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ABSTRACT

A recent speech modulation model represents each res-
onance (formant) as an AM-FM signal. Resonances
are demodulated into instantaneous amplitude and fre-
quency signals using the energy separation algorithm.
We present three applications of these ideas (1) a multi-
band parallel demodulation formant tracking algorithm,
(2) an AM-FM vocoder which codes the amplitude and
frequency components of each formant band, and (3) the
energy spectrum which yields a non-parametric smooth
spectral envelope.

1. INTRODUCTION

Recently, the importance of modulations in speech reso-
nances has come to the attention of the speech commu-
nity. Motivated by several nonlinear and time-varying
phenomena during speech production Maragos, Quatieri
and Kaiser [5] proposed an AM-FM modulation model
that represents a single speech resonance R(t) as an
AM-FM signal

R(t) = a(t) cos(2r[f:t + /0 q(T)d7]+0) (1)

where f. is the center value of the formant frequency,
q(t) is the frequency modulating signal, and a(t) is the
time-varying amplitude. The instantaneous formant fre-
quency signal is f;(¢) = f: + ¢(t). Finally, the speech
signal S(t) is modeled as the sum S(¢) = ch\;l Ry (1) of
N such AM-FM signals, one for each formant.

The energy separation algorithm (ESA) was devel-
oped in [5] to demodulate a speech resonance R(%) into
amplitude envelope |a(t)] and instantaneous frequency
fi(t) signals. The ESA is based on an energy-tracking
operator introduced by Teager and Kaiser [4], which
tracks the energy of the source producing an oscillation
signal s(¢) and is defined as

Uls(t)]) = [s()]” — s(1)3(t) (2)

where § = ds/di. The ESA frequency and amplitude
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estimates are
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Similar equations and algorithms exist in discrete time
[5, 6]. The ESA is simple, computationally efficient, and
has excellent time resolution [7].

The AM-FM modulation model, the energy opera-
tor and the ESA have proven to be useful tools in several
speech analysis and synthesis applications. The appli-
cations presented in this paper are (1) a parallel for-
mant tracking algorithm using the multi-band ESA [2],
(2) an AM-FM modulation vocoder, which extracts the
formant bands from the spectrum, demodulates them
and codes the instantaneous amplitude and frequency
signals, and (3) the energy spectrum, a smooth spectral
envelope of the speech signal.

2. FORMANT TRACKING

In [3] an iterative ESA scheme is used for formant track-
ing. Here, we propose a multi-band parallel demodula-
tion algorithm. The speech signal is filtered through a
bank of Gabor band-pass filters with fixed center fre-
quencies and bandwidths. The Gabor filters are uni-
formly spaced in frequency and have constant band-
width. Next, the amplitude envelope |a(t)| and instanta-
neous frequency f;(¢) are estimated for each filtered sig-
nal. Short-time frequency F'(¢, f) and bandwidth B(t, f)
estimates are obtained from the instantaneous ampli-
tude and frequency signals, for each speech frame lo-
cated around time ¢ and for each Gabor filter of cen-
ter frequency f. The time-frequency distributions thus
obtained have time resolution equal to the step (shift)
of the short-time window (typically 10 msec) and fre-
quency resolution equal to the center frequency differ-
ence of two adjacent filters (typically 50 Hz). F and
B are the features used for raw formant estimation and
formant tracking.

To demodulate the filtered signals into their ampli-
tude envelope |a(t)| and instantaneous frequency f(2)
components one may use two alternative algorithms:
the energy separation algorithm (ESA) or the Hilbert
transform demodulation (HTD). The ESA is simpler,
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Figure 1: Short-time frequency estimate Fy(t, f) for the
output of 80 Gabor filters (center frequency f spanning
200 to 4200 Hz) vs. time, for the sentence ‘Show me
non-stop from Dallas to Atlanta’.

computationally more efficient and has better time res-
olution, but its performance deteriorates as the cen-
ter frequency of the Gabor filter approaches the pitch
frequency. In that case we have found that the HTD
(implemented via FFT) produces smoother estimates,
but at a higher computational complexity. The two ap-
proaches are compared in [7].

