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A B S T R A C T

Human attention is highly influenced by multi-modal combinations of perceived sensory information and
especially audiovisual information. Although systematic behavioral experiments have provided evidence that
human attention is multi-modal, most bottom-up computational attention models, namely saliency models for
fixation prediction, focus on visual information, largely ignoring auditory input. In this work, we aim to bridge
the gap between findings from neuroscience concerning audiovisual attention and the computational attention
modeling, by creating a 2-D bottom-up audiovisual saliency model. We experiment with various fusion schemes
for integrating state-of-the-art auditory and visual saliency models in a single audiovisual attention/saliency
model based on behavioral findings, that we validate in two experimental levels: (1) using results from
behavioral experiments aiming to reproduce the results in a mostly qualitative manner and to ensure that
our modeling is in line with behavioral findings, and (2) using 6 different databases with audiovisual human
eye-tracking data. For this last purpose, we have also collected eye-tracking data for two databases: ETMD,
a movie database that contains highly edited videos (movie clips), and SumMe, a database that contains
unstructured and unedited user videos. Experimental results indicate that our proposed audiovisual fusion
schemes in most cases improve performance compared to visual-only models, without any prior knowledge of
the video/audio content. Also, they can be generalized and applied to any auditory saliency model and any
visual spatio-temporal saliency model.

1. Introduction

Attention can be defined as the behavioral and cognitive process
of selectively concentrating on a specific aspect of information, while
ignoring other perceivable input. The role of attention is vital to
humans, and its mechanism has been in the research focus for many
decades. A computational modeling of human attention could not
only be exploited in applications like robot navigation, human–robot
interaction, advertising, summarization, etc., but could also offer an
additional insight in our understanding of human attention functions.

Although visual and auditory stimuli often attract attention in iso-
lation, most of the times stimuli are multi-sensory and multi-modal,
resulting in human multi-modal attention, e.g., audiovisual attention.
The influence that multi-modal stimuli exert on human attention and
behavior [1–4] can be perceived both in everyday life, but also through
targeted behavioral experiments. It can therefore be observed that
when multi-modal stimuli are incongruent they can lead to illusionary
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perception of the multi-modal event, as in the ventriloquist or the
McGurk effect [5], while in the opposite case, where the stimuli are
synchronized/aligned, they can effectively enhance both perception
and performance.

In this work, we focus on investigating how multi-sensory, and
specifically audiovisual stimuli can influence human bottom-up atten-
tion, namely saliency [6]. For example, in [7], a series of behavioral
experiments is described, that highlights the influence of multi-modal
stimuli on saliency, through an effect called ‘‘pip and pop’’: in a
visual search task that consists of a cluttered image containing a target
(that has to be identified by humans) and distractors that change
dynamically, the insertion of a non-localized auditory pip synchronized
with target changes can significantly enhance reaction times. It has
been observed that these task-irrelevant pips make the target become
more salient (i.e. ‘‘pop out’’). This is just a single example of strong
audiovisual interaction, the mechanisms of which have been in the
focus of cognitive research for years.
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In parallel, visual and auditory saliency mechanisms have been sep-
arately well-studied, and the related findings have been integrated into
individual computational models, that have already been employed in
real-world applications. Some of them have been inspired and validated
by behavioral experiments, like the seminal works of [8,9] for visual
saliency, and [10] for auditory saliency. Motivated and validated by
behavioral observations in psycho-sensory experiments these models
have inspired variations and improvements, which have been used in
applications like object recognition in images and prominence detection
in speech.

Despite the simultaneous development of visual and auditory sali-
ency models, few efforts have focused on creating a joint audiovisual
model [11,12]. The majority of models trying to predict human atten-
tion in videos are based only on visual information excluding auditory
input. On the other hand, audiovisual fusion has been found to boost
performance in applications where audio and visual modalities are
correlated and refer to the same event, e.g., speech recognition [13],
movie summarization [14], human–robot interaction [15–17].

We aim to bridge the gap between behavioral research, where
audiovisual integration has been well-investigated, and computational
modeling of attention, which is mostly based on the visual modality.
Our goal is to investigate ways to fuse existing visual and auditory
saliency models in order to create a 2-D audiovisual saliency model
that will be in line both with behavioral findings, but also with hu-
man eye-tracking data. The model should capture well the audiovisual
correspondences, but its performance should not be degraded if there
is no audio or if audio is not related to video. In our preliminary
work [18] we introduced such an audiovisual model, based on Itti
et al. and Kayser et al. and carried out some preliminary experiments to
validate it through behavioral findings from a particular experiment. In
this current paper we have investigated more fusion schemes in order
to integrate auditory and visual saliency, we have carried out more
experiments with behavioral findings but we also present an evaluation
strategy that involves eye-tracking data and comparisons with various
models. Some of these data have been collected for the purposes of this
paper and will be publicly released. The contributions of this paper can
be summarized as follows:

• Audiovisual bottom-up human attention modeling via computa-
tional audiovisual saliency modeling, inspired and validated by
behavioral experiments.

