
Attribute-based Gesture Recognition: Generalization
to Unseen Classes

George Retsinas, Panagiotis Paraskevas Filntisis, Nikos Kardaris, Petros Maragos
School of Electrical and Computer Engineering, National Technical University of Athens, GR-15773 Athens, Greece

Email: {gretsinas, filby}@central.ntua.gr & nkardaris@mail.ntua.gr & maragos@cs.ntua.gr

Abstract—In this paper, we present a hand pose based
gesture representation that can effectively classify both static and
dynamic gestures. In contrast to resource and data intensive deep
learning models, we postulate that hand pose alone can be used to
extract compact yet discriminative features that are suitable for
most applications that require real-time gesture recognition with
minimal computational overhead. Building on the robustness of
modern hand pose estimation frameworks and the expressive
power of neural networks, we extract a fine-grained gesture
description by decomposing gestures in a set of defined attributes.
Our approach is highly capable of generalizing to unseen data
and unseen classes, as shown by our experiments in the context
of the BonsAPPs Challenge use-case.

I. INTRODUCTION

Gesture Recognition is a prominent research field with
numerous real-life applications [1], typically in the context of
Human-Machine Interaction (HMI), such as gaming and virtual
reality [2], sign language recognition [3], touch-less driving [4]
and robot perception [5], [6]. Recent advances in body and
hand pose estimation have made it possible to extract the hand
skeleton with high accuracy and fidelity from raw visual data
in real time [7], [8], [9]. In this work, we present a novel
skeleton-based gesture recognition system and explore the
capabilities of generalization to both unseen data and unseen
classes/actions. We argue that the hand pose can be used
effectively to extract compact yet expressive and discriminative
representations, taking advantage of the robustness of skeleton
extraction algorithms, which are trained on large and diverse
datasets. We show that this approach allows our model to
generalize well to unseen gesture data.

Our case study focuses on the classes set by the BonsAPPs
Gesture Recognition Challenge[10]. We were tasked with
devising a gesture recognition system for automotive appli-
cations, allowing the car driver to interact with the machine
interface via gestures. The complete set of classes could not be
found in any superset of known datasets and therefore a typical
end-to-end approach could not be followed. To this end, we de-
vised a way to address these unseen classes by breaking them
into attributes. Each class then corresponds to a set of attributes
and is classified as such. These attributes are separated into
three categories: hand structure (e.g. open hand/peace sign),
action (e.g. show/rotate) and direction (e.g. up/down). Using
this attribute-based representation, classification is translated to
a simple cosine similarity between the predicted attribute and
the reference attributes of the unseen classes. The complete
methodology and its motivation are presented in Section III.

This work was partially supported by EU grant PILLAR-Robots
#101070381.

BonsAPPs Classes
fist reach HMI with index
L sign reach HMI with 2 fingers
hang loose reach HMI with hand
middlefinger rotate index CW
ok sign rotate index CCW
open hand rotate 2 fingers CW
peace sign rotate 2 fingers CCW
point index click with index
point 2 fingers click with 2 fingers
thumb up thumb to left
thumb down thumb to right

(a) (b)

Fig. 1: 1a List of Gesture Classes as imposed by the BonsAPPs
Challenge and 1b the hand model of Mediapipe.

II. RELATED WORK

The importance of gesture recognition for various human
machine interaction and perception tasks has led to great
advances in the field. Recent approaches on gesture recognition
follow the same trend with other computer vision problems,
relying on deep neural networks to recognize either static (i.e.
handshapes) or dynamic gestures. Thus, many works use two
stream methods (e.g. [11], [12], [13]) or 3D CNN methods (e.g.
[14], [15], [16], [17]) to encode static and dynamic appearance.
A few approaches model the temporal evolution of dynamic
gestures using recurrent neural networks and their variants
[13], [18], [19], [20]. Various methods focus on combining
features from multiple complementary optical data streams,
such as RBG, depth, IR, optical flow etc. ([13], [21], [17]).The
main idea of most methods is to classify unprocessed streams
of uni- or multi-modal visual data.

