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Abstract

Modern agricultural applications rely more and more on
deep learning solutions. However, training well-performing
deep networks requires a large amount of annotated data
that may not be available and in the case of 3D annota-
tion may not even be feasible for human annotators. In
this work, we develop a deep learning approach to seg-
ment mushrooms and estimate their pose on 3D data, in
the form of point clouds acquired by depth sensors. To
circumvent the annotation problem, we create a synthetic
dataset of mushroom scenes, where we are fully aware of
3D information, such as the pose of each mushroom. The
proposed network has a fully convolutional backbone, that
parses sparse 3D data, and predicts pose information that
implicitly defines both instance segmentation and pose es-
timation task. We have validated the effectiveness of the
proposed implicit-based approach for a synthetic test set,
as well as provided qualitative results for a small set of real
acquired point clouds with depth sensors.

1. Introduction

The need for autonomous harvesting is increasing in
agriculture due to labor scarcity and the growing popula-
tion. Automated harvesting robots require accurate 3D rep-
resentation and pose estimation to navigate through crops,
locate fruits, and harvest them without damaging the plants
or the fruits. Due to challenging lighting conditions, oc-
clusions, and plant growth, there is a growing need to de-
velop 3D vision approaches to provide accurate segmenta-
tion and pose estimation. These technologies could help
farmers to increase production and harvesting effectiveness
and enhance the overall quality of their products. The case
of interest in this work is the commercial harvesting of the
white cultivated mushroom, Agaricus bisporus, on indus-
trial mushroom farms.

Starting from Ciarfuglia et al. [5] facing the limited avail-

able annotated data for fruits in orchards, they addressed
the challenge of generating pseudo-labels for agricultural
robotics applications. They proposed a method for generat-
ing high-quality pseudo-labels using a combination of self-
supervised learning and transfer learning. Le Louedec et al.
in [8] presented a CNN-based method for segmenting and
detecting broccoli heads from 3D point clouds. They as-
sessed their approach to broccoli fields by evaluating both
semantic and instance segmentation and providing a quali-
tative analysis. In [10], Wang et al. focused on instance seg-
mentation in 3D point clouds. They trained PartNet giving
as input the point cloud of lettuce and taking the segmenta-
tion of each leaf as output, using point clouds from real and
synthetic datasets.

As far as we know, there has been little research on
mushrooms’ 3D posture assessment. Qian et al. [9] pre-
sented an object recognition and localization method for
an oyster mushroom harvesting robot that blends detection
data from a neural network with depth data from an RGB-
D camera. The SSD object detection algorithm and depth
pictures based on binocular and structured light principles
were utilized in this technique to determine the precise po-
sition of the identified item in the 3D environment, ensur-
ing real-time performance. In [1], the authors proposed a
method for recognizing and segmenting mushrooms in 3D
space using RGB and depth information. The mushrooms
are recognized using a mix of active contouring and the cir-
cular Hough transform, and their 3D location and orienta-
tion are approximated using registration methods using a
template mushroom model.

In this work, we developed a 3D deep network for sep-
arating mushrooms and estimating their pose from point
cloud inputs. Specifically, we assume that the input of our
system is a mushroom scene, in the form of a point cloud,
obtained from depth sensors such as RealSense active-
stereo cameras, possibly in a multi-view setting to enhance
point cloud reconstruction quality. To train our system, a
pipeline for creating synthetic mushroom scenes was de-
veloped. This way, we acquire all the annotations required
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to train a well-performing system on the considered tasks.
Architecture-wise, we relied on Fully Convolutional Geo-
metric Features (FCGF) [4] and we used the same 3D con-
volutional network that processes point clouds as our back-
bone. On top of this backbone, we added a small fully-
connected network to predict task-relevant variables at each
point of the point cloud. Emphasis was given on the per-
point predicted variables to achieve the best possible per-
formance, leading to the definition of the proposed implicit
pose encoding that enables us to achieve notably high per-
formance.