• Investigation of three different audiovisual fusion schemes be-
tween visual saliency and non-localized auditory saliency, result-
ing in a 2-D audiovisual saliency map instead of fusion at decision
or feature level. The proposed audiovisual fusion schemes for
attention/saliency modeling are generic since they can be applied
to any visual spatio-temporal saliency method.

• Audiovisual eye-tracking data collection for two databases,
SumMe and ETMD that contain unedited user videos and highly
edited movies, respectively, and unconstrained audio. The col-
lected eye-tracking data will be released in public.

• Two-level evaluation of the proposed model:

1. Comparison against human experimental findings from be-
havioral experiments in a qualitative way, aspiring to build
a computational model able to explain and reproduce as-
pects of human attention.

2. Comparison against human eye-tracking data from data-
bases with audiovisual eye-tracking data and variable com-
plexity, DIEM, AVAD, Coutrot1, Coutrot2, SumMe, and
ETMD.

The rest of the paper is organized as follows: Section 2 is dedicated
to an extensive review of audiovisual saliency models, behavioral find-
ings related to audiovisual interactions, and state-of-the-art visual, and
auditory saliency models . Section 3 incorporates the main aspects of
computational audiovisual modeling and the proposed fusion schemes.

Section 4 contains a description of the evaluation metrics as well as a
detailed description of the stimuli and the conducted experiments, both
for the behavioral findings and the human eye-tracking databases. Also,
the newly collected audiovisual eye-tracking databases are described,
and in the end of the section an analysis and discussion of the results
and performance across methods and datasets is performed. The last
section concludes our work.

2. Related work

Several attempts to model audiovisual attention exist in the litera-
ture, but most of them are application-specific or use spatial audio in
order to fuse it with visual information.

Audiovisual attention models: Probably the first attempt in mod-
eling audiovisual saliency appears in [19], where the eye fixation
predictions in an audiovisual scene served as cues for guiding a hu-
manoid robot. Here, the model of Itti et al. [9] is employed for visual
saliency, while auditory saliency is only spatially modeled, by means
of acoustic source localization. The output saliency map, via a max
operation, is guided by vision unless an audio source appears in the
scene.

For a similar application, in [20], the authors employ a phase-based
approach for visual saliency and Bayesian surprise along with source
localization for the auditory one. Salient auditory and visual events
are clustered cross-modally and the audiovisual clusters’ saliency is
estimated by linearly combining the unimodal saliency values. In [21],
the auditory saliency map is essentially the source location estimation
and fusion with visual saliency is performed via a product operation.
In [22], a 3D audiovisual attention model that combines visual, depth,
and multi-channel audio data through two independent static and dy-
namic analysis paths is proposed, while in [23], an audiovisual model
for videoconferencing applications is presented. It is based on the fusion
of spatial, temporal, and auditory attentional maps with the latter based
on real-time audiovisual speaker localization. In [24] auditory saliency
is computed through acoustic event detection and visual saliency is only
spatial, since the authors deal with images and not with videos.

Another model presented in [14,25] and further improved in [26],
employs audiovisual saliency from a different viewpoint. The goal of
this model is to predict when, and not where, audiovisual attention is
drawn. All the above described models have been developed for specific
applications, and their majority assumes spatial audio for auditory
saliency. Also, their plausibility and validity has not been investigated
through comparisons with human/behavioral data.

On the other hand, Coutrot and Guyader [12,27,28] and Song [29]
have tried to more directly validate their models with humans. Among
their findings is the observation that in movies, eye gaze is attracted
by talking faces and music players. To match that, after estimating
the visual saliency map they explicitly weigh the face image regions
appropriately to generate an audiovisual saliency map to better account
for eye fixations during movie viewing.

Also, Min et al. [30] in a preliminary work demonstrated that the
impact of audio was up to its consistency with visual signals, while
in some later works [11,31] they developed an audiovisual attention
model for predicting eye fixations in scenes containing moving, sound-
generating objects. For auditory attention, they employed an auditory
source localization method to localize the sound-generating object on
the image and fuse it with visual saliency models.

