG
adv =

1

2
Es,ỹ,d̃[(Dỹ(G(s, d̃))− 1)2] (2)

This way the mapping network M learns to output the
speaking styles that belong to the emotional domain ỹ and
the translator to produce sequences of the target domain that
are indistinguishable from the real ones.
• Style reconstruction loss: As in [3], we make sure the
output sequence reflects the given style by using a loss that
enforces the style vector of the translated sequence, as ex-
tracted by the style encoder E, to match the desired one:

Lsty = Es,d̃[||d̃ − E(G(s, d̃))||1] (3)

• Cycle consistency loss: We use the cycle consistency
loss [2, 16], which encourages the translator to produce se-
quences that preserve the content of the input sequence, so
that the input sequence can be reconstructed by translating
the output sequence back to the original style d̂ = E(s), as
extracted by E:

Lcyc = Es,d̃[||s −G(G(s, d̃), d̂)||1] . (4)

• Speech-preserving loss: As observed in [7], the cycle
consistency loss does not always guarantee that the original
mouth motion related to speech is preserved by the transla-
tor. To this end, we take advantage of the adopted FLAME
face model [9], which explicitly controls the jaw opening
through the 1st jaw articulation parameter. Thus, we add an
extra constraint to the total objective, that takes into account
only this mouth-related parameter, instead of the whole ex-
pression vector as in [7]. We note here that we seek to
faithfully alter the conveyed emotion of a sequence and this
usually requires increasing or decreasing the mouth open-
ing, e.g. to show anger or the neutral emotion respectively.
Hence, the jaw opening of the original and the translated se-
quence have to be highly correlated, but not identical. This
leads us to define our speech-preserving loss in terms of the
Pearson Correlation Coefficient (PCC) between the orig-
inal and the translated jaw variable within a sequence:

Lmouth = −Es,d̃[ρϵ1,ϵ̃1 + ρϵ̃1,ϵ̂1 ] (5)

where ϵ1 ∈ R denotes the first component of the expres-
sion vector (jaw opening) and ρX,Y is the PCC between
two variables X,Y . The negative sign originates from the

fact that, ideally, we would like the PCC to be maximized,
whereas the mouth loss to be minimized. The objective is
calculated in a symmetric way, where s is the original se-
quence, s̃ = G(s, d̃) the translated and ŝ = G(s̃, d̂) the
reconstructed one. All statistical values are calculated as
arithmetic means within the N occurences of a sequence.
By maximizing the above loss, we manage to balance our
challenging and contradictive goal of altering the emotion
without distorting the perceived speech (see Fig. 3 of the
main paper).
• Overall objectives: The objective for G,E and M that is
minimized during training is the following:

LG,E,M =LG
adv + λsty Lsty + λcyc Lcyc + λmouth Lmouth

whereas the objective for D is: LD=LD
adv .

It is worth mentioning that we do not use a diversity sen-
sitive loss as in the original StarGAN v2 [3], since we found
it to be not necessary. Also, for balancing our objectives we
use λcyc = λsty = λmouth = 1, since we have experimen-
tally observed that this choice yields high-quality results.

The Emotion Manipulator is trained once (see Fig. 2 (a))
and can then be run on the fly for altering the expressions of
every new actor.

E. Datasets for Experiments

In this section, we provide more details about the two
datasets used in our experiments:

YouTube Actors dataset: We collected a small dataset
from 6 YouTube videos (having Creative Commons license)
that included facial videos of 6 celebrity actors during film
scenes, TV shows and interviews under “in-the-wild” con-
ditions. Short video clips with duration from 2 to 7 mins
that capture the actors during talking and performing were
excerpted from these YouTube videos and constituted our
dataset. The videos of our YouTube dataset were at 30 fps
with a spatial resolution of 1280× 720 pixels.

MEAD dataset: We chose 3 actors from the recent
MEAD database [15]. These actors were not included in the
training set that we used for our Emotion Manipulator. For
every actor, we selected 30 videos for each of the 6 consid-
ered emotions (happy, angry, surprised, fear, sad, disgusted)
plus neutral, resulting to a total of 630 videos from MEAD.
We note that while this database provides emotional videos
in 3 different intensity levels, we use only the ones with the
highest intensity per emotion. These videos are at 30 fps,
1920× 1080 pixels and have an average duration of 4 secs.