Skeleton-based gesture recognition using geometric shape
features has been widely used in the past, driven by the
advent of RGB-D sensors [22], [23]. Recently, there has
been an increased interest in end-to-end approaches that use
skeleton-based features as input to DNNs. [18] proposes a
combination of CNN and LSTM to encode the spatial patterns
and temporal evolution of 3D skeleton joints respectively.
In [24] sequences of hand joints are processed in parallel by 3
CNN branches to model different time resolutions. The output
features of each branch are concatenated and fed to a Multi
Layer Perceptron for classification. [25] uses skeleton joint
distances and temporal differences to construct location and
viewpoint invariant embeddings that encode joint correlations,
which are fed to 1D convolutional layers for action and gesture
recognition. In [26] the authors propose to decompose dynamic
gestures into hand posture evolution and hand movements and
construct different skeleton-based representations for each one.
These are processed by a 3D and 2D CNN respectively and the
output features are combined for classification. [27] processes
sequences of 3D hand coordinates using separate temporal and
spatial branches. Our method combines elements of different

petros
Text Box
Proc. 14th IEEE Image, Video, and Multidimensional Signal Processing Workshop (IVMSP 2022),Nafplio, Greece, June 2022.

approaches, as it employs a geometrical gesture description,
which is used as prior information to enhance the neural
network’s ability to discriminate and generalize.

III. METHODOLOGY

In this section, we describe in detail our approach to
tackle the gesture recognition task of the BonsAPPs challenge.
Figure 1a shows the gesture classes involved in the task.
The proposed approach comprises of multiple steps, carefully
devised to promote generalization properties, as a method
of zero-shot learning. We are interested in generalization to
unseen data and to unseen classes. The former is promoted by
a well-performing hand skeleton prediction system, while the
latter is addressed by the proposed attribute-based approach.
In what follows, all essential building blocks are described.

A. Skeleton Extraction

We extract the hand skeleton using the off-the-shelf state-
of-the-art 3D hand skeleton extraction module provided by the
Google Mediapipe library [7]. The input of the module is a
monocular RGB image and the extracted hand model skeleton
can be seen in Fig. 1b. We have decided to use this module
due to the fact that the library supports multiple platforms and
has end-to-end acceleration for common hardware (not relying
only on high-performance graphics card), thus enabling easier
integration into real-life HMI applications. Furthermore, it is
important to note that the model has been tested in people all
around the globe, mitigating ethnicity and skin color biases.

B. Static Gestures

First, we focus on the set of “static” gestures, i.e., gestures
that do not require any specific actions (essentially they corre-
spond to the “show” action, where the user simply presents as
specific hand-shape) and can be categorized only by the hand
shape: different finger configurations correspond to different
classes. The static gestures of interest are listed in the first
column of Table 1a. The complete set of the required static
classes could not be found in the existing datasets. To address
this, we created a small dataset of static gestures (2 persons for
training and 1 for testing). The collection protocol promoted
simplicity and generalization: users perform a gesture for a
few seconds with a moving hand, in order to capture slight
variations of the same gesture - each frame is treated as a
different instance of the same class.

Train User #1 Train User #2 Test User

Fig. 2: Example frames with the corresponding skeleton hand
landmarks, taken from the collected static gesture dataset.

To build an efficient gesture recognition system for this set,
we extracted a set of intuitive “handcrafted” features from each
skeleton and feed them into a multi-layer network comprised
of fully connected modules, as described below.

Preprocessing: From each landmark in the hand pose
(Figure 1b) we subtract the coordinates of point #0, i.e.
xt
i = xi − x0 to achieve translation invariance. Then we

normalize the result with respect to the size of the palm, i.e.
xs
i = xt

i/||xt
5||2 to achieve scale invariance.

Our feature vector contains 21 elements derived from the
normalized coordinates that intuitively describe the hand pose,
including 3d hand direction, cosine similarities between each
finger and the palm counterpart (e.g. for thumb it would be
cos(x4 − x2, x2 − x0))), between neighboring fingers (thumb-
to-forefinger cos(x4 − x2, x8 − x5) etc.) and relative distance
between the forefinger and thumb tips and between the forefin-
ger and middle finger tips (useful for ”ok” and ”peace” signs).