Simple short-time estimates F} and By for the fre-
quency F' and bandwidth B of a formant candidate, re-
spectively, are the frequency and the standard deviation
of the instantaneous frequency signal, i.e.,

Fito, f) = & fD“J’T fi(t) dt

[Bi(to, N> = & [ (fi(t) = Fi(to, ))? dt

where ty; and 7" are the start and duration of the anal-
ysis frame, respectively, and f the Gabor filter center
frequency. Alternative estimates can be found from the
1st and 2nd moments of f;(¢) using the square amplitude
as weight density [1]

ST fit) a(t)® dt
J;tDD-I—T a(t)Z dt

FZ(thf) =

Batto, it S G277 + ) = Poatt))a
) fttou-l-T a(t)Z dt

The estimates Fy, By are conceptually simple and easy
to compute, while Fy, Ba (which we use henceforth) are
more robust (this property is important in a iterative
scheme [3, 7]). If only frequency estimates F'(¢, f) are
needed, the ESA is used for computationally efficient
demodulation. Smoother bandwidth estimates B(t, f)
for frequencies f below 1 kHz have been obtained via
the HTD.

In Fig. 1, we plot the short-time frequency estimate
Fy(t, f) for all bands vs. time. Note the dense concentra-
tion of estimates around the frequency tracks. The plot
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Figure 2: The short-time Fourier transform, the fre-
quency Fa(f) and bandwidth By(f) estimates vs. the
center frequencies f of the Gabor filters, for a 25 msec
frame of speech.

density plays the role that the Fourier magnitude plays
in a speech spectrogram. In Fig. 2, we show frequency
F5(f) and bandwidth Ba(f) estimates for a single analy-
sis frame. We have observed that bandwidth B, minima
consistently indicate the presence of formants.

In order to determine robust raw formant estimates
for a frame of speech we search for points where Fy(f)
and the Gabor filter center frequency f are equal (i.e.,
F5(f) = f, or in Fig. 2 the points where the solid line
meets the dotted one) and dFs(f)/df < 0. In addition,
there are cases where a weak formant is ‘shadowed’ by
a strong neighboring one; then Fy(f) approaches the
line f without reaching it. Thus, we also search for
points where F5(f)— f has local maxima and Fa(f) < f.
These points are also considered formant estimates if the
difference f — Fa(f) is less than a threshold (typically
50 Hz). Finally, we improve the accuracy of the formant
estimates by linear interpolation.

In Fig. 3(a), we display the raw formant estimates
for the sentence of Fig. 1. 3-point binomial smoothing is
performed on Fa(¢, f) in the time domain before the raw
formant estimates are computed. In Fig. 3(b) the for-
mant tracks (frequency and bandwidth) are shown. The
decision algorithm used is similar to LPC-based formant
tracking algorithms, with special care taken for nasals
sounds (a ‘nasal formant’ between F1-F2 is allowed to
be born and to die). Formant bandwidths are obtained
from Bs.

The multi-band parallel demodulation formant track-
ing algorithm has the attractive features of being con-
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Figure 3: (a) Raw formant estimates and (b) Formant
tracks: frequency and bandwidth (error bars).

ceptually simple and easy to implement. It behaves well
in the presence of nasalization (it tracks an extra ‘nasal
formant’). Finally, it provides realistic formant band-
width estimates as opposed to most LPC-based meth-
ods.

3. AM-FM MODULATION VOCODER

The AM-FM modulation vocoder (see Fig. 4(b)) ex-
tracts three or four time-varying formant bands from the
spectrum by filtering the speech signal along the formant
tracks. The formant tracks are obtained from the paral-
lel ESA algorithm described above. The filtering is done
by a bank of Gabor filters with center frequencies that
adaptively follow the formant tracks. The bandwidth
of each filter is determined from the formant bandwidth
and/or the positions of the neighboring formants.

Next, the formant bands are demodulated in am-
plitude envelope and instantaneous frequency using the
ESA (note: for the first formant either the HTD should
be used or the ESA estimates should be median fil-
tered for more smoothness). The information signals
la(?)|, fi(t) contain, apart from the pitch structure, a
considerable amount of modulation; if the modulations
are removed, the synthesized speech quality deteriorates
considerably. We have found that, in order to preserve
the modulation patterns, a bandwidth of 400 Hz is ad-
equate. In Fig. 4(a) we display typical decimated in-
formation signals (amplitude and frequency). Note the
modulation patterns present.
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Figure 4: (a) The amplitude envelope and instantaneous
frequency decimated to 800 samples/sec for 50 msec of
the vowel ‘¢’ (from ‘zero’) and (b) The block diagram of
the vocoder.