The contributions of this work are summarized below:
• We developed a synthetic dataset of point clouds that de-
scribe mushroom scenes to address the lack of annotated
data. These point cloud scenes have several augmentation
steps to simulate realistic point clouds gathered from depth
sensors. The generated synthetic data can help us train deep
3D networks for this task.
• We proposed a point-level implicit pose encoding that de-
scribes pose information in an indirect manner. An indica-
tive variable of this encoding, used for estimating rotation,
is a singular value for each point that denotes how close we
are to the top of the cap. This encoding is correlated with
both tasks at hand and considerably assists the convergence
of the network.
• Instance segmentation is not explicitly performed through
the network, but a clustering step is used to separate mush-
rooms to avoid complex architectures with multi-prediction
options.
• We validate the effectiveness of our method in a synthetic
test and provide qualitative results over real data, aiming to
highlight the synthetic-to-real adaptation.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the synthetic point cloud generation step,
while Section 3 describes the proposed pipeline for mush-
room detection and 3D pose estimation. Finally, Section
4 reports our experimental evaluation both on a synthetic
dataset and real data and Section 5 concludes our work.

2. Creating Synthetic Point Clouds
The goal of this work is to modify a deep network in

order to perform operations in point clouds of mushroom
scenes. Nonetheless, even fine-tuning an existing pipeline
requires annotated data. Such information is not available
for our task. Furthermore, annotating point clouds and espe-
cially providing 3D pose annotation is impractical for large
scale data collections. To this end, we focused our efforts
on creating a pipeline for generating diverse synthetic point
clouds. The building block of our mushroom scene creation
pipeline is a 3D mushroom mesh, as shown in Figure 1.
The creation of mushroom scenes can be summarized as the
random placement of transformed versions of this template
over a ground plane.

Figure 1. 3D mesh of the mushroom template.

Since we want non-trivial variations over the mushrooms
and the generated scene, we followed a series of augmenta-
tions, as described in what follows.

Ground Augmentations: We use realistic non-smooth
ground planes.
• Two different soil meshes were considered with unique
terrain deformations.
• We further deform these ground meshes. A local defor-
mation approach was used where a subset of points was ran-
domly selected, and a random translation magnitude was
assigned to them. We translated these points along their
normals. Neighboring points were also translated using an
interpolation step.
• Random “distractors” were added to the scenes. These
distractors are either cubes or cones with random position,
scale and rotation. Their goal is to introduce “foreign” el-
ements in the scenes and increase robustness of the mush-
room detection.

Mushroom Augmentations: We randomly select a
number K of mushrooms to be placed on the ground mesh.
The mushroom template of Figure 1 is used in this step. The
augmentation sub-steps for each mushroom are summarized
below.
• Scale the mushroom template within the range s ∈
[0.5, 1.5]. A finer per-axis re-scaling step is then used for
extra mushroom variability by randomly selecting a factor
in the range a ∈ [0.8, 1.2] (e.g., sz = axs).
• Rotate the template using random axis angles over a con-
strained set. Specifically, rotation over the x- and y-axis was
constrained to the range [−45◦, 45◦]. Due to symmetry over
the z-axis, we choose to leave this rotation unconstrained.
• Apply local deformations in the mushroom mesh (along
the surface normals) without significantly altering its sur-
face. For this step, we use the same rationale for the local
ground deformation.
• Translate the mushroom template anywhere on the ground
mesh (considering only translation over the xy-axes). The
mushroom is also translated along the z-axis in order to have
its bottom point in the proximity of the ground plane.
• Basic collision checking is applied. If a newly created
mushroom collides with an existing one, we discard the new
mushroom and create a new one, iteratively, until no colli-
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(a) 5 mushrooms (b) 15 mushrooms (c) 35 mushrooms

Figure 2. Generated scenes of synthetic point clouds. Distractors are clearly visible in the first two images. Mushrooms regions are
highlighted with red color.

sion is detected.
Scene Augmentations: Generic scene augmentation

steps that apply on both ground, distractor and mushroom
objects.
• To create the final point cloud, use a slightly different
sampling number of points and different voxel sizes (×0.8
- ×1.2) for the subsequent down-sampling in order to pro-
vide extra variability in the created scenes.
• Lastly, to simulate realistic collected point clouds, a hid-
den point removal step is performed [7]. This step approxi-
mates the visibility of a point cloud from a given view and
removes occluded points. Possible views are randomly se-
lected, using a constrained radius range and a constrained
set of axis angles that do not considerably diverge from an
overhead viewpoint.