Aspiring to create a model that will not be application-specific, but
built upon behavioral findings of human attention and thus generic, we
essentially investigate behaviorally-inspired ways to combine existing
visual and auditory saliency models. To motivate better this choice, the
upper part of Fig. 1 depicts two successive frames of the previously
mentioned ‘‘pip and pop’’ stimuli: While all lines are diagonal, there
is only one, the target, that is either horizontal or vertical. All lines
constantly flicker between red and green, but when the target flickers,
it does so alone. Behavioral experiments have shown that when the

187



A. Tsiami, P. Koutras, A. Katsamanis et al. Signal Processing: Image Communication 76 (2019) 186–200

Fig. 1. The two upper figures from [7] depict the ‘‘pip & pop’’ stimuli during a target flicker (the vertical line in the lower left corner that flickers from red to green). Below are
the visual (left) and audiovisual saliency map (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

target flicker is accompanied by a brief non-localized tone (irrelevant
to the task), humans identify the target immediately compared to
the visual-only case. This serves as the starting point for our model.
We extensively review behavioral experiments related to audiovisual
interactions, so as to extract parameters and findings that can be used
in our computational modeling.

Behavioral experiments: Many among the behavioral experiments
dealing with audiovisual interactions focus on audiovisual integration,
a well-studied manifestation of cross-modal interaction. Most of them
try to provide insight on how, when, and where auditory and visual
information are combined. Several works demonstrate the strong influ-
ence of audio on the perception of visual information [32]. The authors
of [33], examine audiovisual simultaneity judgments: It is reported
that after exposure to a fixed audiovisual time lag for several minutes,
experiments on humans show shifts in their subjective simultaneity
responses towards that lag. A related finding described in [34,35] is
the brain’s capability to rapidly recalibrate the presented audiovisual
asynchrony, even when exposed to a single brief asynchrony.

The previously mentioned ‘‘pip and pop’’ effect [7] and other similar
visual search experiments [36–38] are manifestations of the so-called
temporal ventriloquism effect [32,39], which is an example of strong
audiovisual integration. It is defined as the shift of a visual stimulus’
onset and duration by a slightly asynchronous auditory stimulus, or
as the ‘‘capture’’ of auditory time onsets over corresponding visual
time onsets. A review on temporal ventriloquism is presented in [40],
where the effects and the after-effects were studied, as well as the
spatio-temporal criteria for stimuli binding. It has been found that
the temporal ventriloquism effect is affected by temporal windows
but is hardly affected by spatial discordance. A useful finding con-
cerning the temporal windows is that audiovisual asynchrony cannot
exceed 200 ms. The same finding appears also in [32], where it has also
been found that audio influences visual timing perception even when
sound trails the appearance of visual stimuli. In the same work, it is
underlined that audio influences dynamic visual features and not the
spatial ones.

An interesting theory is that sensory integration follows Bayesian
laws [41,42]. The authors of [43] are based on the bayesian modeling
of integration and they extend [41]. They also study the optimal time
window of visual–auditory integration in relation to reaction time.
They demonstrate that the time window acts as a filter determining
whether information delivered from different sensory organs is regis-
tered close enough in time to trigger multi-sensory integration. In [44],
behavioral experiments carried out in order to measure the temporal

window of integration in audiovisual speech perception, also indicate
a 200 ms window of integration.

These findings and conclusions will be used in order to fuse, in a
behaviorally-inspired way, existing visual and auditory saliency mod-
els. The literature contains a rich set of visual saliency models, and a
smaller set of auditory ones. Regarding the former, we focus on spatio-
temporal ones, due to the need for a temporal component (more details
in Section 3):

Visual saliency models: The authors of [45] present a review
of the state-of-the-art in visual attention modeling, referencing about
65 different models and relative comparisons. In most cases, spatio-
temporal models are an extension of spatial methods by incorporat-
ing dynamic features. We provide a brief overview of the various
types: the biologically-inspired, the information theoretic, and the
frequency/phase-selective ones.

Two seminal works [8,46] were the basis of many biologically-
inspired attention models [47–50]. Itti et al. [9] provided an implemen-
tation of a bottom-up computational model for spatial visual saliency
using three feature channels: intensity, color, and orientation, that was
later extended into a spatio-temporal model for predicting saliency
in video streams by the use of two additional features: motion and
flicker [51]. There are other biologically-inspired models based on [9],
either spatial [52–55] or spatio-temporal [56–59].

Most of the information-theoretic models are based on a Bayesian
framework [60–63]. Zhang et al. [64] proposed a general framework
for ‘‘Saliency Using Natural’’ (SUN) scene statistics, later to a spatio-
temporal model [65]. Other works have exploited information-theoretic
measures, like entropy, self/mutual information for spatial-only [66–
72] or spatio-temporal models [68,71,73,74].

Another class of approaches estimates saliency in the frequency do-
main by frequency- or phase-selective tuning of the saliency map [75–
77]. Some models are based on Fourier or discrete cosine trans-
forms [75,78], while quaternion Fourier transform has also been em-
ployed for combining color, intensity, and motion features [77,79,
80].

