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Basics of Max-plus Algebra

Max-Plus Algebra

Max-plus (or tropical) algebra is defined as the algebra performed on the
max-plus semiring (R ∪ {−∞} ,max,+).

Maxpolynomials

Maxpolynomials (or tropical polynomials) are polynomials which are
formed using the operations of the max-plus semiring:

p(x) =
k

max
i=1

(
aT
i x + bi

)
, x ∈ Rd
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Maxpolynomial Examples
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Figure 1:
p(x) = max(3x , 2x + 1.5, x + 1, 0)
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Figure 2:
p(x , y) = max(2x , x+y+1, x+1, y+1, 1)
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(Extended) Newton Polytope

Let p(x) =
k

max
i=1

(
aT
i x + bi

)
be a maxpolynomial.

Definition 1 ((Extended) Newton Polytope)

We define as the (Extended) Newton Polytope of p the following

Newt(p) = conv {ai , i = 1, . . . , k}
ENewt(p) = conv {(ai , bi ), i = 1, . . . , k}

where conv signifies the convex hull of the given set.

Theorem 2 ([Charisopoulos and Maragos, 2018, Zhang et al., 2018])

Maxpolynomials with the same vertices in the upper hull of their Extended
Newton Polytope correspond to the same function.
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Examples of Polytopes
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Figure 3: Polytopes of
max(3x , 2x + 1.5, x + 1, 0).
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Figure 4: Polytopes of
max(2x , x + y + 1, x + 1, y + 1, 1)
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Maxpolynomial Division

Problem: Assume we have two maxpolynomials p(x), d(x) (dividend and
divisor). We want to find two maxpolynomials q(x), r(x) (quotient and
remainder) such that:

p(x) = max (q(x) + d(x), r(x))

Problem!

The above is not always feasible!
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Approximate Maxpolynomial Division

We relax the requirements, so that the polynomials we want to find satisfy:

p(x) ≥ max (q(x) + d(x), r(x))

We also require that the q(x), r(x) satisfy the above maximally.
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Algorithm for Approximate Maxpolynomial Division

1 Let C be the set of possible vectors
c by which we can shift Newt(d)
(each of which corresponds to a
term in q).

2 We raise the shifted version of
ENewt(d) as high as possible so
that it still lies below ENewt(p),
and we mark the vertical shift as
qc .

3 We set the quotient equal to:

q(x) = max
c∈C

(
qc + cTx

)
and add all terms not covered by a
shift c to the remainder r .
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Figure 5: Division Method.
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Division Example (1)
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Figure 6: Division of p(x) = max(3x , 2x + 1.5, x + 1, 0) by d(x) = max(x + 1, 0).
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Division Example (2)
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Figure 7: Division of p(x) = max(3x , 2x + 1.5, x + 1, 0) by d(x) = max(x , 0).
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Application to Neural Network Minimization (1)

We shall examine neural networks with ReLU activations, focusing on
simple networks with two layers and one output neuron.

Theorem 3 ([Wang, 2004])

A continuous, piecewise linear function is equal to the difference of two
maxpolynomials.

Theorem 4 ([Zhang et al., 2018])

A neural network with piecewise linear activations can be represented as
the difference of two maxpolynomials, or in other words a tropical rational
function.
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Application to Neural Network Minimization (2)

Our algorithm seeks to minimize the network by matching the most
important vertices of the Newton Polytopes of its maxpolynomials.

This can be thought of as lifting the inequality restriction of
maxpolynomial division, which might be limiting when approximating a
network.
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Neural Network Minimization Algorithm (1)

For each of the maxpolynomials p of the network, we first find a divisor.
This is done by:

1 Finding the most important vertices of ENewt(p), via the weights of
the network (based on which combination of neurons is activated).

2 Incrementally adding the differences of these vertices as neurons in
the new network.

Afterwards, we find a quotient, via the average difference in activations
between the original network and the new network, and add it to the
output bias.
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Neural Network Minimization Algorithm (2)
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Figure 8: Example of Iterative Step.

The intuition behind the algorithm is that, by adding the difference
between each new vertex and a previous neuron, the resulting sum will
equal the vertex, and might also be a vertex in the new polytope.
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Experimental Application

We train networks for these two datasets:

IMDB Movie Review (using 2000 samples for our method).

MNIST (where only pairs of classes 3/5 and 4/9 are considered).

Our networks consist of two fully connected layers in the end. Before these
we use as feature extractors:

IMDB: An embedding layer, either alone or with an LSTM/1D-CNN.

MNIST: A 2D-CNN.

We minimize the hidden layer of the fully connected part of each network.
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Results - IMDB Dataset (1)
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Figure 9: Average accuracy and standard deviation of method on test set (IMDB).
Baseline is discarding original model and training new one from scratch.
FC is the model with only an embedding layer as feature extractor, while

FC+LSTM/1D-CNN also add the appropriate feature extractor.
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Results - IMDB Dataset (2)

Model Runtime of our Training time for all
method with st. dev. (sec) baseline networks (sec)

FC 82.6±4.6 97.2

FC+LSTM 113.4±0.1 630.2

FC+1D-CNN 17.8±0.8 142.3

Table 1: Time taken to train models of all sizes.
Baseline is discarding original model and training new one from scratch.
FC is the model with only an embedding layer as feature extractor, while

FC+LSTM/1D-CNN also add the appropriate feature extractor.
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Results - MNIST Dataset
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Figure 10: Average accuracy and standard deviation of method on test set (MNIST).
Baseline is discarding original model and training new one from scratch.
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Conclusions & Future Work

We have made contributions in the link between neural networks and
max-plus algebra, while also introducing a framework for approximate
maxpolynomial division.

We also provided an algorithm to minimize simple, two-layer networks
with a single output neuron.

Further research focuses on expanding this algorithm in the case of
multiple class problems, as well as more complicated networks.
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Thank you for your attention!

We wish everyone courage and health during the
COVID-19 pandemic.

For more information, demos, and current results:
http://cvsp.cs.ntua.gr and http://robotics.ntua.gr
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