Note that the initial normalization does not affect cosine
similarities (only the requested relative distances). Cosine
features are helpful since they interpret the structure of the
hand in simple geometric terms of angles between edges. In
addition, cosine similarities and relative distances reinforce
rotation invariance.

Augmentation: Due to the straightforward interpretation
of the extracted features, we can easily construct “negative”
examples for each class and assist the subsequent training
procedure. One such example is the “closing” and “opening”
of fingers for which we control the cosine similarities between
fingers and their palm counterparts. Values close to 1 denote
that the finger is extended, while values < 0 denote that
the finger is close to the palm. Further basic augmentation
is performed by adding Gaussian noise.

Model and Training: The selected model is a simple feed-
forward network, which takes as input the extracted features
(of size 21) and returns a vector of size equal to the number
of classes (11). It is comprised of 4 hidden layers of size 128.
Between these layers we use ReLU activations and Dropout.
We choose binary cross entropy loss along with a sigmoid
activation function on the output of the network in order to
train for the existence or not of each class, along with the
augmented negative examples which correspond to absence of
classes. We train the network using Adam [28] optimizer for
60 epochs, with learning decay rate 0.1 at 30 and 45 epochs.

C. Training with Attributes

Next, we focus on learning “dynamic” gestures. To achieve
this, we use two datasets that contain the higher level actions
(move, rotate, click, approach) and directions (left/right, in/out,
clock-wise/counter-clock-wise) that we were interested in.

The selected datasets are the widely-used and challeng-
ing NVGesture [13] dataset and the Dynamic Hand Gesture
Recognition (DHGR) dataset [29]. The former has high vari-
ability in performed gestures and “temporal” noise, since each
action is performed only in a subset of frames, while the latter
has the exact same classes, plus two more, but in a much more
constrained and less challenging setting. The gesture classes
of these datasets are summarized in Table I.

Since many of the classes of interest (Fig. 1a) are not
present in these datasets, we cannot sufficiently train a classi-
fication model. To tackle this, we adopted an attribute-based
approach where each on of the existing classes (Table I) is
translated into a set of useful attributes that can be used to ”de-
code” all requested classes. The main idea behind the proposed

TABLE I: List of Gesture Classes included in NVGesture and
DHGR datasets

NVGesture DHGR NVGesture DHGR
Move Hand Left ✓ ✓ Show Three Fingers ✓ ✓
Move Hand Right ✓ ✓ Push Hand Up ✓ ✓
Move Hand Up ✓ ✓ Push Hand Down ✓ ✓
Move Hand Down ✓ ✓ Push Hand out ✓ ✓
Move 2 Fingers Left ✓ ✓ Push Hand In ✓ ✓
Move 2 Fingers Right ✓ ✓ Rotate Fingers CW ✓ ✓
Move 2 Fingers Up ✓ ✓ Rotate Fingers CCW ✓ ✓
Move 2 Fingers Down ✓ ✓ Push 2 Fingers Away ✓ ✓
Click Index Finger ✓ ✓ Close Hand Two Times ✓ ✓
Call Someone ✓ ✓ Thumbs Up ✓ ✓
Open Hand ✓ ✓ Okay Gesture ✓ ✓
Shaking Hand ✓ ✓ Thumb Left ✗ ✓
Show Index Finger ✓ ✓ Thumb Right ✗ ✓
Show Two Fingers ✓ ✓

gesture recognition pipeline is that both the requested classes
as well as the available classes from NVGesture and DHGR
can be broken down into a common set of attributes of the
form: hand structure (static gestures) + action + direction.
Ideally, a 1− 1 correspondence between attribute vectors and
classes should exist in order to perform classification in the
attribute domain. Following the aforementioned rationale, the
attributes are separated into three categories:
actions: show, move, rotate, click, reach, shake, call, swipe
directions: up, down, left, right, in, out, cw, ccw, nodir
hand structure: the 11 static gesture classes.