In [51,55,61], differences between the spatial orientation maps
are employed as temporal features for saliency detection in videos.
In [71], the authors extended their self-resemblance method by employ-
ing 3D local steering kernels for action and saliency detection in videos.
In [81], a spatio-temporal filtering using temporal weighted summation
is proposed for abnormal motion selection in crowed scenes, while
in [82] researchers combine camera motion information with static
features to study the differences between static and dynamic saliency
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in videos. In [83], a perceptually based spatio-temporal computational
framework for visual saliency estimation is presented, that produces
both spatio-temporal and static energy volumes by using the same
multi-scale filterbank based on quadrature Gabor filters in three dimen-
sions (space and time). Also, in [84], a bottom-up saliency model based
on the human visual system structure has been proposed.

From another point of view, based on learning, deep networks have
been successfully applied for visual saliency: In [85], features from
different network layers are used to train SVMs for fixated and non-
fixated regions. Other approaches employ adaptation of pretrained CNN
models for visual recognition tasks [86], while in [87], both shallow
and deep CNN are trained end-to-end for saliency prediction. In [88],
multiscale CNN networks are trained by optimizing common saliency
evaluation metrics, while in [89], the authors extract fixation and
non-fixation image regions to train end-to-end binary multiresolution
CNN. The work of [90] shows that losses based on probability distance
measures are more suitable for saliency rather than standard loss func-
tions for regression. In [91], generative adversarial networks (GAN)
are employed in order to better train end-to-end networks for fixation
prediction. In [92], the authors proposed a two-stream CNN network
based on RGB images and optical flow maps for dynamic saliency
prediction. In [93], gaze transitions are learned from RGB, optical flow
and depth information.

Auditory saliency models: As mentioned earlier, auditory saliency
modeling has been investigated much less, and has initially been in-
spired by visual saliency modeling. One of the first biologically-inspired
auditory saliency models has been proposed by Kayser et al. [10]. The
auditory stimulus is converted into a time–frequency representation
which is a sound spectrogram and yields an ‘‘intensity image’’, which
serves as the model input. The output is a saliency map, which depicts
how auditory saliency evolves across time and frequencies. In this
context, it is structurally identical to Itti et al. visual saliency model [9,
51], but has a different interpretation, as it integrates the concept of
time. The extracted features are the intensity, temporal contrast, and
frequency contrast, in various scales (inspired by the function of audi-
tory neurons). Each feature is extracted with filters modeling findings
from auditory physiology: intensity filter corresponds to receptive fields
with only an excitatory phase, frequency contrast filters to receptive
fields with an excitatory phase and simultaneous side band inhibition,
and temporal contrast ones to fields with an excitatory phase and a
subsequent inhibitory one. These filters correspond to Gabor filters
with suitable orientations. The model’s output is a 2-D saliency map
produced by summing the individual feature maps.

In [94], a model exploring the space of auditory saliency spanning
pitch, intensity, and timbre is presented. It is based on the hypoth-
esis that perception tracks the evolution of sound events in a multi-
dimensional feature space and flags any deviation from background
statistics as salient. Predictive coding corresponds to minimizing error
between bottom-up sensations and top-down predictions. Correspond-
ing mismatches signal the detection of a deviant, namely a salient
event.

In [95], the authors propose a biologically-plausible auditory sali-
ency model based on [10], augmented by orientation and pitch feature
computation. The various features are integrated into a single 2-D
saliency map using a biologically-inspired nonlinear local normaliza-
tion algorithm, adapted from [96].

In [97], Bayesian surprise is applied to detect salient acoustic
events. Kullback–Leibler divergence of the posterior and prior dis-
tribution is used as a measure of how ‘‘unexpected’’ and surprising
newly observed audio samples are. This way, unexpected and surprising
acoustic events are efficiently detected.

In the context of acoustic salient event detection, the model pro-
posed in [14] measures Dominant Teager energies over a 1D Gabor
filterbank applied on the audio signal. In [98], the authors examine
whether saliency scores are modified just after auditory salient events.
They develop two different auditory saliency models, the discrete en-
ergy separation algorithm (DESA) and the energy model that provide

saliency curve as an output. The most salient auditory events are
extracted by thresholding these curves and the authors examine some
eye movement parameters just after these events concluding that audio
impact on visual saliency is not reinforced specifically after salient
auditory events.

