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ABSTRACT

We address the challenging problem of continuous sign language
recognition (CSLR) from RGB videos, proposing a novel deep-
learning framework that employs spatio-temporal graph convolu-
tional networks (ST-GCNs), which operate on multiple, appro-
priately fused feature streams, capturing the signer’s pose, shape,
appearance, and motion information. In addition to introducing
such networks to the continuous recognition problem, our model’s
novelty lies on: (i) the feature streams considered and their blending
into three ST-GCN modules; (ii) the combination of such modules
with bi-directional long short-term memory networks, thus captur-
ing both short-term embedded signing dynamics and long-range
feature dependencies; and (iii) the fusion scheme, where the re-
sulting modules operate in parallel, their posteriors aligned via a
guiding connectionist temporal classification method, and fused for
sign gloss prediction. Notably, concerning (i), in addition to tradi-
tional CSLR features, we investigate the utility of 3D human pose
and shape parameterization via the “ExPose” approach, as well as
3D skeletal joint information that is regressed from detected 2D
joints. We evaluate the proposed system on two well-known CSLR
benchmarks, conducting extensive ablations on its modules. We
achieve the new state-of-the-art on one of the two datasets, while
reaching very competitive performance on the other.

Index Terms— continuous sign language recognition, spatio-
temporal graph convolutional networks, BiLSTM, CTC, ExPose

1. INTRODUCTION

Sign language (SL) constitutes a non-vocal form of language that
encapsulates numerous manual and non-manual articulation cues,
allowing communication for the deaf and hard-of-hearing. Its au-
tomatic recognition from videos has been attracting considerable at-
tention in recent years, but nevertheless remains a challenging prob-
lem, due to the multitude, complexity, and strong spatio-temporal
correlation of the SL articulators participating in signing, the natural
inter-signer variability, and various difficulties of in-the-wild video
processing. The problem becomes even more challenging in the con-
tinuous SL recognition (CSLR) case that constitutes the focus of this
paper, where the goal is to predict a sequence of SL glosses from
the signing video without prior knowledge of gloss-level segmenta-
tion [1–3].

This work was supported by the Hellenic Foundation for Research and
Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research Projects to
support Faculty Members & Researchers and the procurement of high-cost
research equipment grant” (Project “SL-ReDu”, Project Number 2456).

To tackle CSLR, most works in the literature employ visual fea-
tures that capture signing appearance information via 2D convolu-
tional neural networks (CNNs) [2, 4], or 3D-CNNs to better model
spatio-temporal dependencies [5], as well as 2D human-pose (skele-
tal) features that are derived from the OpenPose library [2] or decon-
volutional neural networks [1]. Such features are used in conjunc-
tion with sequence learning techniques, typically recurrent neural
networks (RNNs) [1,3, 6], such as the bi-directional long short-term
memory (BiLSTM) model [7], coupled with connectionist tempo-
ral classification (CTC) decoding [8]. In addition, many works treat
CSLR as a neural machine translation task, adopting attention-based
encoder-decoder models [2, 5, 6].

However, SL entails rich spatio-temporal structures that CNNs
and RNNs in their native form do not capture well. Thus, some
recent efforts in the literature have proposed the use of graph con-
volutional networks (GCNs), due to their adaptability to signing dy-
namics along both the spatial and temporal dimensions. Specifically,
in [9], spatio-temporal GCNs (ST-GCNs) generate explicit feature
maps from sequences of human skeleton graphs. Similarly, in [10],
a scheme involving sequences of skeletal data with three different
GCN modules and attention mechanisms is proposed. In addition,
in [11], a ST-GCN architecture is used, in an attempt to unify the
spatial and temporal features. Finally, in one of the most recent ad-
vances [12], an SL recognizer learns from multiple modalities using
a GCN-based model. The various streams are trained separately, and
their outputs are combined via an ensemble module that leverages
the last fully-connected layer output. Note that all aforementioned
approaches have only been applied to isolated SL recognition.

Motivated by the above, we propose a novel CSLR approach
that relies on ST-GCNs, acquiring both spatial and temporal pat-
terns from the signing videos. Compared to the earlier mentioned
GCN-based methods for SL recognition, our work concerns the use
of per-vertex feature vectors, generated by attaching visual latent
representations to the skeleton graphs via a ST-GCN based ensem-
ble module. In addition, we introduce an encoding model that re-
lies on the combination of ST-GCNs with BiLSTMs, being (to our
knowledge) the first to combine these two models to capture both
short-term and long-term signing dynamics. Moreover, we introduce
a fusion scheme, where three ST-GCN / BiLSTMs, operating in par-
allel on different feature streams, are aligned for gloss prediction via
a guided CTC approach. We depict our proposed model architecture
in Fig. 1, providing a detailed description in Section 3.

