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Abstract

In this paper, we introduce channel-wise recurrent convolutional neural networks
(RecNets), a family of novel, compact neural network architectures for computer vision
tasks inspired by recurrent neural networks (RNNs). RecNets build upon Channel-wise
Recurrent Convolutional (CRC) layers, a novel type of convolutional layer that splits the
input channels into disjoint segments and processes them in a recurrent fashion. In this
way, we simulate wide, yet compact models, since the number of parameters is vastly
reduced via the parameter sharing of the RNN formulation. Experimental results on
the CIFAR-10 and CIFAR-100 image classification tasks demonstrate the superior size-
accuracy trade-off of RecNets compared to other compact state-of-the-art architectures.

1 Introduction
Convolutional neural networks (CNNs) deliver state-of-the-art results in a variety of com-
puter vision tasks, including image classification [14], image segmentation [17] and object
recognition [21]. The general trend has been to design deeper and more sophisticated network
architectures in order to build higher accuracy models [6, 22, 23]. However, the increased
memory and computational requirements of such models pose serious challenges to the
system designer and hinder their deployment on resource-constrained devices. This has
lead researchers to explore various approaches for improving the efficiency of CNNs. Such
approaches can be generally categorized into either designing and training compact, yet
accurate architectures from scratch [2, 8, 23, 25] or compressing pre-trained models via
pruning [7, 19, 24], quantization [10, 12], decomposition [3, 4, 16] or distillation [20], with
the aim of preserving model accuracy.

In this work we present RecNets, a family of neural network architectures for computer
vision tasks inspired by Recurrent Neural Networks (RNNs) [15]. Driven by the need for
compact, yet accurate models, RecNets incorporate two important features that allow them to
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achieve this goal: (a) parameter sharing through a recurrent formulation of convolutional layers
and (b) wide feature maps—which have been shown to improve network performance [27].
The recurrent logic embedded in the design of RecNets can be viewed as a different approach
to the concept of cross-layer connectivity paths established by recent architectures such as
DenseNets [9] and DualPathNets [1].

The main building block of RecNets comprises a Channel-wise Recurrent Convolutional
(CRC) layer followed by a pointwise convolutional layer. A CRC layer differs from a typical
convolutional layer in that it splits the input channels into disjoint segments and processes them
in a recurrent fashion. In this way, a CRC layer reuses the same parameters for every segment,
vastly reducing the number of parameters required to process the input. At the same time, the
hidden state of the layer, generated by the recurrent process, captures information along the
sequence of input channels, therefore enabling information flow between successive segments.
The output of the CRC layer is the concatenation of the d generated hidden variables, which
can be considered as a sequence generated by the underlying RNN. Therefore, CRC can
approximate wide layers in a way similar to grouped convolutions [14], but retains a group
connectivity through the recurrent formulation. The reduced representational power due
to parameter sharing is replenished to some degree by the hidden state of the recurrent
formulation.

We evaluate RecNets on two popular benchmark datasets (CIFAR-10, CIFAR-100) consid-
ering architectures of at most a few million parameters (< 10M). Our models achieve a notable
size-accuracy trade-off, outperforming state-of-the-art models. For instance, compared to
the popular MobileNet architecture [8] which has an accuracy of 73.65% on CIFAR-100 at
3.3M parameters, a RecNet with approximately the same number of parameters achieves
a higher accuracy of 79.01%, while a much smaller RecNet (0.3M parameters) achieves a
similar accuracy of 73.68%.

2 RecNet Architecture

In this section we first introduce the backbone of the RecNet architecture, code-named
Channel-wise Recurrent Convolutional (CRC) layer. Along with the CRC layer definition, we
consider several design choices of the layer and report possible advantages and drawbacks.
We then introduce a family of end-to-end architectures, called RecNets, that will be evaluated
in this work along with their hyper-parameters.