3. Computational audiovisual saliency modeling

The main focus of this work is to fuse, in a behaviorally-inspired
way, individual auditory and visual saliency models in order to form
a 2-D audiovisual saliency model and investigate its plausibility. We
essentially try to combine several theoretical and experimental find-
ings from neuroscience with signal processing techniques. A high-level
overview of the model is presented in Fig. 2. An auditory and a visual
stimulus serve as input to an auditory and a visual spatio-temporal
saliency model where saliency features are computed. At some point,
that will be described later in this section, the two saliencies are
appropriately fused in order to form an audiovisual saliency map. The
majority of our parameters and fusion schemes which are discussed
below, are inspired by cognitive research, and findings from behavioral
experiments.

3.1. From auditory saliency map to auditory saliency curve

Most of the existing auditory saliency models yield a 2-D saliency
map as output, as described in the previous section. Usually, this map
is a time–frequency representation of auditory saliency. However, in
this work we are more interested in the evolution of auditory saliency
through time, rather than how it is distributed among the involved
frequencies. Also, since for a visual input we obtain a 2-D saliency
map, it seems more intuitive for an auditory input (which is 1-D and
non-spatial) to obtain an 1-D saliency curve. Thus, if the auditory
output is a saliency map, we have to appropriately process it to obtain
an 1-D saliency curve. The same reasoning has also been followed
in the past, both in [95], where the time curve was obtained by
adding saliency values across frequencies, and in [99], where it was
obtained by maximizing over frequencies. The latter approach appears
also in [94], where the final temporal saliency score is the maximum for
each time instance, but it has additionally been behaviorally-validated
for capturing salient events in [10]. Therefore, we follow the same
approach. With 𝑀𝑎(𝓁, 𝑓 ) we denote the auditory saliency map that is a
function of time 𝓁 and frequency 𝑓 and with 𝑆𝑎(𝓁) the auditory saliency
curve, computed as:

𝑆𝑎(𝓁) = max
𝑓

𝑀𝑎(𝓁, 𝑓 ) (1)

3.2. Audiovisual temporal window of integration

As briefly stated in Section 2, behavioral experiments indicate that
synchrony between an auditory and a visual stimulus (e.g. a slamming
door) results in a strong audiovisual integration. However, they also in-
dicate that partially asynchronous stimuli can still result in audiovisual
integration, i.e., audiovisual integration can be tolerant to an amount
of asynchrony. Most related works agree to an approximately 200ms
long maximum temporal window of audiovisual integration [7,40,44].

In order to incorporate this finding in our computational model,
instead of taking into account only the present values of auditory
and visual saliencies, we appropriately filter the auditory saliency
curve: As presented in Section 2, audition dominates vision in temporal
tasks [100–102], and it influences vision even when preceding or
trailing it [32]. These facts indicate that we should take into account
not only current auditory saliency values, but properly weigh past and
future values as well. A suitable filter should favor the synchronized
stimuli, by weighting higher the present auditory saliency value, but
also include past and future values with attenuation. Thus, we employ
a Hanning window on the auditory saliency curve, with 200 ms length
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Fig. 2. An overview of the 2D audiovisual saliency model (better viewed in color). Auditory and visual streams constitute the inputs to the auditory and spatio-temporal visual
saliency models respectively. These streams are individually processed for saliency extraction. Auditory saliency is fused with the temporal visual saliency map with one out of
three available fusion schemes. Lastly, the spatial visual map is also integrated according to the visual model’s initial fusion methodology. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

and center it on the current time instance (other similar windows could
also be employed without significant differences). After windowing, we
apply a moving average, thus obtaining a new saliency curve. Thus, the
final saliency curve 𝐴(𝑡) is computed as:

𝐴(𝑡) = 1
2𝑁 + 1

𝑁
∑

𝓁=−𝑁
𝑆𝑎(𝑡 + 𝓁)𝐻(𝓁) (2)

where 𝑡 is the video time index, 𝓁 the audio sample index, and 𝐻(𝓁)
the Hanning window with 2𝑁 + 1 window length.

3.3. Audiovisual saliency fusion

Since we aspire to combine auditory and visual saliency in order
to obtain an audiovisual saliency model, the most important issue to
be addressed is where and how fusion will take place. Auditory and
visual saliency representations are inherently non-comparable modali-
ties with different dimensions and ranges. Our proposed fusion schemes
hypothesize that due to the dynamic nature of the audio features, they
influence only the temporal/dynamic visual features, and not the spa-
tial ones [32]. Our hypothesis is not arbitrary, as there is evidence for
this influence in the literature [101,103]. In some works, interactions
of audio with specific dynamic visual features are investigated, such as
flicker in [100,104], and motion in [105]. Thus for our model, audiovi-
sual fusion is performed between auditory saliency and temporal visual
saliency.