Further to the above, we add two novelties regarding CSLR
visual features: The first constitutes the use of the “ExPose” ap-
proach [13] that extracts 3D pose and shape directly from RGB im-
ages of the signer. The second concerns the 3D body/hand skeleton
regression, based on the corresponding 2D joints detected by Open-
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Fig. 1. Proposed CSLR model architecture: Groups of streams are fused via an ensemble module, producing three feature vectors that pass
through a series of ST-GCN layers and a BiLSTM encoder followed by a linear softmax layer. The predictions are fused using guided CTC.

Pose [14], via a multi-layer neural network, extending our earlier
similar work that was limited to the hand joints alone [15]. These
features are considered together with traditional appearance and mo-
tion features, as well as 2D skeletal joints, as discussed in Section 2.

We evaluate our proposed system on two popular CSLR bench-
marks, namely the “RWTH-PHOENIX Weather 2014T” corpus [16]
and the “Chinese SLR dataset” [6], providing extensive ablations
that highlight our contributions. Comparing our system against state-
of-the-art CSLR methods on these corpora, we achieve superior per-
formance on the second dataset, while reaching very competitive
performance on the first. Details are provided in Section 4.

2. VISUAL FEATURES FOR CSLR

2.1. 3D Human Body Pose and Shape Representation

SL articulation occurs in the 3D space with numerous upper-body ar-
ticulators contributing to sign formation. To model this process, we
employ “ExPose” [13] that captures 3D human body shape, pose,
and facial expression, operating directly on image pixels, being ca-
pable of reconstructing full expressive 3D humans from RGB images
without relying on intermediate features (see also Fig. 2(b)).

Specifically, “ExPose” receives as input a bounding of the hu-
man body, which, after down-scaling to the network compatible res-
olution, is fed to a full body neural network similar to [17], yielding
a rough body pose estimate. To obtain more accurate representations
of the hands and face that are often hard to estimate in low-resolution
images, “ExPose” approaches the reconstruction of the body, hands,
and face separately, using part-specific models. In particular, the re-
covered pose joints from the body network are projected on the orig-
inal image, and are subsequently employed for hands and face local-
ization, as well as the generation of high-resolution image patches
for each region-of-interest. Then, these patches are fed to hand- and
face-specific networks that are pre-trained on high-quality hand and
face images, refining the hand and face parameters.

The “ExPose” algorithm parameterizes face, body, and hands
shape, as well as facial expressions using 10 coefficients, while for
the body pose it extracts 53 joints (22 body-pose joints, 15 joints
per hand, and 1 for the jaw), with rotation representation dimension
equal to 6. In total, it yields a 338-dimensional (dim) feature vector.

2.2. 2D Human Pose Detection

To detect and track the 2D SL articulation, we employ the OpenPose
library [14], which infers 2D human skeletal data from monocular
images. In particular, OpenPose takes as input single images and
produces human skeletal joint locations in the 2D image pixel coor-
dinate system (see also Fig. 2(a)). OpenPose estimates in total 137
human skeletal keypoints, including 70 facial landmarks, 25 body-
pose points, and 21 hand-pose joints for each hand. Here, we disre-

gard 80 skeletal joints, i.e. all facial ones and 10 body-pose keypoints
corresponding to the lower limbs area, thus yielding a 114-dim fea-
ture vector. For scale invariance, we normalize the joints by treating
the image frame as a local coordinate system with the neck being
its origin and the distance between the left and right shoulders set
to unity. Note that, for frames where OpenPose fails, the missing
features are substituted by the previous existing ones.