2.1 Channel-wise Recurrent Convolutional Layers

In [1] the authors hint that residual networks [6] and their variations have a formulation
similar to RNNs regarding the usage of successive layers. Driven by this observation, the
main idea behind the RecNet architecture is to explicitly embed this recurrent logic in the
network structure by replacing a typical convolutional layer by multiple successive smaller
layers that form an RNN across the channel dimension. In short, we propose a recurrent
formulation of a convolutional layer by splitting its input and output feature maps across the
layer’s channels into segments; the input segments form a sequence that is fed to an RNN,
while the output sequence, generated by the RNN, consists of the output segments. We will
henceforth refer to such layers as Channel-wise Recurrent Convolutional (CRC) layers.
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2.1.1 Layer Definition

Let x ∈RCin×H×W be the input tensor and h ∈RCout×H×W be the output tensor of a CRC layer,
where Cin, Cout are the number of input and output channels respectively and W , H the spatial
dimensions of each individual channel. We split x and h into d segments across the channel
dimension, i.e. x = (x0,x1, . . . ,xd−1) and h = (h0,h1, . . . ,hd−1) so that xi ∈ RSin×H×W and
hi ∈ RSout×H×W for i ∈ [0,d− 1], where Sin = Cin/d and Sout = Cout/d are the input and
output channels of each segment respectively. Assuming the {xi} segments form the input
sequence of an RNN and the {hi} segments comprise its hidden state, we get the following
recurrent formulation:

hi = σ( fx(xi)+ fh(hi−1)), (1)

where σ() is a nonlinear activation function and fh(), fx() are the transformation functions
for the hidden state and input respectively. The output feature map y of the CRC layer is
formed by the concatenation of the hidden state segments {hi}.

Let Wh ∈ RSout×Sout×k×k be the weight tensor for the hidden state, Wx ∈ RSout×Sin×k×k be
the weight tensor for the input and b ∈RSout be the bias. Contrary to typical RNNs, we define
every transformation of the input and hidden state as a convolutional layer with k× k filters
so that Eq. (1) becomes:

hi =

{
σ(xi ~Wx +b), i = 0
σ(xi ~Wx +hi−1 ~Wh +b), ∀i ∈ [1,d−1].

(2)

In this way the CRC layer simulates a typical convolutional layer with Cin ·Cout ·k ·k parameters
using only (Sin +Sout) ·Sout · k · k = (Cin +Cout) ·Cout · k · k · 1

d2 parameters. The term 1
d2 can

significantly reduce the layer’s parameters when using an appropriate number of steps (e.g
d = 10). To give an example, a CRC layer with 160 input and 640 output channels both split
into 10 segments and has a total of 47,360 parameters (compared to 921,600 parameters for a
typical 3×3 convolutional layer with the same input and output channels). This reduction
is the result of re-using the same weights across each step i = 0, . . . ,d− 1 and can lead to
very compact architectures. The receptive field of the CRC layer depends on the number
of recurrent steps d, therefore its representational power is tightly coupled to this hyper-
parameter. By default, we use 3× 3 convolution filters for processing both the input and
hidden state of each step of the CRC layer. However, we will also explore the usage of 1×1
filters for either Wh or Wx in Section 3.1.3 to further reduce the number of parameters.

If we omit the Wh term from Eq. (2), which corresponds to the “history" of already
processed feature maps, the CRC layer degenerates to a grouped convolution with shared
parameters across the groups, i.e. hi = σ(xi ~Wx), i ∈ [0,d−1]. However, the history term
hi−1 ~Wh carries significant representational power, since it combines and encodes several
previous feature maps, something that has been shown to strengthen feature propagation and
encourage feature reuse [9].