Another equally important issue is how the audiovisual fusion will
be performed, since the two modalities are non comparable. In the ab-
sence of audio, temporal visual saliency maps should be left unaltered,
while when present, its saliency should weigh them appropriately. We
have experimented with three different fusion schemes, inspired by
well-known techniques for combining different modalities. Fusion is
applied between auditory saliency and each individual temporal feature
of visual saliency separately. This fusion results in a joint temporal-
audio map 𝐹𝑇𝐴, where the audio influence has been integrated into
the 2-D temporal visual saliency map. After temporal-audio fusion, the
spatial visual component is also integrated appropriately, according
to each method’s fusion strategy ℱ (for visual-only saliency), thus
resulting in the final spatio-temporal-audio saliency map, denoted by
𝐹𝑆𝑇𝐴, as also depicted in the lowest right corner of Fig. 2:

𝐹𝑆𝑇𝐴 = ℱ (𝐹𝑆 , 𝐹𝑇𝐴) (3)

where 𝐹𝑆 is the spatial saliency map. We focus on the temporal-audio
fusion, because the final fusion ℱ is dependent on the specific spatio-
temporal visual saliency model that is employed. For example, in Itti

et al. model [9], ℱ is an averaging of the individual saliency maps. The
next sections describe the proposed fusion schemes between auditory
and temporal visual saliency, in order to compute 𝐹𝑇𝐴.

3.3.1. Direct fusion of saliencies (direct fusion)
We experiment with fusing audio saliency curve with the dynamic

visual saliency map directly, in a simple multiplicative manner, sepa-
rately for each temporal visual feature:

𝐹𝑇𝐴(𝑥, 𝑦, 𝑡) = 𝐹𝑇 (𝑥, 𝑦, 𝑡)(1 + 𝐴(𝑡)) (4)

where x,y are the pixel coordinates, 𝐹𝑇𝐴 is the fused map, 𝐹𝑇 represents
a single temporal/dynamic feature map of visual saliency and 𝐴 is
the auditory saliency curve. This audiovisual fusion scheme appears
in [21], but for point-wise multiplication between visual and spatial
audio maps, which have the same dimensions, since the spatial auditory
map is the source location map. In our case, the auditory saliency value
weighs uniformly all temporal visual saliency pixel values.

3.3.2. Cross-correlation between audio and video as weight (CC fusion)
In [107], cross-correlation is proposed as a measure of audiovisual

integration. Cross-correlation between multiple sensory signals is an
important cue for causal inference: signals originating from a single
event normally share a tight temporal relation, due to their dependence
on the same underlying event. Conversely, when multiple signals are
generated by independent physical events, their temporal structures are
normally unrelated. Specifically, signals with a similar fine-temporal
structure, and, thus, a high cross-correlation, are more likely inferred
to originate from a single underlying event and hence will be integrated
more strongly.

Here, according to the temporal window of integration modeling,
cross-correlation with a restricted lag 𝜏 should be used in order to fuse
visual and auditory saliencies, because, assuming that audio and video
originate from the same event, they can be perceived as such, if their
asynchrony does not exceed 200 ms. Thus, cross-correlation lag cannot
exceed 200 ms. From this point on we denote cross-correlation by 𝑅𝑇𝐴.
We compute cross-correlation for time windows of the audio and visual
saliencies. More specifically, we choose a time window of 1 second (and
2𝑘 + 1 number of frames) and we compute cross-correlations between
the time series of audio and the time series of every pixel of temporal
saliency feature maps. Subsequently, the max cross-correlation value
weighs the current pixel’s value:

𝐹𝑇𝐴(𝑥, 𝑦, 𝑡) = 𝐹𝑇 (𝑥, 𝑦, 𝑡)(1 + max
𝜏

𝑅𝑇𝐴(𝑥, 𝑦, 𝑡, 𝜏)),
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Fig. 3. These two figures from [106] depict the ‘‘sine vs square’’ stimuli for the square modulation case, during a target flicker (the vertical line in the lower right corner). Below
are the visual (left) and audiovisual saliency map (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

𝑡 − 𝑛𝑐𝑐 ≤ 𝜏 ≤ 𝑡 + 𝑛𝑐𝑐 (5)

with

𝑅𝑇𝐴(𝑥, 𝑦, 𝑡, 𝜏) =
1

2𝑘 + 1

𝑡+𝑘
∑

𝑚=𝑡−𝑘
𝐹𝑇 (𝑥, 𝑦, 𝑚)𝐴(𝑚 − 𝜏),

𝑡 − 𝑛𝑐𝑐 ≤ 𝜏 ≤ 𝑡 + 𝑛𝑐𝑐 (6)

where 𝑛𝑐𝑐 denotes the possible values of the lag 𝜏 (it cannot exceed
200 ms) and 𝑅𝐴𝑇 the cross-correlation between audio and temporal
visual saliencies.