The “power” of these synthetic scenes is the ability to ob-
tain 3D annotations automatically. We considered the fol-
lowing annotations:
• A binary label is used to annotate if a point of the scene
belongs to a mushroom template or not. Specifically, we
only label mushroom points belonging to the mushroom cap
since the stem is often hidden and irrelevant to a mushroom
picking application.
• The center of each mushroom as a 3D point.
• Oriented 3D bounding box of each mushroom.
In the forthcoming sections, we will discuss extra possible
annotations, as by-product of the aforementioned ones, that
act as auxiliary pose encodings.

Examples of the generated scenes with increasing num-
ber of mushrooms are presented in Figure 2.

3. Proposed Approach

In this work, we develop a method that performs both
instance segmentation and pose estimation tasks by relying
on a set of per-point features, referred to as implicit pose en-
coding. These task-related variables are predicted through a
3D convolutional network, inspired by Fully Convolutional

Geometric Features [4]. The overview of our method can
be found in Figure 3. The network architecture, the pose
encoding and the underlying functionalities in order to per-
form segmentation and pose estimation will be described in
detail in the following sections.

3.1. Fully Convolutional Geometric Features

The backbone of the proposed system is a sparse 3D con-
volutional network, proposed by Choy et al. [4]. This net-
work was developed to extract geometric features, referred
to as Fully Convolutional Geometric Features (FCGF), from
3D point clouds. The authors validated the effectiveness of
their method in registration tasks (for both indoor and out-
door data), where a point matching step using the 3D fea-
tures was required.

The core operation of this network is 3D convolution
over sparse data. The point cloud input is organized as a
sparse tensor after a voxel down-sampling step. This voxel-
based down-sampling operation essentially creates a 3D
grid, which is expected to be considerably sparse, as in any
quantization of a 3D point structure. Features are then ex-
tracted by a single forward pass of this fully-convolutional
3D network. The sparse representation of the data assists us
in efficiently performing these demanding 3D convolutions,
using an appropriate library that supports sparse computa-
tions (Minkowski Engine [3]).

The authors of [4] highlighted the effectiveness of met-
ric learning losses with a “hard” example sampling process
over contrastive or triplet loss setups. Due to the nature of
our task, we did not explore such metric losses, and we used
the 3D network of FCGF as a feature extractor backbone,
initializing our own model with the provided pre-trained
model by the authors of [4].

In this work, the proposed architecture model uses a sim-
ple, fully connected network of three linear layers, inter-
vened by ReLU non-linearities, on top of the FCGF back-
bone that transforms the per-point 3D features into task-
relevant predictions. We will discuss the possible predic-
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Figure 3. Overview of the proposed system. Given a point cloud input of a mushroom scene, the proposed deep network predicts the
three categories of task-relevant information. Using a mode-seeking clustering over the predicted centers we can provide the instance
segmentation result. Then each mushroom region is processed as an ellipsoid structure and the corresponding 3D pose is estimated.

tions, referred to as implicit pose encoding, in the following
section.

3.2. Proposed Implicit Pose Encoding

In this section, we will describe the possible task-
oriented predictions of our 3D model with respect to our
multifacet task: segmentation and 3D pose estimation.

As we will show in the experimental section, we have
discovered that trying to learn a very specific regression tar-
get, such as the center of the mushroom, at point-level may
lead to subpar performance. Specifically, the 3D network
should assign the same regression value (e.g., pose param-
eters) to a subset of the points (i.e., the points belonging
to a specific mushroom). Such a straightforward formula-
tion of our problem proved difficult to train in practice. To
this end, we devised a set of auxiliary variables that can im-
plicitly define the requested tasks, dubbed as implicit pose
encoding.

In more detail, we trained our network to simultaneously
predict point-level information relevant to both segmenta-
tion and pose estimation tasks. Specifically, for each point
of the point cloud, we estimate the following set of vari-
ables:
• existence value: we simply predict whether a point be-
longs to a mushroom or the background. We consider only
points belonging to mushroom caps as foreground.
• residual center: for each mushroom point p, we predict
its corresponding mushroom center c in a residual rationale,
i.e., the target 3D vector is defined as the difference c − p.
This residual approach helped convergence, giving a more
intuitive, point-based formulation compared to a fixed re-
gression target.
• orientation value: a single value metric denoting how
close a point is to the top of the cap that implicitly defines a

rotation vector. Each point is assigned one value from zero
to one, where zero corresponds to the base of the cap (the
wider part) and one corresponds to the top of the cap.