The representation of each class with respect to the selected
attributes is straightforward (the correspondence tables were
omitted due to space limitations). Each class is eventually rep-
resented by one one-hot vector for each attribute category. The
final attribute vector is the concatenation of the per-category
one-hot vectors. Building on the attribute-based approach for
our problem, we describe the proposed system for recognizing
dynamic gestures and its substeps as follows.

Preprocessing: To create the input for this task, we trans-
form each frame’s landmarks into a feature vector (as described
in the previous section), concatenate them, and use them as
input to the current system along with the difference of sequen-
tial frames, as an estimate of velocity. Overall, the proposed
system has two inputs: a sequence of handcrafted features for
the static module and a sequence of concatenated normalized
landmarks and their velocity. Each frame corresponds to 2
(normalized landmarks & difference of consecutive landmarks)
× 21 (landmarks) × 3 (3D coordinates) features.

Augmentation: We apply the following augmentations:
-temporal speed: simulate the same activity with different
speed by temporal interpolation.
-(temporal) rigid transformation: find a rigid transform by
randomly selecting 3 hand points and translate them. Perform
this on a random number of frames. Interpolate for all frames.
-change view: apply a random global rotation to each frame
to simulate extracted skeletons from different view angles.
-reverse frames: reverse the order of frames and change the
classes/attributes accordingly (left → right, up → down etc.)
-frame mask/point mask: randomly zero entire skeleton on few
frames or single hand points.
-gaussian noise: insert gaussian noise of small magnitude.

Model: The backbone of the proposed model is an efficient
lightweight 1D CNN (to enable real-time recognition) that
encodes the required temporal correlation of successive hand

poses. Overall, a temporal segment scheme [30] was adopted
in order to capture useful information across the whole video.
Segments of 15 frames were extracted from the hand skeleton
sequence. A 1D CNN is applied to each such segment. The
CNN outputs of the segments, which are evenly distributed
with respect to the duration of the video, are then combined
with average pooling. The resulting feature vector is then
transformed by feed forward networks to compute the final
predictions (one fully-connected layer predicts classes and
another one attributes).

The aforementioned pipeline is further fine-tuned using
the following ideas: 1) The average pooling operation across
segments is implemented as weighting average, where the
weights are also estimated by an extra single fully-connected
layer and a sigmoid activation in a self-attention manner (see
Figure 3). The goal of this module is to assist the network to
discard non discriminative parts of a gesture video, e.g. parts
at the beginning or the end of the video where no specific
action is performed. The estimated weight value can be also
used as a threshold to predict a gesture/no gesture mode. 2)
The static gesture classification model is used as an off-the-
self subnetwork which can distinguish all the required “static”
gestures. This network has also an attribute-like logic and
estimates the per-frame probability for each static gesture to
appear. A summarization of the static gestures’ existence is
provided by a max pooling over all frames. An overview of
this approach is depicted in Figure 3.

Finally, we tune the described architecture to increase
the generalization ability of the final system. Specifically,
we “break” the hand skeleton representation into separate
fingers, trying to introduce finger-independent representations.
Each finger is then processed by the same 1D CNN and the
overall feature vector that describes the processed segment is
extracted as the average pooling of the per-finger features.
The motivation is simple; we do not let the network explicitly
learn that clicking can be performed only by one finger, since
only such cases exist on the training sets, but rather learn
the “clicking” action independently of the finger. The finger
configuration can be then introduced by the static gesture
module of our system.

input
skeleton

sequence

1D CNN

skeleton
subsequence

Temporal
segments

skeleton
subsequence

skeleton
subsequence

…
…

FC

FC

weighted
average

FC

maximum

Static Gesture Model

action attributes
(show, rotate,

clock etc.)

direction
attributes

(up/down etc.)

static gesture
attributes

(open hand / one
finger etc.)

Fig. 3: Overview of the proposed system and its critical
sub-components: 1) temporal segment approach, 2) 1D CNN
3) pre-trained static gesture model 4) self-attention weight
averaging.

Overall, we distinguish two architectures to be used:

the first is a more typical end-to-end approach (depicted in
Figure 3), while the second tries to ”absorb” biases that
may hinder generalization as described above. The former
is dubbed as Skeleton2Attributes, while the latter is dubbed
as GSkeleton2Attributes. Note that both alternatives are very
compact with less than 1M parameters, which makes them
appropriate for real-time applications.