3.3.3. Mutual information between audio and video as weight (MI fusion)
Inspired by [108,109], we examine mutual information between

audio and visual saliencies as an expression of audiovisual simultaneity
of an event. We assume that audio and visual saliencies come from a
joint probabilistic process, which is stationary and Gaussian in a short
period of time [108]. If we denote with  (𝝁,𝜮) this joint Gaussian
distribution, 𝝁 and 𝜮 can be estimated from the audiovisual data per
frame. For a specific frame 𝑡:

𝝁(𝑥, 𝑦, 𝑡) = 𝑏
[

𝐴(𝑡)
𝐹𝑇 (𝑥, 𝑦, 𝑡)

]

+ (1 − 𝑏)𝝁(𝑥, 𝑦, 𝑡 − 1) (7)

𝜮(𝑥, 𝑦, 𝑡) = 1
1 + 𝑎

(

𝑎
([

𝐴(𝑡)
𝐹𝑇 (𝑥, 𝑦, 𝑡)

]

− 𝝁(𝑥, 𝑦, 𝑡 − 1)
)

([

𝐴(𝑡)
𝐹𝑇 (𝑥, 𝑦, 𝑡)

]

− 𝝁(𝑥, 𝑦, 𝑡 − 1)
)𝑇

+𝜮(𝑥, 𝑦, 𝑡 − 1)

)

(8)

where 𝑎, 𝑏 are pre-defined weights within [0, 1], that control the de-
pendence of the current values on the past ones. Mutual information
between audio and video is then computed as:

𝐼(𝑥, 𝑦, 𝑡) = −1
2
log

(

|𝜮𝐴(𝑡)||𝜮𝐹𝑇 (𝑥, 𝑦, 𝑡)|
|𝜮(𝑥, 𝑦, 𝑡)|

)

(9)

and 𝜮 can be expressed as:

𝜮(𝑥, 𝑦, 𝑡) =
[

𝜮𝐴(𝑡) 𝜮𝐴𝐹𝑇 (𝑥, 𝑦, 𝑡)
𝜮𝐴𝐹𝑇 (𝑥, 𝑦, 𝑡)

𝑇 𝜮𝐹𝑇 (𝑥, 𝑦, 𝑡)

]

(10)

In the case of one audio and one visual feature, which is our case, (9)
and (10) are simplified as:

𝜮 =

[

𝜎𝐴(𝑡)2 𝜎𝐴𝐹𝑇 (𝑥, 𝑦, 𝑡)
𝜎𝐴𝐹𝑇 (𝑥, 𝑦, 𝑡) 𝜎2𝐹𝑇 (𝑥, 𝑦, 𝑡)

]

(11)

𝐼(𝑥, 𝑦, 𝑡) = −1
2
log

(

1 − 𝜌2(𝑥, 𝑦, 𝑡)
)

(12)

𝜌(𝑥, 𝑦, 𝑡) =
𝜎𝐴𝐹 𝑇

(𝑥, 𝑦, 𝑡)
√

𝜎𝐴(𝑡)𝜎𝐹𝑇 (𝑥, 𝑦, 𝑡)
(13)

where 𝜎𝐴𝐹 𝑇
, 𝜎𝐴, and 𝜎𝐹𝑇 are the scalar estimates of audio-visual

feature covariance and the variances of the audio-only and visual-only
faetures respectively, and 𝜌 is the Pearson’s Correlation Coefficient. The
fused map is computed as:

𝐹𝑇𝐴(𝑥, 𝑦, 𝑡) = 𝐹𝑇 (𝑥, 𝑦, 𝑡)(1 + 𝐼(𝑥, 𝑦, 𝑡)) (14)

4. Evaluation

4.1. Evaluation metrics

Since we are addressing a fixation prediction problem, which is pri-
marily a visual task where the auditory influence has been incorporated
into a visual saliency map, the evaluation metrics we adopt consist of
widely used visual saliency evaluation metrics [45,110].

We denote the output of our model by Estimated Saliency Map
(𝐸𝑆𝑀). In eye-tracking experiments, the Ground-truth Saliency Map
(𝐺𝑆𝑀) is the map built from eye movement data. In behavioral exper-
iments, inspired by [6], and due to the lack of eye-tracking data, GSM
consists of the ground truth target location in the sense that only the
target is salient. The employed metrics are the following [45,110,111]:

(1) Linear Correlation Coefficient (CC): It measures the strength of a
linear relationship between the continuous 𝐺𝑆𝑀1 and 𝐸𝑆𝑀 . When CC
is close to +1∕− 1 there is almost a perfect linear relationship between
the two variables.

(2) Normalized Scanpath Saliency (NSS): For an 𝐸𝑆𝑀 normalized
to zero mean and unit standard deviation, NSS is the average of the
response values on 𝐸𝑆𝑀 at human eye positions. It shows how many
times over the whole ESM’s average is the ESM value at each human
fixation. The final NSS value is the mean over all viewers fixations.