We should highlight that these variables implicitly de-
fine the requested information. However, they do this in
a self-referenced way for each point, essentially address-
ing the following question: “how can we get a glimpse
of requested pose information when we are at this specific
point?”. Such an approach proved very effective in practice
and notably assisted the training procedure in converging to
well-performing solutions.

Training is performed using a multi-task loss. In this
context, each “task” corresponds to one of the three afore-
mentioned categories of variables. Mushroom existence
values is trained through a binary cross entropy loss. Center
and orientation information are trained with mean squared
error loss. Since residual center targets typically take small
values, an increased weight is considered for this subtask
(×100). Center residuals and pose values are zero-ed for
non-mushroom points. The overall loss is the summation of
the aforementioned individual losses.

In what follows, we describe how we utilize these vari-
ables to first perform instance segmentation of mushrooms
and then pose estimation of each individual mushroom.

3.3. Instance Segmentation

We have defined how to predict several useful variables,
but we have not described how they will be used in the
context of our work. The mushroom existence prediction
can provide a faithful foreground/background segmenta-
tion. Nevertheless, instance segmentation requires that each
individual mushroom is assigned to a different label. Thus,
we have developed two clustering-based alternatives:
1) We assume that mushrooms do not touch each other.

6266



Figure 4. The residual center information represented as transla-
tion vector (top) and the corresponding transformation that creates
dense regions around mushroom centers (bottom). Note how the
mushroom points in the top image are directed towards the center,
while background points have smaller random displacements.

Therefore, between each mushroom, there is a gap with
no annotated mushroom points. Following this assumption,
mushrooms can be separated with a density clustering al-
gorithm, such as DBSCAN ( [6]). Nonetheless, this as-
sumption does not hold for every possible mushroom scene.
In fact, it is common for neighboring mushrooms, grow-
ing in mushroom farms, to touch each other. To overcome
this issue, we enforce the aforementioned assumption by as-
signing a non-mushroom label to mushroom points that are
close together in the target labels of the synthetic scenes.
Specifically, for each point we find the two closest mush-
room centers and we assign as non-mushrooms points that
have similar distances from these centers (i.e., we discard
points using the condition ∥1 − d1/d2∥ < .25 where d1,
d2 are the distances to the two closest mushroom centers).
This approach relies only on the mushroom existence value,
given the proposed labeling modification that spatially sep-
arates mushrooms regions.
2) We utilize the center information, along with the mush-
room existence values. Given a well-performing network,
we expect that each mushroom point will “collapse” to its
center. Such behavior will create very dense regions of
points that correspond to individual mushrooms, as seen in
Figure 4. According to this rationale, we selected a mode-
seeking clustering algorithm, such as the MeanShift algo-
rithm [2], for clustering points into separate mushrooms.

3.4. 3D Pose Estimation

Given a well-performing instance segmentation step, one
could perform pose estimation using a template registration
scheme (e.g., Iterative Closest Point algorithm) over indi-

vidual mushroom regions. However, such iterative template
matching/registration approaches introduce non trivial over-
head when performed for each mushroom separately. To
avoid such computational overhead, we make the assump-
tion that an ellipsoid structure can approximate the mush-
room cap.

Following an ellipsoid formulation, we can derive the ro-
tation parameters using only the per-point singular orienta-
tion values. Formally, the “rectified” points should, after ap-
plying the rotation matrix, will correspond to the network’s
orientation predictions, which in practice is the normalized
projections in the z-axis, or formally:

[R(p− c)T ]z = e⃗zR(p− c)T = yosz (1)

, where yo is the orientation predictions provided by the net-
work, sz the scale over z-axis and e⃗z the unitary row vector
with respect to z-axis ([0 0 1]).

Assuming the the rotation over z-axis is irrelevant due
to symmetry, we consider the rotation matrix as the prod-
uct of the basic rotations over x- and y-axes, i.e., R =
Ry(θy)Rx(θx).

Therefore, for the set of points P , belonging to a po-
tential mushroom cap, and their corresponding orientation
predictions Yo (Yo is the column vector of all the predicted
yo), we must approximate the following linear system with
respect to a 3D vector [λ1, λ2, λ3] that corresponds to the
last row of the rotation matrix R scaled by sz:

(P - c)

λ1

λ2

λ3

 = (P - c)

 − sin(θy)/sz
sin(θx) cos(θy)/sz
cos(θx) cos(θy)/sz

 = Yo (2)

We can approximate the values λi/sz using an ordinary
least squares solution and then calculate the relevant ellip-
soid parameters:

sz = 1/
√
λ2
1 + λ2

2 + λ2
3 (3)

sin(θx) = λ2/
√
1− λ2

1 , sin(θy) = −λ1sz (4)

From these equations (and the assumption of an angle range
of [−π/2, π/2] so that cosine values are always positive),
we can fully calculate the rotation matrix R.