Training: As shown in the model description, we predict
both the original classes and their attribute representations.
Thus, a multitask loss is adopted, that consists of two loss
terms: cross entropy loss (along with softmax activation) for
class prediction and binary cross entropy loss (along with
sigmoid activation) for attribute prediction. The final multitask
loss is balanced with respect to the individual loss terms:
LCE(yclasses; tclasses) + LBCE(yattributes; tattributes). The
target vectors are class labels for the class prediction case and
a binary vector of attributes (’1’ for existing attributes, ’0’
otherwise) for the case of attribute prediction.

Training is performed for 1000 epochs, using Adam [28]
and a multi-step scheduling scheme, as previously. For the
static gesture recognition submodule, we use the already
trained weights following the approach of the previous section.
These weights are kept frozen during this training procedure.

D. Evaluating with Attributes

Given a set of ”unseen” classes, we perform classification
by simply creating reference attribute vectors, translating each
class into a set existent/non-existent attributes, and compare
them with the predicted attributes. Comparison is performed
by computing the cosine similarity. A gesture is classified as
the class with the most similar attributes.

IV. EXPERIMENTAL RESULTS
A. Static Gestures

First, we evaluated our trained DNN model designed for the
static gestures (see III-B) on the collected dataset. The overall
recognition rate for the considered 11 classes was 93.42%.
Despite achieving over 96% over the majority of the classes,
two specific classes are often confused: ”L sign” and ”Pointing
forefinger” (the latter has only 65% accuracy). Nonetheless,
such confusion is to be expected since both gestures are
presented by extending the forefinger and since we change
the orientation of the hand during capturing, ”L sign” can be
indeed interpreted as ”pointing forefinger”.

B. Training/Testing on NVGesture and DHGR Datasets

The proposed final gesture recognition system is trained
either on NVGesture or on DHGR dataset and typical accuracy
metrics on these datasets consist a basic measure of how
effective our model is. Only single-view RGB information is
considered for the NVGesture dataset (the dataset contains also
IR and depth). As we can see in Table II, both architectures
perform very well on the corresponding tasks, when trained
and evaluated on the same dataset, while the generalization-
oriented architecture (GSkeleton2Attributes) seems to perform
slightly worse compared to its alternative. The recognition
accuracy is reported using the class prediction head. Attribute-
prediction branch leads to a drop in performance close to
3% in both datasets. We should highlight that state-of-the-
art approaches that are based on the whole RGB images have

similar performance with much larger architectures (e.g. 81.3%
in the recent work of Abavisani et al. [17]), while the 3D
CNN approach proposed by the creators of the NVGesture
dataset[13], achieves only 74.1% using RGB input.

TABLE II: Recognition accuracy(%) in NVGesture/DHGR

Architecture NVGesture DHGR
Skeleton2Attributes 79.25 97.03
GSkeleton2Attributes 77.18 96.65

C. Generalization to BonsAPPs Unseen Classes

Even though the proposed models are fairly successful for
the aforementioned setting, the main goal of this work is to test
the attribute-based approach on the BonsAPPs classes. To this
end, we collected an evaluation set that contains the classes
we are interested in. These were performed by 2 subjects,
different from the training set for the static gestures (5-10 times
each gesture) resulting in 287 videos in total. Videos were
captured with typical webcams, while no specific environment
or protocol was enforced. The results of the proposed attribute-
based classification are summarized in Table III. Apart from
the two different architectures, we considered training only
on NVGesture, only on DHGR, or on a merged set of both
datasets. Taking into account the difficulty of the task at hand
(recognition of unseen classes), we reported top-k results.

