
APPLICATIONS OF SPEECH PROCESSING USING AN AM{FM MODULATIONMODEL AND ENERGY OPERATORSAlexandros Potamianos and Petros MaragosSchool of Electrical and Computer Engineering,Georgia Institute of Technology, Atlanta, GA 30332-0250, U.S.A.ABSTRACTA recent speech modulation model represents each res-onance (formant) as an AM{FM signal. Resonancesare demodulated into instantaneous amplitude and fre-quency signals using the energy separation algorithm.We present three applications of these ideas (1) a multi-band parallel demodulation formant tracking algorithm,(2) an AM-FM vocoder which codes the amplitude andfrequency components of each formant band, and (3) theenergy spectrum which yields a non-parametric smoothspectral envelope.1. INTRODUCTIONRecently, the importance of modulations in speech reso-nances has come to the attention of the speech commu-nity. Motivated by several nonlinear and time-varyingphenomena during speech production Maragos, Quatieriand Kaiser [5] proposed an AM{FM modulation modelthat represents a single speech resonance R(t) as anAM{FM signalR(t) = a(t) cos(2�[fct+ Z t0 q(� )d� ] + �) (1)where fc is the center value of the formant frequency,q(t) is the frequency modulating signal, and a(t) is thetime-varying amplitude. The instantaneous formant fre-quency signal is fi(t) = fc + q(t). Finally, the speechsignal S(t) is modeled as the sum S(t) =PNk=1Rk(t) ofN such AM{FM signals, one for each formant.The energy separation algorithm (ESA) was devel-oped in [5] to demodulate a speech resonance R(t) intoamplitude envelope ja(t)j and instantaneous frequencyfi(t) signals. The ESA is based on an energy-trackingoperator introduced by Teager and Kaiser [4], whichtracks the energy of the source producing an oscillationsignal s(t) and is de�ned as	[s(t)] = [ _s(t)]2 � s(t)�s(t) (2)where _s = ds=dt. The ESA frequency and amplitudeThis work was supported by the US National Science Foun-dation under Grant MIP-9396301.

estimates arefi(t) � 12�s	[ _x(t)]	[x(t)] ; ja(t)j � 	[x(t)]p	[ _x(t)] (3)Similar equations and algorithms exist in discrete time[5, 6]. The ESA is simple, computationally e�cient, andhas excellent time resolution [7].The AM{FM modulation model, the energy opera-tor and the ESA have proven to be useful tools in severalspeech analysis and synthesis applications. The appli-cations presented in this paper are (1) a parallel for-mant tracking algorithm using the multi-band ESA [2],(2) an AM{FM modulation vocoder, which extracts theformant bands from the spectrum, demodulates themand codes the instantaneous amplitude and frequencysignals, and (3) the energy spectrum, a smooth spectralenvelope of the speech signal.2. FORMANT TRACKINGIn [3] an iterative ESA scheme is used for formant track-ing. Here, we propose a multi-band parallel demodula-tion algorithm. The speech signal is �ltered through abank of Gabor band-pass �lters with �xed center fre-quencies and bandwidths. The Gabor �lters are uni-formly spaced in frequency and have constant band-width. Next, the amplitude envelope ja(t)j and instanta-neous frequency fi(t) are estimated for each �ltered sig-nal. Short-time frequency F (t; f) and bandwidthB(t; f)estimates are obtained from the instantaneous ampli-tude and frequency signals, for each speech frame lo-cated around time t and for each Gabor �lter of cen-ter frequency f . The time-frequency distributions thusobtained have time resolution equal to the step (shift)of the short-time window (typically 10 msec) and fre-quency resolution equal to the center frequency di�er-ence of two adjacent �lters (typically 50 Hz). F andB are the features used for raw formant estimation andformant tracking.To demodulate the �ltered signals into their ampli-tude envelope ja(t)j and instantaneous frequency f(t)components one may use two alternative algorithms:the energy separation algorithm (ESA) or the Hilberttransform demodulation (HTD). The ESA is simpler,
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Figure 1: Short-time frequency estimate F2(t; f) for theoutput of 80 Gabor �lters (center frequency f spanning200 to 4200 Hz) vs. time, for the sentence `Show menon-stop from Dallas to Atlanta'.computationally more e�cient and has better time res-olution, but its performance deteriorates as the cen-ter frequency of the Gabor �lter approaches the pitchfrequency. In that case we have found that the HTD(implemented via FFT) produces smoother estimates,but at a higher computational complexity. The two ap-proaches are compared in [7].Simple short-time estimates F1 and B1 for the fre-quency F and bandwidth B of a formant candidate, re-spectively, are the frequency and the standard deviationof the instantaneous frequency signal, i.e.,F1(t0; f) = 1T R t0+Tt0 fi(t) dt[B1(t0; f)]2 = 1T R t0+Tt0 (fi(t)� F1(t0; f))2 dtwhere t0 and T are the start and duration of the anal-ysis frame, respectively, and f the Gabor �lter centerfrequency. Alternative estimates can be found from the1st and 2nd moments of fi(t) using the square amplitudeas weight density [1]F2(t0; f) = R t0+Tt0 fi(t) a(t)2 dtR t0+Tt0 a(t)2 dt[B2(t0; f)]2 = R t0+Tt0 [( _a(t)=2�)2 + (fi(t)� F2)2a(t)2]dtR t0+Tt0 a(t)2 dtThe estimates F1, B1 are conceptually simple and easyto compute, while F2, B2 (which we use henceforth) aremore robust (this property is important in a iterativescheme [3, 7]). If only frequency estimates F (t; f) areneeded, the ESA is used for computationally e�cientdemodulation. Smoother bandwidth estimates B(t; f)for frequencies f below 1 kHz have been obtained viathe HTD.In Fig. 1, we plot the short-time frequency estimateF2(t; f) for all bands vs. time. Note the dense concentra-tion of estimates around the frequency tracks. The plot