2.3. 3D Human Body and Hand Skeleton Regression

Since knowledge of the trajectory of the arm joints in the 3D
space can also yield meaningful information, we extend our ear-
lier work [15] to obtain 3D human body joint keypoints, by “lifting”
2D skeletal joint locations to the 3D space. More precisely, we
employ the extracted 2D skeleton of the body (as discussed in Sec-
tion 2.2), and we retrain a model similar to [19], so that it can “lift”
upper-body 2D pose to the 3D space. The model input is a set of
17 2D pose keypoints, and the output is an estimation of the 3D
upper body pose, with the neck joint being the origin in both 2D and
3D coordinate systems, so as to ensure translation invariance. For
training the model, we use the Human 3.6 M dataset [20, 21], which
contains accurate 3D human joint positions. Since in the majority of
SL corpora the lower body parts are rarely visible, during training
we set the occluded keypoints to zero, so that the model can adapt to
upper body poses. In the same manner, we generate the coordinates
of hand joints in the 3D space, using the 21 2D keypoints of each

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Sample frame of the RWTH-PHOENIX Weather 2014T
corpus [16] with super-imposed 2D skeletal joints obtained by Open-
Pose [14]; (b) 3D body reconstruction via the ExPose regression
model [13]; (c) Motion informative image derived from the SpyNet
optical flow model [18]; and (d)-(f) 3D body, left, and right hand
skeleton representations obtained by 2D-to-3D regression [19].
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hand (derived from OpenPose), following our work [15]. This yields
177-dim features, 126 of which correspond to the hand 3D joints
and 51 to the body 3D keypoints (see also Fig. 2(d)-(f)).

2.4. Appearance and Optical Flow Features

In addition to the pose and shape features, we also consider an ap-
pearance representation based on the Inception Net [22]. In particu-
lar, after rescaling to a 299×299-pixel resolution, we feed the entire
frame to the Inception Net, yielding 1024-dim features.

Further, an additional visual representation of interest is the op-
tical flow, as it effectively captures motion information of the numer-
ous SL articulators. To this end, we utilize the SpyNet model [18] for
motion informative image generation (see Fig. 2(c)). To learn motion
representations, we feed such images (after appropriate rescaling to
227× 227 pixels) to a 2D-CNN model that follows the AlexNet ar-
chitecture [23] and is pre-trained on the ImageNet corpus [24]. This
process also yields 1024-dim features.

3. CSLR SEQUENCE LEARNING MODEL

3.1. Recognition Pipeline

Inspired by [25], we address the challenging problem of CSLR from
videos by applying a skeleton-based action recognition method that
relies on ST-GCNs. Such models operate on a sequence of skeleton
graphs, where each node corresponds to a joint in the human body
and hands. Formally, an undirected graph G = (V, E) is constructed
with the node set V = {vi t | i = 1,...,N, t = 1,...,T}, which contains
all human joints, i , in a skeleton sequence. The edge set is com-
posed of the intra-skeleton edges E = {(ui t ,uj t)|(i , j) ∈ H}, where
H represents the set of edges that follow the structure of the human
body and inter-frame edges, which depict the trajectory of a joint in
the time domain. Each ST-GCN unit comprises a graph convolution,
followed by a temporal convolution. Both are complemented with
batch normalization and a ReLU layer.

The ST-GCN encoder can effectively capture short-term motion.
However, modeling long-term motion dynamics is a vital aspect in
CSLR. Thus, we leverage the power of LSTMs that can process
long-range dependencies and model state transitions. We implement
a BiLSTM encoder, which allows us to exploit future context, as
well as previous one, at the same time. Our architecture consists of
four stacked ST-GCN blocks with 256 channels and a temporal ker-
nel size of 5, followed by a global average pooling layer. The output
is a D× T vector, constituting a latent intermediate representation
for each frame, with D set to 256. The ST-GCN output is fed to a
2-layer BiLSTM encoder with 256 hidden units. The final output
passes through a fully-connected softmax layer to produce the pre-
diction. Inference is performed via a CTC beam search decoder with
beam size equal to 5.

3.2. Ensemble Module

Inspired by [26], we extend graph convolutions by effectively attach-
ing visual latent representations to each skeletal joint. The modified
ST-GCN network uses the skeletal coordinates of each joint, along
with the input frame features (appearance or optical flow), and at
each layer it aggregates information from the spatio-temporal neigh-
borhood of each node to obtain a per-vertex feature representation
(see also Fig. 1). Motivated by the success of complementary skele-
ton representations fusion in many computer vision tasks, we ap-
ply multi-stream ST-GCN and BiLSTM-based encoding on differ-
ent combinations of the input feature streams. More precisely, we
generate three feature maps:

(A) In the first, v(JP)
i t = (x(2D)

i t , y(2D)
i t ; x(3D)

i t , y(3D)
i t , z(3D)

i t ), i.e. each
graph/skeleton vertex is represented by its 2D/3D skeletal-
joint positions. Appearance features are then embedded.

(B) In the second, v(JM)
i t = v(JP)

i t+1− v(JP)
i t , i.e. each node is repre-

sented by its 2D and 3D joint-motion vector. Optical flow
features are then embedded to it.