Even though top-1 accuracy is lower than 60%, our sys-
tem achieves 87.8% accuracy when the top 3 candidates are
considered. Notably, the generalization-oriented architecture
seems to be effective in this setting (top-3 accuracy is only
80.14% for Skeleton2Attributes, compared to 87.8% for the
GSkeleton2Attributes case), supporting our initial motivation
of decoupling actions from hand structures (classes such as
”rotate with two fingers” or ”click with two fingers” benefit
greatly from GSkeleton2Attributes architecture). As expected,
pairs of classes such as ”pointing with two fingers”/”reaching
HMI with two fingers” or ”open hand” and ”reaching HMI
with hand” are often confused, since they are closely correlated
classes than can even confuse a human.

TABLE III: Top-K accuracy for the BonsAPPs Classes

Skeleton2Attributes GSkeleton2Attributes
trained on: NVGesture DHGR merged NVGesture DHGR merged
k=1 54.35 42.15 54.35 53.31 43.9 58.18
k=2 67.94 55.4 65.16 68.64 61.32 74.21
k=3 79.79 67.00 80.14 82.57 73.87 87.8
k=4 86.41 75.96 88.85 89.9 84.32 91.99
k=5 90.24 83.62 94.08 93.73 88.85 94.43

D. Online Demo

An online web demo is available that runs in real-time
and classifies user gestures performed in front of a webcam.
The demo can be found at https://robotics.ntua.gr/wp-content/
demos/gesture-attr-demo/.

V. CONCLUSION

In this paper we proposed a skeleton-based approach for
real-time gesture recognition. We extract discriminative rep-
resentations by decomposing gestures into a set of attributes,
which enhances the generalization ability of our models. We
demonstrate the efficacy of our approach on a set of unseen
gesture classes.

https://robotics.ntua.gr/wp-content/demos/gesture-attr-demo/
https://robotics.ntua.gr/wp-content/demos/gesture-attr-demo/

REFERENCES

[1] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recogni-
tion for human computer interaction: a survey,” Artificial Intelligence
Review, vol. 43, no. 1, pp. 1–54, Jan 2015.

[2] Z. Lv, A. Halawani, S. Feng, S. ur Réhman, and H. Li, “Touch-less
interactive augmented reality game on vision-based wearable device,”
Personal and Ubiquitous Computing, vol. 19, no. 3, pp. 551–567, Jul
2015.

[3] N. C. Camgoz, S. Hadfield, O. Koller, and R. Bowden, “Subunets:
End-to-end hand shape and continuous sign language recognition,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017.

[4] E. Ohn-Bar and M. M. Trivedi, “Hand gesture recognition in real
time for automotive interfaces: A multimodal vision-based approach
and evaluations,” in IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 6, 2014, pp. 2368–2377.

[5] N. Efthymiou, P. P. Filntisis, G. Potamianos, and P. Maragos, “Visual
robotic perception system with incremental learning for child–robot
interaction scenarios,” Technologies, vol. 9, no. 4, p. 86, 2021.

[6] A. Zlatintsi, A. Dometios, N. Kardaris, I. Rodomagoulakis, P. Koutras,
X. Papageorgiou, P. Maragos, C. Tzafestas, P. Vartholomeos, K. Hauer,
C. Werner, R. Annicchiarico, M. Lombardi, F. Adriano, T. Asfour,
A. Sabatini, C. Laschi, M. Cianchetti, A. Güler, I. Kokkinos, B. Klein,
and R. López, “I-support: A robotic platform of an assistive bathing
robot for the elderly population,” Robotics and Autonomous Systems,
vol. 126, p. 103451, 2020.

[7] https://google.github.io/mediapipe/solutions/hands.html.
[8] W. Huang, P. Ren, J. Wang, Q. Qi, and H. Sun, “Awr: Adaptive

weighting regression for 3D hand pose estimation,” in Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), 2020.

[9] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection
in single images using multiview bootstrapping,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017,
pp. 1145–1153.

[10] https://beta.bonseyes.com/.
[11] J. Wu, P. Ishwar, and J. Konrad, “Two-stream cnns for gesture-based

verification and identification: Learning user style,” in IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW),
2016, pp. 110–118.

[12] J. Wan, S. Escalera, G. Anbarjafari, H. Jair Escalante, X. Baro, I. Guyon,
M. Madadi, J. Allik, J. Gorbova, C. Lin, and Y. Xie, “Results and
analysis of chalearn lap multi-modal isolated and continuous gesture
recognition, and real versus fake expressed emotions challenges,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV) Workshops, Oct 2017.