500 1000 1500 2000 2500 3000 3500 4000
50
60
70
80
90

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

 

500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

Gabor Filter Center Frequency (Hz)

M
e

a
n

 I
n

s
t.

 F
re

q
u

e
n

c
y
 (

H
z
)

500 1000 1500 2000 2500 3000 3500 4000
0

100

200

Gabor Filter Center Frequency (Hz)

B
a

n
d

w
id

th
 (

H
z
)Figure 2: The short-time Fourier transform, the fre-quency F2(f) and bandwidth B2(f) estimates vs. thecenter frequencies f of the Gabor �lters, for a 25 msecframe of speech.density plays the role that the Fourier magnitude playsin a speech spectrogram. In Fig. 2, we show frequencyF2(f) and bandwidthB2(f) estimates for a single analy-sis frame. We have observed that bandwidth B2 minimaconsistently indicate the presence of formants.In order to determine robust raw formant estimatesfor a frame of speech we search for points where F2(f)and the Gabor �lter center frequency f are equal (i.e.,F2(f) = f , or in Fig. 2 the points where the solid linemeets the dotted one) and dF2(f)=df < 0. In addition,there are cases where a weak formant is `shadowed' bya strong neighboring one; then F2(f) approaches theline f without reaching it. Thus, we also search forpoints where F2(f)�f has local maxima and F2(f) < f .These points are also considered formant estimates if thedi�erence f � F2(f) is less than a threshold (typically50 Hz). Finally, we improve the accuracy of the formantestimates by linear interpolation.In Fig. 3(a), we display the raw formant estimatesfor the sentence of Fig. 1. 3-point binomial smoothing isperformed on F2(t; f) in the time domain before the rawformant estimates are computed. In Fig. 3(b) the for-mant tracks (frequency and bandwidth) are shown. Thedecision algorithm used is similar to LPC-based formanttracking algorithms, with special care taken for nasalssounds (a `nasal formant' between F1-F2 is allowed tobe born and to die). Formant bandwidths are obtainedfrom B2.The multi-band parallel demodulation formant track-ing algorithm has the attractive features of being con-
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z) (b)Figure 3: (a) Raw formant estimates and (b) Formanttracks: frequency and bandwidth (error bars).ceptually simple and easy to implement. It behaves wellin the presence of nasalization (it tracks an extra `nasalformant'). Finally, it provides realistic formant band-width estimates as opposed to most LPC-based meth-ods.3. AM{FM MODULATION VOCODERThe AM{FM modulation vocoder (see Fig. 4(b)) ex-tracts three or four time-varying formant bands from thespectrum by �ltering the speech signal along the formanttracks. The formant tracks are obtained from the paral-lel ESA algorithm described above. The �ltering is doneby a bank of Gabor �lters with center frequencies thatadaptively follow the formant tracks. The bandwidthof each �lter is determined from the formant bandwidthand/or the positions of the neighboring formants.Next, the formant bands are demodulated in am-plitude envelope and instantaneous frequency using theESA (note: for the �rst formant either the HTD shouldbe used or the ESA estimates should be median �l-tered for more smoothness). The information signalsja(t)j, fi(t) contain, apart from the pitch structure, aconsiderable amount of modulation; if the modulationsare removed, the synthesized speech quality deterioratesconsiderably. We have found that, in order to preservethe modulation patterns, a bandwidth of 400 Hz is ad-equate. In Fig. 4(a) we display typical decimated in-formation signals (amplitude and frequency). Note themodulation patterns present.
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(b)Figure 4: (a) The amplitude envelope and instantaneousfrequency decimated to 800 samples/sec for 50 msec ofthe vowel `e' (from `zero') and (b) The block diagram ofthe vocoder.To synthesize the signal, the phase is obtained asthe running integral of the instantaneous frequency, theformant bands are synthesized from the amplitude andphase signals, and added together.Multi-pulse LPC has been used to code the deci-mated amplitude and frequency signals. The analysisframe length is 32 samples or 40 msec (the original sam-pling rate is 16 kHz). The LPC order is 4; since allamplitudes signals look similar, we compute one set ofLPC coe�cients for all formant amplitudes. Also, theinstantaneous frequency for the 3rd and 4th formant isfurther decimated, since phase information is perceptu-ally less important for high formants than for low ones.We use a total of 42 pulses per frame, 4 bits (�-law)to code the pulse amplitudes, and run-length coding forthe pulse positions. This amounts to a bit rate of 8.5Kbits/sec for three formant bands or 10 Kbits/sec forfour formants bands. The quality of the AM{FM syn-thesized speech is good. After quantization, though,synthesized speech has a `harsh' or `nasalized' quality.More research is under way to resolve this issue and im-prove the e�ciency of the coder.Overall, the AM{FM vocoder can provide more nat-ural sounding speech by modeling the perceptually im-portant speech formant modulations.
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b)Figure 5: The short-time Fourier transform and the en-ergy spectrum (Gabor BW 280 Hz, frame 30 msec).4. ENERGY SPECTRUMAn energy time-frequency representation E(t; f) is ob-tained by �ltering the original speech signal through abank of (uniformly spaced, constant bandwidth) Gaborband-pass �lters with center frequency f , applying theenergy operator on each �lter output, and computingthe short-time average energy around time t. For a �xedtime t0, we de�ne E(t0; f) to be the energy spectrumES(f) of the corresponding speech frame. The param-eters of the energy spectrum are the bandwidth of theGabor �lter and the length of the short-time averag-ing window. As shown in Fig. 5, the energy spectrumcan provide a non-parametric smooth spectral envelope.Peak-picking of the energy spectrum yields average lo-cation of formants.The energy spectrum yields the mean physical en-ergy required to produce an oscillation, proportionalboth to amplitude and frequency squared. In contrast,the power spectrum yields only the mean square ampli-tude of an oscillation. Thus, the energy spectrum o�ersthe means to observe the energy signature (in time) ofeach formant source and the relations among them inan analysis frame. Other interesting properties of theenergy spectrum are currently being investigated.5. DISCUSSIONIn the analysis stage of the multi-band demodulationformant tracking algorithm, one can alternatively use�lters with a constant logarithmic spacing (constant QGabor wavelets [2]), with a small additional computa-tional cost. This would improve the raw formant esti-mates, since the formant bandwidths are typically largerfor higher formants. Logarithmic spacing is also com-patible with the formant frequency perceptual resolu-tion (limens) of the ear. Another option is to use themulti-band ESA for spectral zero tracking. For exam-ple, in Fig. 1, zeros manifest themselves as areas of lowplot density. Finally, one may compute the F2 and B2