(C) In the last, the 3D joint-rotation parameterization of “ExPose”
is embedded on each node/joint and combined with shape and
expression coefficients, as well as appearance features.

The feature streams are then fed to three ST-GCN/BiLSTM/CTC
models, and their decoding scores are added using the posterior fu-
sion scheme to obtain the final prediction, as detailed next.

3.3. Posterior Fusion Scheme

CTC models tend to emit spiky posterior distributions, where most
activations are dominated by high-confidence blanks. Consequently,
different CTC-LSTM models suffer from non-aligned spike timings,
which renders posterior fusion of softmax scores ineffective. To ad-
dress this, we adopt a similar approach to [27], where a technique is
proposed to explicitly guide the CTC spike timings of speech recog-
nition models to be aligned to those of a pre-trained CTC model (the
guiding model). More specifically, during CTC model training, we
add a loss term that guides the spikes from the model being trained
to occur at the same time as those from the guiding model. During
training, the posteriors for each time index predicted by the guiding
model are converted to a mask M(X) by setting 1 at the output sym-
bol with the highest posterior, 0 at other symbols, and the blank sym-
bol at each time index. During training, the posterior probabilities
P(X) are predicted by the guided model. Through an element-wise
multiplication of mask M and the posteriors, we obtain the masked
posteriors P̂(X) = M(X)�P(X). We synchronize the spike timings
of the guided CTC model to those of the guiding one, by maximizing
the summation of masked posteriors.

4. EVALUATION

4.1. Datasets and Experimental Framework

We consider two popular CSLR benchmarks in our evaluation:

• The RWTH-PHOENIX Weather 2014T dataset (PH2014T)
[16] that contains German SL videos of broadcast weather
forecasts by 9 signers (6F, 3M), recorded at low frame reso-
lution (210×260 pixels) and a 25 Hz frame rate. The corpus
includes 8,257 German SL sequences with a 1,066-gloss vo-
cabulary. In our experiments, we use the official multi-signer
split, comprising 7,096 training videos, 519 validation, and
642 testing ones.

• The Chinese SLR dataset (CSL) [6], containing studio-quality
video of daily-life communication in Chinese SL, recorded
by a Microsoft Kinect at high frame resolution (1280× 720
pixels) and a 30 Hz rate. The corpus consists of 100 sign-
ing sentences (178-gloss vocabulary), expressed by 50 sign-
ers (25F, 25M) and performed by each signer 5 consecutive
times, yielding 25k clips. Here, we adopt the official signer-
independent setup (Split I), comprising 20k training clips (40
signers) and 5k testing ones (10 signers). To avoid tuning on
test data, we allocate 5k training clips for validation.

It should be noted that the second benchmark corresponds to an eas-
ier CSLR task, due to the superior video quality, smaller gloss vo-
cabulary, fixed language content, and larger number of signers.
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Table 1. Comparison of our proposed model to the literature on the RWTH-PHOENIX Weather 2014T dataset (PH2014T, left) and the
Chinese SLR corpus (CSL, right). Systems are listed in decreasing gloss error rate (%). The following notation is used in the feature stream
column: Appearance features based on full frame (FF), hands (H), mouth region (M), and face (F). “Glosses” refers to embeddings.

Model Feature streams PH2014T Model Feature streams CSL
SFD-SGS-SFL [4] FF + Glosses 26.10 LS-HAN [6] FF + H + Glosses 17.30
Bi-ST-LSTM-A [5] H + Articulations position 24.68 DenseTCN [28] FF 14.30
Transformer-CTC [29] FF 24.59 CTF [30] FF 11.20
BiLSTM-CTC [3] FF + Glosses 24.30 Align-iOpt [31] FF 6.10
CNN-LSTM-HMM [32] Glosses + H/M 24.10 BiLSTM + CTC [3] FF + Glosses 2.40
Att-TDCNN [2] H/M + 2D skel. + Flow 23.70 SLRGAN [33] FF + Glosses 2.10
Proposed FF + Flow + 2D/3D Pose 21.34 TMC-BiLSTM-CTC [1] FF + H + F + Pose 2.10
TMC-BiLSTM-CTC [1] FF + H + F + Pose 21.00 Proposed FF + Flow + 2D/3D Pose 1.48

4.2. Implementation details

Our model contains approximately 5M trainable parameters. It is
trained for 100 epochs, keeping the one with the lowest validation
error. The Adam optimizer is employed in its training, using batch
size 4, learning rate 10−3, and weight decay 10−3. Plateau learning
scheduling is applied with a decrease factor of 0.7 when the valida-
tion score does not improve for 8 evaluation steps. Concerning the
fusion scheme, we employ the model trained on stream (A) of Sec-
tion 3.2 (joint-position and appearance) as the guiding model. We
also add a label smoothing term equal to 0.025 that aims to penalize
low-entropy distributions. The model is implemented in PyTorch,
and the experiments are performed on an Nvidia RTX 2080Ti GPU.