The computational cost of a CRC layer in terms of FLOPs is H ·W ·(Cin+Cout) ·Cout ·k ·k ·
1
d (convolutions)+2 ·H ·W ·Cout (additions), which is practically equivalent to applying two
successive grouped convolutions of size Cin×Cout×k×k and Cout×Cout×k×k respectively,
both using d groups. Even though the parameters are reduced by a quadratic term (1/d2)
and the computational cost is linearly reduced (1/d), the drawback of the proposed layer
compared to typical (grouped) convolutional layers lies on the fact that the sequential nature
of the recurrent formulation cannot be effectively parallelized.
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In short, a CRC layer, which we will henceforth denote as CRC(Sin, Sout , d), is defined in
terms of the following hyper-parameters: 1) Sin: number of input channels per segment, 2)
Sout : number of output channels per segment and 3) d: number of segments (equivalent to
layer’s depth).

2.1.2 Non-Linearity

Another differentiation from the typical RNN formulation involves the non-linear function
σ() in Eq. (2). We distinguish three cases of interest that will be evaluated in Section 3.1.1:

1. ReLU non-linearity: The simple case of using the ReLU function, which is the most
popular choice of non-linearity in CNNs.

2. BN + ReLU non-linearity: Use of a Batch Normalization (BN) [11] layer along with
the ReLU function. To add a degree of freedom, the BN layer is not shared across the d
steps, but instead we use d separate BN layers and drop the bias matrix b in Eq. (2). We
denote each BN layer along with the ReLU non-linearity as σi(). This choice barely
affects the number of parameters since the BN layer parameters are linear to the number
of channels. Equation (2) now becomes:

hi =

{
σi(xi ~Wx), i = 0
σi(xi ~Wx +hi−1 ~Wh), ∀i ∈ [1,d−1].

(3)

3. Linear recursion: An interesting case is the adoption of a linear recurrent formulation
by dropping the σ() term:

hi =

{
xi ~Wx, i = 0
xi ~Wx +hi−1 ~Wh +b, ∀i ∈ [1,d−1].

(4)

An important property of a linear recurrent formulation is that the output can be re-
written without the intermediate hidden variables, as shown in Eq. (5), and thus the
layer can be parallelized at the cost of pre-computing the convolved tensors of Eq. (5).

hi =
i

∑
j=0

x j ~ (Wx ~Wh
~(i− j))+

i

∑
j=0

b~ (Wh
~ j) (5)

Contrary to the previous cases where the non-linearity is applied at each recursion step,
in this case we place a BN layer along with a ReLU non-linearity at the output of the
CRC layer.

2.2 Overall Architecture
Using the proposed CRC layer as the backbone, we design a family of neural network archi-
tectures, called RecNets, by using successive CRC layers connected by 1×1 convolutions.
Specifically, each CRC layer is followed by a Transition Block layer, denoted TB(Cin, Cout),
of Cin input channels and Cout output channels which consists of a 1×1 convolutional layer
followed by a BN layer and a ReLU non-linearity. In essence, the role of a TB layer is to
perplex the channels that are generated by the different segments in a CRC layer so that each
input segment of the following CRC layer carries information about the entire output of the
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𝑥0 𝑥1 𝑥2 𝑥3

⊛𝑊𝑥 ⊛𝑊𝑥 ⊛𝑊𝑥 ⊛𝑊𝑥

Grouped Convolution 
with shared 𝑊𝑥

⊛𝑊ℎ

⊛𝑊ℎ

⊛𝑊ℎ

ℎ0 ℎ1 ℎ3ℎ2

𝑦

Pointwise Convolution

⊛𝐴0 ⊛𝐴1 ⊛𝐴2
⊛𝐴3

𝑥

Output Output
Layer/Block Channels Size

CONV (3×3) + BN + ReLU S1 ·d1 32×32

CRC (S1, e ·S1, d1) e ·S1 ·d1 32×32
TB (e ·S1 ·d1, S1 ·d1) S1 ·d1 32×32
CRC (S1, e ·S1, d1) e ·S1 ·d1 32×32
TB(e ·S1 ·d1, S2 ·d2) S2 ·d2 32×32

Max Pooling (2×2) S2 ·d2 16×16

CRC (S2, e ·S2, d2) e ·S2 ·d2 16×16
TB(e ·S2 ·d2, S2 ·d2) S2 ·d2 16×16
CRC (S2, e ·S2, d2) e ·S2 ·d2 16×16
TB (e ·S2 ·d2, S3 ·d3) S3 ·d3 16×16