estimates in the frequency domain (spectral momentcomputation via FFT); the relative complexity and ef-�ciency are currently under investigation.The choice of the appropriate band-pass �lter in theanalysis stage of the vocoder is an issue that needs fur-ther investigation. Filters with a atter frequency re-sponse and still smooth cuto� may produce somewhatbetter results. A serious degradation of the vocodersspeech quality is introduced by the fact that spectralvalleys are not modeled. We are currently investigatinge�cient ways of modeling the spectral valleys (especiallyfor voiced sounds). Finally, more research is under wayfor coding e�ciently the amplitude and frequency sig-nals. It is clear that the modulation patterns in the am-plitude are similar for all formants. In order to furtherreduce the bit rate of the coder, the correlation amongformants must be fully exploited.The modulation model and the energy/ESA-basedalgorithms have a wide range of applications in speechprocessing. In particular, they show the importance offormant modulations in an analysis/feature extractionsystem and perceptually in an analysis/synthesis one.Overall, the results presented in this paper are promisingand suggest the modulation model and the demodula-tion algorithms as a useful alternative modeling/analysisapproach to speech processing.6. REFERENCES[1] B. Boashash, \Estimating and Interpreting the In-stantaneous Frequency of a Signal ", Proc. of theIEEE, vol. 80, no. 4, pp. 520-538, Apr. 1992.[2] A. C. Bovic, P. Maragos, T. F. Quatieri, \AM{FMEnergy Detection and Separation in Noise UsingMultiband Energy Operators", IEEE Transactionson Signal Processing, vol. 41, no 12, Dec. 1993.[3] H. M. Hanson, P. Maragos, A. Potamianos, \Find-ing Speech Formants and Modulations via EnergySeparation: With Application to a Vocoder", inProc. ICASSP' 93 , Minneapolis, MN, Apr. 1993.[4] J. F. Kaiser, \On Teager's Energy Algorithm andIts Generalization to Continuous Signals", in Proc.IEEE DSP Workshop, New Paltz, NY, Sep. 1990.[5] P. Maragos, J. F. Kaiser, T. F. Quatieri, \EnergySeparation in Signal Modulations with Applicationto Speech Analysis", IEEE Transactions on SignalProcessing, vol. 41, no 10, pp. 3024-3051, Oct. 1993.[6] P. Maragos, J. F. Kaiser, T. F. Quatieri, \On Am-plitude and Frequency Demodulation Using EnergyOperators", IEEE Transactions on Signal Process-ing, vol. 41, no 4, pp. 1532-1550, Apr. 1993.[7] A. Potamianos and P. Maragos, \A Comparison ofthe Energy Operator and the Hilbert TransformApproach to Signal and Speech Demodulation",Signal Processing, May 1994.