4.3. Evaluation Results

Our CSLR model is evaluated quantitatively in terms of gloss error
rate (GER, %). First, in Table 1, we provide a comparison against
state-of-the-art models on both benchmarks considered. As shown
there, our CSLR model achieves a GER of 21.34% and 1.48% on
the RWTH-PHOENIX Weather 2014T dataset and the CSL corpus,
respectively. In the first case, it outperforms most results in the liter-
ature, coming very close to the state-of-the-art (21.00% GER) of [1],
where multi-modal appearance features are combined with 2D pose
feature maps using a temporal multi-cue (TMC) module, and sub-
sequently fed to a BiLSTM-CTC model for sequence prediction. In

Table 2. Gloss error rate (GER, %) on the RWTH-PHOENIX
Weather 2014T dataset of various feature combinations in conjunc-
tion with our proposed model.

Feature streams GER (%)
2D skeleton 51.10
2D skeleton + Appearance 23.16
2D skeleton + Appearance + Optical Flow 22.28
3D skeleton 53.72
3D skeleton + Appearance 23.35
3D skeleton + Appearance + Optical Flow 22.37
“ExPose” parameters (Rotation) 50.25
Rotation + Appearance + Optical Flow 22.14
Joint-position + Appearance (A) 23.03
Joint-motion+ Optical Flow (B) 23.15
Rotation + Appearance (C) 22.96
A + B 22.04
A + C 21.75
A + B + C 21.34

the second case, though, our model achieves the state-of-the-art re-
sult, significantly outperforming the best alternative by a 30% rela-
tive GER reduction (1.48% vs. 2.10%).

Further, in Table 2, we evaluate our system on the RWTH-
PHOENIX Weather 2014T dataset, when various modality com-
binations are considered. As it may observed, our network yields
competitive performance when all three streams are considered,
revealing the benefit of explicitly combining spatio-temporal dy-
namics and different skeletal representations. When our CSLR
model relies exclusively on skeletal structures, we report inferior
accuracy, demonstrating that incorporating additional visual feature
representations is crucial. As deduced from Table 2, “ExPose” pa-
rameters seem to be a robust representation, achieving the highest
accuracy compared to the 2D and 3D skeleton. Fusing 2D and 3D
pose information boosts system performance, indicating that 2D and
3D skeletal data are complementary to each other.

We also investigate the contribution of combining ST-GCNs
with BiLSTMs in the encoder, comparing the performance of the
proposed ST-GCN/BiLSTM/CTC model against two variations of it
on the RWTH-PHOENIX Weather 2014T dataset. First, we evalu-
ate our model without the inclusion of the BiLSTM encoder. This
degrades GER to 22.42%, showing the BiLSTM benefit and con-
firming our intuition that modeling both short-term and long-term
dynamics is important in CSLR. We also consider a baseline 3-layer
BiLSTM encoder alone. Such model yields a GER of 24.04%, thus
validating the power of ST-GCNs. Finally, we evaluate our approach
without the guiding method. This increasing GER by 3.5% absolute,
confirming the benefit of synchronizing the CTC spikes of the three
model streams.

5. CONCLUSION

In this work, we focused on the challenging task of CSLR from RGB
videos, proposing a ST-GCN based sequence learning model that
operates on multiple visual representations of the signing activity,
capturing signer pose, shape, appearance, and motion information.
These feature streams are combined into three ST-GCN modules,
which are followed by BiLSTMs and an appropriate fusion scheme
via a guiding CTC approach. Further, we investigated the utility of
3D human pose and shape parameterization via the “ExPose” ap-
proach, as well as 3D skeletal joint information inferred from de-
tected 2D joints via OpenPose. Our ablations demonstrated the ben-
efit of all modules of the proposed architecture. Compared to the
state-of-the-art, our system achieved competitive performance on the
popular RWTH-PHOENIX Weather 2014T dataset and set the new
state-of-the-art on the Chinese SLR corpus (Split I setup).
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