Max Pooling (2×2) S3 ·d3 8×8

CRC (S3, e ·S3, d3) e ·S3 ·d3 8×8
TB (e ·S3 ·d3, i2 ·d3) S3 ·d3 8×8
CRC (S3, e ·S3, d3) e ·S3 ·d3 8×8
TB (e ·S3 ·d3, S3 ·d3) S3 ·d3 8×8

Average Pooling (8×8) S3 ·d3 1×1

Linear (S3 ·d3, nclasses) nclasses 1×1

Table 1: Left: Visualization of a Recurrent module with d = 4 segments. Feature map x is
segmented into {xi}, forming a sequence of length d. Each segment has Sin channels and
is transformed into a new feature map of Sout channels. This procedure is equivalent to a
grouped convolution with shared weights (Wx). The new sequence {hi} is generated using
the recurrent weight Wh and corresponds to the output of the CRC layer. The Recurrent
module output y consists of Cout channels and can be computed by a linear transformation,
i.e. a point-wise convolution, over the CRC output {hi}. Right: RecNet(e, S1, S2, S3, d1, d2,
d3) architecture for CIFAR.

previous CRC layer. Using CRCs alone, whilst they perform complex computations of high
receptive field, they have an inherently imbalanced input-output segment correlation (e.g.
h0 has seen only x0, while hd−1 has seen the entire x - see Eq. (5)). Thus, if we create a
network consisting only of CRC layers, this structural imbalance would be propagated and
the leftmost segment, at any depth, would always be very narrow-sighted (similar concept to
DenseNets [9]). We will henceforth refer to the composition of a CRC layer with a TB layer
as a Recurrent module. Table 1(a) provides an overview of a Recurrent module with d = 4
segments.

In the context of the RecNet architecture, a CRC layer expands the channels’ dimension,
while the subsequent TB layer shrinks it, preparing the input for the next CRC layer. If we fix
the channel expansion at each CRC layer using an expansion parameter e (Sout = e∗Sin for
every CRC layer), we can describe the whole network through e along with the input segment
channels Sin and the depth d of each CRC layer. In this work, we experiment with a RecNet
network composed of three pairs of Recurrent modules, which we will henceforth denote
as RecNet(e, S1, S2, S3, d1, d2, d3). The Si hyper-parameters correspond to the segments’
input channels Sin of the i-th pair of Recurrent modules. For short, we also use the acronym
RecNet-w-d, where w is the maximum width (#channels) of the model (w = e∗max{Si ·di})
and d is the overall depth of the CRC layers (d = ∑di). The complete RecNet architecture is
given in Table 1(b).
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2.3 Computational Simplification
The expansion parameter e (see Section 2.2) allows us to simulate wide layers, which may
have great representational power (see Wide ResNets [27]). This, however, comes at the cost
of large intermediate results between CRC and TB layers (e ·Cin×H×W ), which increase
memory requirements during inference. In practice, the CRC layer creates wide feature
maps, while the TB layer reduces them in order to generate the input for the next CRC layer.
Nevertheless, the recurrent formulation enables us to rewrite the successive use of CRC and
TB layers in a more compact way and merge them into a single layer.

Assume that a Recurrent module is denoted as Rec(Sin, Sout , Cout , d) = {CRC(Sin, Sout ,
d), TB(d ·Sout , Cout)}. For simplicity, let the TB layer consist only of a 1×1 convolutional
layer, whose weight matrix is A. Since the input channels dimension of the TB layer is
d · Sout , the matrix A is sized Cout × d · Sout and can be divided into d groups as follows:
A = [A0, . . . ,Ad−1], Ai : Cout ×Sout . If hp = [hp

0 , . . . ,h
p
d−1]

