

Goal:

Challenges:

Previous work [1]:

Paper contributions:

Results:

Visual features:

ST-GCN ensemble:

- Sequence learning model:

<u>3D human body pose and shape representation via "ExPose":</u>

3D human body and hand skeleton regression:

SPATIO-TEMPORAL GRAPH CONVOLUTIONAL NETWORKS FOR CONTINUOUS SIGN LANGUAGE RECOGNITION

¹ School of Electrical & Computer Eng., National Technical University of Athens, Greece ² Dept. of Electrical & Computer Eng., University of Thessaly, Volos, Greece ³ Electrical Eng. & Computer Sciences, University of California, Berkeley, CA, U.S.A.

Maria Parelli¹ Katerina Papadimitriou² Gerasimos Potamianos² Georgios Pavlakos³ Petros Maragos¹

Experimental results

rate (GER, %).

Model	Feature streams	PH2014T	Model	Feature streams	CSL
SFD-SGS-SFL [4]	FF + Glosses	26.10	LS-HAN [6]	FF + H + Glosses	17.30
Bi-ST-LSTM-A [5]	H + Articulations position	24.68	DenseTCN [28]	FF	14.30
Transformer-CTC [29]	FF	24.59	CTF [30]	FF	11.20
BiLSTM-CTC [3]	FF + Glosses	24.30	Align-iOpt [31]	FF	6.10
CNN-LSTM-HMM [32]	Glosses + H/M	24.10	BiLSTM + CTC [3]	FF + Glosses	2.40
Att-TDCNN [2]	H/M + 2D skel. + Flow	23.70	SLRGAN [33]	FF + Glosses	2.10
Proposed	FF + Flow + 2D/3D Pose	21.34	TMC-BiLSTM-CTC [1]	FF + H + F + Pose	2.10
TMC-BiLSTM-CTC [1]	FF + H + F + Pose	21.00	Proposed	FF + Flow + 2D/3D Pose	1.48

(Appearance features based on full frame (FF), hands (H), mouth region (M), and face (F). "Glosses" refers to embeddings)

Proposed system on:

- art GER (21.34% vs 21.00%).
- by a **30% relative GER reduction** (1.48% vs. 2.10%).
- modality combinations are considered:
- ✓ "ExPose" parameters boost performance.

Feature streams	GER (%)
2D skeleton	51.10
2D skeleton + Appearance	23.16
2D skeleton + Appearance + Optical Flow	22.28
3D skeleton	53.72
3D skeleton + Appearance	23.35
3D skeleton + Appearance + Optical Flow	22.37
"ExPose" parameters (Rotation)	50.25
Rotation + Appearance + Optical Flow	22.14
Joint-position + Appearance (A)	23.03
Joint-motion+ Optical Flow (B)	23.15
Rotation + Appearance (C)	22.96
A + B	22.04
A + C	21.75
A + B + C	21.34

Ablation study:

- ✓ Exclusion of the **ST-GCNs** degrades GER from 21.34% to 24.04%.
- Exclusion of the guiding method degrades GER from 21.34% to 24.84%.
- Proposed a deep learning model for CSLR from RGB videos: ✓ **Multiple visual representations** of the signing activity.
 - Feature stream combinations into three ST-GCN modules.
 - ✓ ST-GCN/BiLSTM based sequence learning.
 - ✓ Late fusion via a guiding CTC approach.
- Investigated the contribution of:
- state-of-the-art on the **Chinese SLR corpus** (Split I setup).

Comparison of our **proposed model** to the **literature** on the **RWTH-PHOENIX Weather 2014T dataset** (PH2014T, left) and the **Chinese SLR corpus** (CSL, right) in gloss error

PH2014T : Outperforms most results in the literature, coming very close to the state-of-the-

<u>CSL</u>: Achieves the state-of-the-art result, significantly outperforming the best alternative

System evaluation on the **RWTH-PHOENIX Weather 2014T dataset**, when various

✓ Network yields competitive performance when all three streams are considered.

Exclusion of the BiLSTM encoder degrades GER from 21.34% to 22.42%.

Conclusions

✓ **3D human pose** and **shape parameterization** via the "ExPose" approach. ✓ **3D skeletal joint information** inferred from detected 2D joints via OpenPose.

Showed that fusion of multiple feature streams benefits performance.

Achieved competitive performance on RWTH-PHOENIX Weather 2014T and the new