To synthesize the signal, the phase i1s obtained as
the running integral of the instantaneous frequency, the
formant bands are synthesized from the amplitude and
phase signals, and added together.

Multi-pulse LPC has been used to code the deci-
mated amplitude and frequency signals. The analysis
frame length is 32 samples or 40 msec (the original sam-
pling rate is 16 kHz). The LPC order is 4; since all
amplitudes signals look similar, we compute one set of
LPC coefficients for all formant amplitudes. Also, the
instantaneous frequency for the 3rd and 4th formant is
further decimated, since phase information is perceptu-
ally less important for high formants than for low ones.
We use a total of 42 pulses per frame, 4 bits (u-law)
to code the pulse amplitudes, and run-length coding for
the pulse positions. This amounts to a bit rate of 8.5
Kbits/sec for three formant bands or 10 Kbits/sec for
four formants bands. The quality of the AM-FM syn-
thesized speech is good. After quantization, though,
synthesized speech has a ‘harsh’ or ‘nasalized’ quality.
More research is under way to resolve this issue and im-
prove the efficiency of the coder.

Overall, the AM-FM vocoder can provide more nat-
ural sounding speech by modeling the perceptually im-
portant speech formant modulations.
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Figure 5: The short-time Fourier transform and the en-
ergy spectrum (Gabor BW 280 Hz, frame 30 msec).

4. ENERGY SPECTRUM

An energy time-frequency representation E(t, f) is ob-
tained by filtering the original speech signal through a
bank of (uniformly spaced, constant bandwidth) Gabor
band-pass filters with center frequency f, applying the
energy operator on each filter output, and computing
the short-time average energy around time t. For a fixed
time g, we define E(tg, f) to be the energy spectrum
ES(f) of the corresponding speech frame. The param-
eters of the energy spectrum are the bandwidth of the
Gabor filter and the length of the short-time averag-
ing window. As shown in Fig. 5, the energy spectrum
can provide a non-parametric smooth spectral envelope.
Peak-picking of the energy spectrum yields average lo-
cation of formants.

The energy spectrum yields the mean physical en-
ergy required to produce an oscillation, proportional
both to amplitude and frequency squared. In contrast,
the power spectrum yields only the mean square ampli-
tude of an oscillation. Thus, the energy spectrum offers
the means to observe the energy signature (in time) of
each formant source and the relations among them in
an analysis frame. Other interesting properties of the
energy spectrum are currently being investigated.

5. DISCUSSION

In the analysis stage of the multi-band demodulation
formant tracking algorithm, one can alternatively use
filters with a constant logarithmic spacing (constant Q
Gabor wavelets [2]), with a small additional computa-
tional cost. This would improve the raw formant esti-
mates, since the formant bandwidths are typically larger
for higher formants. Logarithmic spacing is also com-
patible with the formant frequency perceptual resolu-
tion (limens) of the ear. Another option is to use the
multi-band ESA for spectral zero tracking. For exam-
ple, in Fig. 1, zeros manifest themselves as areas of low
plot density. Finally, one may compute the Fy and B,

estimates in the frequency domain (spectral moment
computation via FFT); the relative complexity and ef-
ficiency are currently under investigation.

The choice of the appropriate band-pass filter in the
analysis stage of the vocoder is an issue that needs fur-
ther investigation. Filters with a flatter frequency re-
sponse and still smooth cutoff may produce somewhat
better results. A serious degradation of the vocoders
speech quality is introduced by the fact that spectral
valleys are not modeled. We are currently investigating
efficient ways of modeling the spectral valleys (especially
for voiced sounds). Finally, more research is under way
for coding efficiently the amplitude and frequency sig-
nals. It is clear that the modulation patterns in the am-
plitude are similar for all formants. In order to further
reduce the bit rate of the coder, the correlation among
formants must be fully exploited.

The modulation model and the energy/ESA-based
algorithms have a wide range of applications in speech
processing. In particular, they show the importance of
formant modulations in an analysis/feature extraction
system and perceptually in an analysis/synthesis one.
Overall, the results presented in this paper are promising
and suggest the modulation model and the demodula-
tion algorithms as a useful alternative modeling/analysis
approach to speech processing.
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