Please note that, in both datasets, the selection of the spe-
cific actors was done taking into account gender and ethnic
group variability. Also, roughly 10% of each actor’s footage
was kept as test data for the experiments (and 90% as train
data for the neural face renderer).



(a) Multi-person training (b) Person-specific training (fine-tuning)

Figure 2. The 2 trainable components of our Neural Emotion Director (NED) are trained separately. (a) The Emotion Manipulator is trained
on person-agnostic expression data, extracted from 2 large video databases with emotion annotations (Aff-Wild2, MEAD). This trained
Manipulator can then be used for translating the expressions of any new given actor. (b) The Neural Face Renderer is trained independently
for each new actor, by fine-tuning the pre-trained meta-renderer on the training footage of the given actor in a self-reenactment fashion.

F. Training of the Neural Face Renderer:
Meta-renderer

Our proposed method for increasing the expressive vari-
ability of faces generated by our Emotional Face Renderer
for actors found in YouTube videos, uses the following
scheme:
• First, we train a single meta-renderer on a collection
of videos consisting of our YouTube Actors dataset (ex-
tended with 2 more YouTube actors for greater variability)
as well as an extension of our selection from the MEAD
dataset that we make for our experiments (made of 2
more MEAD actors, i.e. 5 in total). In this stage, the
meta-renderer struggles to disentagle the different actors but
learns to transfuse the expressivity of the MEAD actors to
the YouTube actors.
• Then we fine-tune our meta-renderer independently for
each actor for a few epochs. This step resolves the “iden-
tity confusion” caused by the previous stage, without over-
adapting to the given actor’s expressions.
We found that fine-tuning the meta-renderer on a new ac-
tor that was not used in the the first stage has similar ef-
fects. This is especially important because it means that
one does not have to repeat the lengthy pre-training each
time he/she wants to apply the method to a new actor. In
other words, for manipulating a new video with a never-
before-seen face, the only model that needs to be trained
is a new person-specific neural face renderer (generator
and discriminator) for synthesizing the new face. For
this, we can simply use the input video as training footage
to fine-tune the pre-trained meta-renderer (see Fig. 2 (b)).
Nevertheless, performance slighly increases when the ac-
tor’s footage is used in the training of the meta-renderer.
Therefore, for obtaining the results reported in the main pa-
per all our actors were included in the training of the meta-
renderer. Overall, for multi-person pre-training (meta-
renderer) we used ∼200K frames (60% from MEAD, 40%

from YouTube), while for person-specific fine-tuning we
typically use ∼ 5-13K frames.

G. Additional Qualitative Results
We provide additional qualitative results of our method

in the form of static frames for the actors of our YouTube
dataset in Fig. 3. Our method translates the expressions of
the actors to any of the 6 basic emotions plus neutral or to
any given reference style, regardless of the emotion of the
input video. We observe that we achieve highly-realistic
results.

In addition, Fig. 4 visualizes some random cases from
the quantitative comparison of Sec. 4.1 of the main paper.
In particular, we visualize the pixel distance between the
“self-translated” frame (i.e. translated to the same emotion
that it is labelled as) and ground truth frame as a heat map
in the face area. As also reported in the main paper, we
observe that our method performs better in preserving the
original emotion without distorting the characteristics of the
specific identity, which results in lower FAPD values than
all the other methods.

H. Detailed scores for the user study on MEAD
database

As mentioned in Sec. 4.2 of the main paper, our second
user study asked participants to both evaluate the realism
and recognize the emotion of the videos shown to them (on
MEAD actors). In Tab. 1 we provide a more extended pre-
sentation of the relevant results, by providing detailed real-
ism scores for each of the five points of the adopted Likert
scale. As can be seen, videos generated with our method
were most frequently rated with 3, while the other meth-
ods achieved 1 or 2 as the most frequent rating. This holds
true even for each basic emotion individually. In particu-
lar, surprised is the only category where our most preferred
rating dropped to 2, whereas for the other methods, only 2



Figure 3. Additional visualizations of our results on the YouTube Actors dataset for random frames of the videos. The first row shows the
real frames. The next seven rows correspond to expression manipulation based on categorical labels, while the last three rows imitate the
expressive style of three exemplar reference clips. Please zoom in for details.

of the considered categories yielded a most frequent rating
higher than 1 (sad and disgusted for GANmut [4], fear and
surprised for DSM [13]).