In a nutshell, the yo predictions are sufficient to estimate
how the cap has oriented with respect to its initial upright
position. We take into account the symmetry of the cap and
the resulting rotation matrix, controlled only by the rota-
tions over x- and y-axes, is analytically estimated.

Finally, we focus on calculating the scale parameters.
Due to symmetry, we assume sx = sy = s. To avoid so-
lutions where sz is much smaller or much larger than s, we
assume that the ellipsoid has a constrained shape of specific
proportions where sz = 2s/3. This ratio was selected with
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respect to the initial template mushroom. According to this
formulation, we discard the previous estimation of sz and
we calculate a “global” using the ellipse equations. Since
we want to estimate a singular scale value, a least squares
solution is trivially computed. Note that Eq. 3 is sufficient
to compute an estimation of s if we consider a predefined
relation between sx, sy and sz . Nevertheless, we have seen
that redefine s through the ellipsoid equations works better
in practice.

4. Experimental Evaluation
For our experiments, we trained the proposed system

for 20K iterations, with a new random scene generated at
each iteration. The number of mushrooms for each scene
was randomly selected from the range [5, 45]. An Adam
optimizer was used along with a multistep scheduler. For
the ablation study, we created a synthetic dataset of 50
mushroom scenes using our synthetic point cloud genera-
tion pipeline. The total number of mushrooms in this vali-
dation dataset is 529.

Before attempting to measure pose estimation, we
should find the correspondences between existing mush-
rooms and their potential predicted candidates. Thus, our
initial evaluation is performed through retrieval metrics;
Mean Average Precision (MAP) is reported, with an overlap
Intersection-over-Union (Iou) threshold dictating successful
detections. Since the two sub-tasks of detection and pose
estimation are intervened, such a retrieval-based take on the
problem could provide a quantitative evaluation.

To perform finer comparisons, we also report a scale
error and a 3D orientation error. We only report these
metrics for “good” detection, i.e., detected mushrooms
with IoU overlap above a defined threshold. Specifically,
the scale error is defined as relative error: |spredicted −
sreal|1/spredicted, while the orientation error is defined as a
cosine similarity metric and its corresponding angle error.

Moreover, we also provide qualitative results of our
method in realistic point cloud data, acquired by RealSense
active-stereo cameras. Specifically, we considered multi-
view settings, with a rotating camera system, to reconstruct
mushroom surfaces as faithfully as possible.

4.1. Ablation over Synthetic Data

We start our exploration by evaluating a basic template
matching approach. Specifically, we used the RANSAC al-
gorithm over matches between the 3D features of the scene
and features of the template (Fig. 1). The interesting thing
here is to validate if the re-trained features and the final pre-
dictions of the proposed system can enhance such a typi-
cal template matching process. The results of this experi-
ment are summarized in Table 1, where the fine-tuned 3D
features provide a considerable boost. However, the fi-
nal pose-related predictions of our system lead to under-

performance. This can be attributed to the feature-matching
step of the RANSAC system, since the reduced set of 5 di-
mensions can instigate a plethora of redundant matches that
further hinder this stochastic process.

Features MAP @ 25% IoU

pre-trained FCGF 75.74%
fine-tuned FCGF 87.40%
fine-tuned FCGF + pose encoding 80.17%

Table 1. Comparison of RANSAC-based algorithms when using
the 3D features, either from the pre-trained network or from our
fine-tuned version. Serves as a baseline for forthcoming experi-
ments.

Next, we explore how the concept of indications assisted
the whole system instead of regressing straightforwardly to
target values. Specifically, we considered a version where
the center information is trained explicitly, and thus, each
point of the same mushroom should have the same center
prediction. Also, we considered a version where orienta-
tion information is encoded as an orientation vector to be
predicted by each point belonging to the mushroom. The re-
sults of this exploration are presented in Table 2. We can see
that when we did not use our implicit encoding, the system
considerably under-performs. In fact, we reported increased
training loss that indicated convergence issues. However,
the proposed implicit definitions provide a close-to-perfect
detection score, outperforming also the RANSAC variants
of Table 1.