ᵀ are the output segments of CRC
for a specific pixel p, then the output of the subsequent TB yp for the pixel p can be expressed
as:

yp = A ·hp =
[
A0 . . .Ad−1

] hp
0

. . .
hp

d−1

=
d−1

∑
0

Ai ·hp
i (6)

Based on the above formulation, the output of a Recurrent module can be computed as
follows:

y =
d−1

∑
0

hi ~Ai , hi =

{
σ(xi ~Wx +b), i = 0
σ(xi ~Wx +hi−1 ~Wh +b), ∀i ∈ [1,d−1],

(7)

Using the above notation, we obtain the same results without the concatenation of the
output sequence {hi} of the CRC layer, which results in large intermediate representations.
Instead we use a summation over the separate responses of {Ai} at each step of the RNN
formulation using an intermediate feature map of dimension Sout .

3 Experimental Results
In this section we first evaluate different options related to the design of the CRC layer (see
Section 2.1). We then explore RecNet’s hyper-parameters controlling the depth and the width
of the network, and, finally, we compare the proposed architecture against state-of-the-art
networks.

The experiments are performed on the popular CIFAR datasets [13]. The CIFAR-10 and
CIFAR-100 datasets consist of 32×32 color images, corresponding to 10 and 100 classes
respectively. Both datasets are split into 50,000 train and 10,000 test images. We employ
data augmentation during training following the de facto standard methodology, consisting of
horizontal flips and random crops. A simple mean/std normalization (per channel) is used on
the input images. Training on CIFAR is performed using the SGD algorithm with Nesterov’s
momentum with the initial learning rate set to 0.1, weight decay to 0.0005, dampening to
0, momentum to 0.9 and minibatch size to 64. The overall epochs are set to 200, while the
learning rate is changing according to a cosine annealing schedule [18]. The learning rate
scheduler is restarted at 20, 60 and 120 epochs.
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3.1 Exploration of CRC layer variants

3.1.1 Non-linearity

As we presented earlier (see Section 2.1.2), one differentiation in the design of the CRC
layer from the typical RNN formulation is the choice of the non-linearity function σ(). In
order to evaluate the importance of this choice, we evaluate four different cases: 1) ReLU
(typical RNN approach), 2) shared BN layer for all segments along with ReLU, 3) separate
BN layers for each segment along with ReLU and 4) no σ() function at all, i.e. evaluate
a linear recursion formulation. For the evaluation we used the RecNet(4,8,16,32,10,10,10)
architecture and the results are summarized at Table 2(a). The shared BN approach performs
poorly, since it significantly constrains the feature map value range. The ReLU non-linearity,
which corresponds to the usual RNN usage, performs considerably well, but is on par with the
computationally simpler linear recursion approach. Note that the non-linear recursion and the
linear recursion have very similar accuracy even though we expected the non-linearity to play
a crucial role in high-performing recursive layers. Nevertheless, using separate BN layers
at each segment along with the ReLU function leads to non-trivial improvement in accuracy
at the cost of a minimal increase of the network’s parameters. Therefore, the separate BN
approach will be used for the rest of the experimental section.

3.1.2 Expansion Hyper-Parameter

The expansion hyper-parameter e controls the number of output channels of CRC layers (see
Section 2.2) and by increasing its value we approximate wider architectures. We experimented
with the RecNet(e,8,16,32,10,10,10) architecture and the results are presented at Table 2(b).
One can observe that higher values of the expansion hyper-parameter e lead to both improved
performance and an increase in the number of parameters. However, the accuracy gain
between e = 4 and e = 8 is trivial compared to the increase in the number of parameters.
Therefore, we conclude that e = 4 is a good compromise with regards to the size-accuracy
trade-off of the model.

3.1.3 Kernel Size of Wx and Wh

The CRC layer can be still effective even one of the weight tensors Wh, Wx uses 3× 3
convolution filters, while the other uses 1×1. By selecting 1×1 convolution for either of the
tensors, we further reduce the model parameters. Assuming the RecNet(4,8,16,32,10,10,10)
architecture, these implementation choices are evaluated in Table 2(c). We can observe that
the use of 1×1 convolutions compresses the parameters by 5−20% at the cost of a small
decrease in performance. Nevertheless, we shall continue the experimental section with 3×3
kernels for both matrices, since they correspond to the best performing setting.