Finally, we further elaborate on the emotion recognition
results of Tab. 1 through confusion matrices in Fig. 5. As
can be seen, sad and surprised are mostly recognized as
angry for our method, while the misclassifications of the

DSM results seem more mixed and unclear. Moreover,
users struggle to separate fear and surprised in real videos,
whereas this is successfully achieved for GANmut, con-
firming that GANmut emotions seem more ‘stereotypical’
than the real ones produced by the actors.



Figure 4. Quantitative comparison with state-of-the-art methods in the emotional “self-translation” experiment on the MEAD actors. For
each method, the left image is the generated one and the right image is the error between the generated and the input image, visualized as
a heat map within the face mask. White numbers inside the heat maps denote the average error for the given frame (Face Average Pixel
Distance - FAPD). We observe that, in all cases, our method yields the lowest average errors. Note that the considered range of pixel values
is [0,255].

Ours GANmut DSM Ground Truth

Figure 5. Per-method confusion matrices for the classification of emotions regarding the user study on MEAD. Row labelling corresponds
to the ground truth annotations, while column labelling to the predicted ones.

Realism Accuracy

Ours GANmut DSM Ground Truth Ours GANmut DSM Ground Truth1 2 3 4 5 real 1 2 3 4 5 real 1 2 3 4 5 real 1 2 3 4 5 real

happy 15 17 18 10 0 17% 39 8 11 1 1 3% 26 23 6 2 3 8% 0 1 11 15 33 80% 63% 90% 42% 90%
fear 5 10 26 15 4 32% 34 14 8 2 2 7% 19 27 8 5 1 10% 2 4 14 20 20 67% 33% 75% 13% 25%
sad 4 15 23 15 3 30% 9 22 18 7 4 18% 20 19 14 7 0 12% 2 11 14 15 18 55% 13% 78% 25% 65%
surprised 7 21 19 12 1 22% 35 13 7 4 1 8% 19 25 12 3 1 7% 0 1 10 20 29 82% 17% 82% 5% 82%
angry 3 18 24 9 6 25% 38 11 5 3 3 10% - - - - - - 0 2 11 29 18 78% 50% 98% - 80%
disgusted 1 17 18 20 4 40% 12 25 11 11 1 20% - - - - - - 2 3 15 21 19 67% 33% 40% - 60%

avg. 6 16 21 14 4 28% 28 16 10 5 2 11% 21 24 10 4 2 9% 2 4 12 20 23 71% 35% 77% 21% 67%

Table 1. Detailed realism ratings and emotion classification accuracy of the user study on MEAD. Columns 1-5 show the number of times
that users gave this realism rating. The column “real” shows the percentage of users that rated the videos with 4 or 5. Bold values denote
the most frequent user realism rating for each method and emotion.

I. Details about Running the Methods

For GANmut [4] and ICface [14], we use the codes made
publicly available by the authors, whereas for DSM [13] we
use the code that the authors provided us with. In all cases,
we use the default parameters specified by the authors.

All methods were run on a machine with 4 NVIDIA RTX
2080 GPU. For training our Neural Face Renderer, we used

Adam optimizer [8] with learning rate of 2e-4 for the meta-
renderer or 4e-5 for the person-specific fine-tuning, β1=0.5,
β2=0.999, and a batch size of 2. The 3D-based Emotion
Manipulator is trained with the Adam optimizer as well,
using a learning rate of 1e-4, β1=0, β2=0.99 and a batch
size of 64. The meta-renderer takes approximately 25 hours
to complete training (15 epochs) using 4 GPUs, whereas
fine-tuning an actor-specific renderer with 2 GPUs for 20



Figure 6. Typical failure cases of our Neural Face Renderer
on challenging videos that include appearance and disappear-
ance of glasses (1st row) or diverse illumination conditions (2nd

row). The generator lacks conditional knowledge of which ap-
pearance/illumination to produce, thus generating a mixed result.
The first 2 frames of each row correspond to real frames seen dur-
ing training, while the rightmost frame corresponds to the middle
frame being translated to happy.

epochs takes an average of 17 hours. The average end-to-
end inference time corresponds to ∼4 frames per second.

J. Neural Face Renderer failure cases

We note here that our face renderer assumes that the
same foreground face is captured in a consistent scene
throughout the whole duration of the training video. If
this assumption does not hold (e.g. multiple faces appear
in the foreground or the video contains diverse scenes with
substantially different illumination conditions or actor’s ap-
pearances in terms of makeup, facial hair, glasses etc), then
our method will yield unrealistic results, like the mixed
faces shown in Fig. 6.
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