Predictions MAP @ 25% IoU

explicit center + implicit orientation 25.35%
implicit center + explicit orientation 43.90%
implicit center + implicit orientation 99.57%

Table 2. Impact of using implicit encoding. We considered both
center (without residual formulation) and orientation (as an orien-
tation vector) explicit alternatives.

Lastly, we explored the two different instance segmen-
tation approaches, namely the density clustering over the
actual points or the clustering over dense “collapsed” cen-
ters, as described in Section 3.3. We denote each approach
with the name of its core clustering component: DBSCAN
and MeanShift. The results of Table 3 show similar perfor-
mance of these two variations under the proposed frame-
work. DBSCAN approach is slightly more sensitive, since
it can merge neighboring mushrooms if the existence pre-
dictions do not provide well-separated regions. To this end,
we considered the latter approach (MeanShift) as the default
option in our work.

To have a finer evaluation of the quality of the detec-
tions, we also calculated scale and orientation errors for ev-
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Figure 5. Qualitative examples of segmentation and pose estimation: first row corresponds to data acquired from a setup of two depth
RGB-D cameras, while second row correspond to multi-view data of 18 view from a rotating camera system. Top-right image is a single
view example. We use a red oriented bounding box to denote the pose of each mushroom. Zoom in for details.

clustering MAP @ 25% IoU MAP @ 50% IoU

DBSCAN 99.20% 81.48%
MeanShift 99.57% 81.95%

Table 3. Comparison of the two considered instance segmentation
approaches, based on different clustering algorithms.

ery prediction above 25% IoU threshold. The results are
summarized in Table 4, where we also report the corre-
sponding errors for the best performing RANSAC variants.
We also applied an ICP fine-tuning algorithm, as a template
registration approach, over the proposed method. Notably,
even though the proposed method is an one-shot approach,
it achieves very low orientation error, while an ICP fine-
tuning step decreases performance.

metric RANSAC-based Proposed Proposed+ICP

scale relative error 6.7% 4.8% 12.42%

cosine similarity 0.9643 0.9973 0.9828
theta error 15.35◦ 4.22◦ 10.63◦

Table 4. Scale and angle errors for the best-performing RANSAC
variant, the proposed pipeline and the proposed pipeline along
with an ICP fine-tuning registration step. The reported mean er-
rors are calculated over detections above 25% IoU threshold.

4.2. Qualitative Evaluation over Real Data

Finally, in Figure 5 we provide examples of the effective-
ness of our method in real data, hinting a good adaptation
despite the synthetic-to-real domain gap. Notable examples

of this adaptations can be found in bottom-middle image,
where 3 mushrooms are very close together, as well as the
in the top-right image, which corresponds to a single-view
point cloud. Regarding the latter, the proposed synthetic
generation simulates single-view scenarios due to the hid-
den point removal step. To this end, the proposed method
can adapt to cases where only a part of the mushroom is
present and extrapolate its pose, contrary to the aforemen-
tioned RANSAC and ICP alternatives. This exact behav-
ior can be clearly seen in the zoomed-in depiction of Fig-
ure 6, where we compare two different pose estimation ap-
proaches (proposed vs proposed & ICP fine-tuning of Ta-
ble 4) for a single-view point cloud of real data. We can
observe that the ICP process tries to “fit what it sees” that
leads to erroneous estimations.

Figure 6. Examples of pose estimation for a single-view point
cloud of real data. We compare two approaches: proposed (left)
vs proposed & ICP fine-tuning (right). Note how ICP decreases
the quality of the results.
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5. Conclusions

In this work, we proposed a mushroom segmentation and
pose estimation pipeline based on a lightweight, single-pass
network that process 3D point clouds and provides pose-
related predictions for each point. These set of predictions
is referred to as implicit pose encoding and proved to be
critical for training a well-performing system. To train such
network we face the issue of 3D annotated data shortage, es-
pecially for our task. To this end, we also created a synthetic
dataset of point cloud mushroom scenes. To validate the
effectiveness of our method we provided quantitative com-
parisons over synthetic data, as well as qualitative examples
over real multi-view point clouds, obtained from multiple
depth sensors.
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