3.1.4 Recurrent vs Grouped Convolution

To highlight the impact of the recurrent formulation, we also implemented a network with
exactly the same parameters, but without recurrence, i.e. each layer consists of a grouped
convolution with shared parameters formulated as: hi = σi(xi ~ (Wx ~Wh))∀i ∈ [0,d−1].
Table 2(d) contains the evaluation of such a network which is considerably worse compared
to the proposed one, since the CRC layer assumes a much more complex structure and larger
receptive field.
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Non-linearity σ CIFAR-10 CIFAR-100

ReLU 94.62 75.48
shared BN + ReLU 87.44 62.70

separate BN + ReLU 95.15 78.25
None (linear) 94.24 75.71

e #params CIFAR-10 CIFAR-100

1 424K 93.38 71.94
2 824K 94.16 73.10
4 (default) 1,769K 95.15 78.25
8 4,239K 95.47 79.33

(a) (b)
Wx Wh #params CIFAR-10 CIFAR-100

3×3 1×1 1,425K 94.71 77.48
1×1 3×3 1,683K 94.72 77.42
3×3 3×3 1,769K 95.15 78.25

#params CIFAR-10 CIFAR-100

recurrent 1,769K 95.15 78.25
grouped 1,769K 94.65 76.04

(c) (d)
Table 2: Exploration of (a) non-linearities, (b) expansion hyper-parameter e and (c) kernel
sizes of Wx and Wh (d) recurrent vs grouped convolution with shared parameters. All
experiments use the RecNet(4, 8, 16, 32, 10, 10, 10) architecture.

3.2 Depth/Width of RecNet

Having concluded on the most efficient non-linearity, expansion parameter and kernel size for
the weight tensors, we proceed with the evaluation of the hyper-parameters which control
the simulated width and the depth of the CRC layers, i.e. S1,S2,S3,d1,d2,d3. Specifically,
we progressively increase the intermediate feature map channels (e · Si · di) at each pair of
Recurrent modules by increasing Si (S1 < S2 < S3) while having di fixed (d1 = d2 = d3 = d f )
or vice versa. The results are summarized in Table 3. The reported depth corresponds to
d1 + d2 + d3 for simplicity. However, the depth of the network is d1 + d2 + d3 + 7, if we
include the first convolution layer as well as the six Transition Blocks. All the networks
included at Table 3 perform well and are fairly compact, requiring at most a few million
parameters. Compared to the popular MobileNet architecture [8] which has an accuracy
of 73.65% on CIFAR-100 at 3.3M parameters, RecNet(4,8,8,8,5,10,15) has an accuracy of
73.68% at 0.3M parameters and RecNet(4,8,16,32,15,15,15) has an accuracy of 79.01% at
3.3M parameters.

Architecture (e, S1, S2, S3, d1, d2, d3) acronym depth #params CIFAR-10 CIFAR-100

RecNet(4, 4, 8, 16, 10, 10, 10) RecNet-60-640 60 471K 93.45 74.94
RecNet(4, 4, 8, 16, 15, 15, 15) RecNet-90-960 90 863K 94.32 76.31
RecNet(4, 4, 8, 16, 20, 20, 20) RecNet-120-1280 120 1,406K 94.58 77.62

RecNet(4, 8, 16, 32, 10, 10, 10) RecNet-60-1280 60 1,769K 95.15 78.25
RecNet(4, 8, 16, 32, 15, 15, 15) RecNet-90-1920 90 3,306K 95.22 79.01
RecNet(4, 8, 16, 32, 20, 20, 20) RecNet-120-2560 120 5,444K 95.46 80.31