[13] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz,
“Online detection and classification of dynamic hand gestures with
recurrent 3D convolutional neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 4207–4215.

[14] Q. Miao, Y. Li, W. Ouyang, Z. Ma, X. Xu, W. Shi, and X. Cao,
“Multimodal gesture recognition based on the ResC3D network,” in
IEEE International Conference on Computer Vision Workshops (IC-
CVW), 2017, pp. 3047–3055.

[15] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao, “A key volume mining
deep framework for action recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 1991–1999.

[16] C. Lin, J. Wan, Y. Liang, and S. Z. Li, “Large-scale isolated gesture
recognition using a refined fused model based on masked Res-C3D
network and skeleton LSTM,” in Proceedings of the 13th IEEE In-
ternational Conference on Automatic Face Gesture Recognition (FG
2018), 2018, pp. 52–58.

[17] M. Abavisani, H. R. V. Joze, and V. M. Patel, “Improving the perfor-
mance of unimodal dynamic hand-gesture recognition with multimodal
training,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[18] J. C. Núñez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F.
Vélez, “Convolutional neural networks and long short-term memory for

skeleton-based human activity and hand gesture recognition,” Pattern
Recognition, vol. 76, pp. 80–94, 2018.

[19] G. Chalvatzaki, P. Koutras, A. Tsiami, C. S. Tzafestas, and P. Maragos,
“i-Walk intelligent assessment system: Activity, Mobility, Intention,
Communication,” in Proceedings of the European Conference on Com-
puter Vision Workshops (ECCVW), 2020.

[20] Y. Min, Y. Zhang, X. Chai, and X. Chen, “An efficient PointLSTM
for point clouds based gesture recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 5761–5770.

[21] P. Narayana, R. Beveridge, and B. A. Draper, “Gesture recognition:
Focus on the hands,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[22] Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture recogni-
tion with kinect sensor,” in Proceedings of the 19th ACM international
conference on Multimedia, 2011, pp. 759–760.

[23] Q. De Smedt, H. Wannous, and J.-P. Vandeborre, “Skeleton-based
dynamic hand gesture recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 1206–
1214.

[24] G. Devineau, F. Moutarde, W. Xi, and J. Yang, “Deep learning for hand
gesture recognition on skeletal data,” in Proceedings of the 13th IEEE
International Conference on Automatic Face Gesture Recognition (FG
2018), 2018, pp. 106–113.

[25] F. Yang, Y. Wu, S. Sakti, and S. Nakamura, “Make skeleton-based action
recognition model smaller, faster and better,” in Proceedings of the ACM
multimedia Asia, 2019, pp. 1–6.

[26] J. Liu, Y. Liu, Y. Wang, V. Prinet, S. Xiang, and C. Pan, “Decoupled
representation learning for skeleton-based gesture recognition,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 5750–5759.

[27] Y. Li, D. Ma, Y. Yu, G. Wei, and Y. Zhou, “Compact joints encoding
for skeleton-based dynamic hand gesture recognition,” Computers &
Graphics, vol. 97, pp. 191–199, 2021.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[29] G. Fronteddu, S. Porcu, A. Floris, and L. Atzori, “Dataset for dynamic
hand gesture recognition systems,” IEEE Dataport, 2021. [Online].
Available: https://dx.doi.org/10.21227/43mn-bb52

[30] J. Lin, C. Gan, and S. Han, “Tsm: Temporal shift module for efficient
video understanding,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2019.

https://google.github.io/mediapipe/solutions/hands.html
https://beta.bonseyes.com/
https://dx.doi.org/10.21227/43mn-bb52

	Introduction
	Related Work
	Methodology
	Skeleton Extraction
	Static Gestures
	Training with Attributes
	Evaluating with Attributes

	Experimental Results
	Static Gestures
	Training/Testing on NVGesture and DHGR Datasets
	Generalization to BonsAPPs Unseen Classes
	Online Demo

	Conclusion
	References