RecNet(4, 8, 8, 8, 5, 10, 15) RecNet-60-480 60 316K 93.28 73.68
RecNet(4, 8, 8, 8, 10, 15, 20) RecNet-90-640 90 537K 93.95 75.86
RecNet(4, 8, 8, 8, 10, 20, 30) RecNet-120-960 120 930K 94.44 77.58

RecNet(4, 16, 16, 16, 5, 10, 15) RecNet-60-960 60 1,137K 94.54 77.91
RecNet(4, 16, 16, 16, 10, 15, 20) RecNet-90-1280 90 2,028K 94.77 78.00
RecNet(4, 16, 16, 16, 10, 20, 30) RecNet-120-1920 120 3,569K 95.47 79.38

Table 3: Exploration of hyper-parameters S1, S2, S3, d1, d2, d3, which control the size of
the RecNet architecture. The acronym RecNet-d-w reports a model with a depth d and a
maximum width w.
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It should be noted that the reported depth is in line with the parallelization weakness of
the proposed CRC layers (see Section 2.1.1), since the simulated wide layers are only six
(see Table 2.1, Right). In other words, implementation-wise, the recurrent CRC module is
unfolded into a sequential set of simple convolution layers, resulting to a notable architecture
depth.

3.3 Comparison to the state-of-the-art

Table 4 shows the performance of several compact state-of-the-art models on CIFAR-100—
this dataset is significantly more challenging than CIFAR-10 and, therefore, it is easier to
draw meaningful conclusions about the evaluated architectures. We select models consisting
of at most a few million parameters. For clarity, we only report two RecNet architectures in
Table 4. Specifically, we select two extreme cases, one with only 240K parameters and one
with almost 9M parameters. Even though RecNets perform well compared to the majority
of reported networks, its superiority is effectively shown in Figure 1. RecNets demonstrate
an improved performance-parameter trade-off compared to the majority of other networks,
with the exception of DenseNets, which provide a comparable trade-off. In fact, RecNets
and DenseNets share the concept of a history preserving step, but implement it in a different
manner (hidden state of recurrent formulation in case of RecNets and densely-connected
layers in case of DenseNets). This observation hints towards a property that seems essential
to constructing efficient compact networks: re-using/perplexing information at different
receptive fields.

#Params Accuracy
Model/Method (Million) (%)

GoogleNet [23] 6.8 77.91

ResNet-110 [6] 1.7 75.73

WRN-40-1 [27] 0.6 69.11
WRN-40-2 [27] 2.2 73.96
WRN-40-4 [27] 8.9 77.11

MobileNet [8] 3.3 73.65

ResNeXt-29,1x64d [26] 4.5 77.85

PyramidNet-48 [5] 1.7 76.78
PyramidNet-84 [5] 3.8 79.12

DenseNet-40-12 [9] 1.0 75.58
DenseNet-100-12 [9] 7.0 79.80
DenseNet-BC-40-18 [9] 0.4 74.72
DenseNet-BC-100-12 [9] 0.8 77.73

RecNet-30-60 0.2 70.85
RecNet-120-2880 8.2 80.56

Table 4: Accuracy of state-of-the-art networks (<10M parameters) on CIFAR-100.
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Figure 1: Comparison of state-of-the-art networks on CIFAR-100 in terms of size-accuracy
trade-off.

4 Conclusions
In this paper we employ the recurrent logic of RNNs in order to design a novel convolutional
layer, called Channel-wise Recurrent Convolutional (CRC) layer. The input of a CRC layer is
expressed as a sequence of feature maps and is processed in a recurrent fashion. Theoretical
advantages of CRC layers are two-fold: a) they simulate wide layers with high receptive
fields and b) they improve parameter efficiency due to parameter sharing and cross-layer
connectivity. Using CRC as the main building block, we present a family of compact neural
network architectures, which we refer to as RecNets. We evaluate RecNets on the CIFAR-10
and CIFAR-100 image classification tasks and demonstrate that, for a given parameter budget,
they outperform other state-of-the-art networks.
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