(3) Area Under Curve shuffled (AUCs): For eye-tracking experiments,
shuffled AUC is employed, according to [64,110], where negative set is
formed by sampling fixation points from 10 random frames. Since for
computing AUC a positive and a negative set are needed, for behavioral

1 In this case the continuous GSM map arises by convolving the binary
fixation map with a gaussian kernel of size 10 for video dimension of
640 × 480.
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Fig. 4. (a) Original figure from [7] and (b, c, d) CC, NSS, AUCs for the set size experiment with all fusion schemes. Blue color denotes direct fusion, green color denotes CC
fusion, magenta denotes MI fusion, and red color the results when tone is absent. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. (a) Original figure from [7] and (b, c, d) CC, NSS, AUCs for the temporal asynchrony experiment. Minus offsets refer to audio stream preceding the visual one. Different
colors represent the same fusion schemes as in the above figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

experiments, the former consists of the target location while the latter
of a subset of points sampled from the distractors’ positions. With the
𝐸𝑆𝑀 as a binary classifier between the two sets, a ROC curve is formed
by thresholding over 𝐸𝑆𝑀 , plotting true positive vs. false positive rate.
AUCs is then the area underneath the average of all ROC curves. A
perfect prediction implies an 𝐴𝑈𝐶𝑠 = 1.

4.2. Behavioral experiments

The first part of the evaluation strategy involves comparison with
results from behavioral experiments that have investigated aspects of
audiovisual integration. One such category are audiovisual stimuli from
visual search tasks. In such behavioral experiments the users’ task
is to detect a target among some distractors without scanning the
whole image, but instead by focusing on the center of the screen.
Their performance is measured by their Response Time (RT), which
signifies the time that elapses between the target appearance and its
detection by the user (usually by pressing a button). This evaluation
aims to assess whether our model reproduces findings from human
behavioral experiments using the concept of saliency instead of RT, in
the sense that a more salient target needs less time to be detected and
vice-versa [46,112,113]. The evaluation metrics employed, thus, are
saliency metrics, the ones which have been described above.

Regarding saliency models, the biologically-inspired Itti et al. model
[9,51] is employed for visual saliency, which has been already vali-
dated with human experiments [6], while for auditory saliency, the
biologically-inspired Kayser et al. [10] model is used. More specifically,
for Itti et al. model [9,51], the spatial component comprises of color,
orientation, and intensity features, while the temporal one comprises
of flicker and motion. Audiovisual fusion is performed separately for
flicker and motion, with three different choices for fusion, as previously
described.

Regarding the employed stimuli, as discussed before, they are stim-
uli used in visual search tasks and particularly the ‘‘pip and pop’’

and ‘‘sine vs. square’’ stimuli [7,106]. The former, depicted in Fig. 1,
have already been presented briefly in Section 2. The visual and the
audiovisual saliency maps for two example successive frames are also
depicted in the same figure. Regarding the ‘‘sine vs. square’’ stimuli,
they are straight lines as well, surrounded by annuli whose luminance
changes continuously with time in gray scale, following a sine or square
modulation. The target’s luminance changes are either synchronized
with a non-spatial audio pip in phase or with a 180◦ phase difference
(square or sine modulated) or there is no audio. The target is a hori-
zontal or vertical line and distractors may have all other orientations.
This experiment is a comparative one: The authors claim that audiovi-
sual integration requires transient events and they compare the same
audiovisual stimulus with two different modulations, the sine (gradual)
and the square (transient). An example of these stimuli can be found
in Fig. 3, where two successive frames from a square modulation case
are depicted.

For the following experiments and results, first the actual behavioral
experiment and its corresponding findings are described, and subse-
quently we present and discuss the results produced by our model for
the same inputs.

4.2.1. ‘‘Pip and pop’’ set size experiment
In [7], experiments carried out by the authors indicate that for the

‘‘pip and pop’’ audiovisual stimulus case (visual target color change
with synchronized audio pip), RT is independent of the number of
distractors (i.e. set size), while, for the visual-only stimulus, RT changes
analogously with the set size (increases for larger set size), probably
because there is no integration and a serial search is required. These
findings are depicted in Fig. 4(a) for three different set sizes, which is
an original figure from [7]. Using the same visual and audiovisual ‘‘pip
and pop’’ stimuli as input, we investigate if our model reproduces the
same finding expressed in terms of saliency. In Fig. 4, we present our
results for CC, NSS and AUCs metrics.
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Fig. 6. (a) Original figure from [106] regarding sine modulation and (b, c, d) the NSS results for the fusion schemes, for the set size experiment. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Original figure from [106] regarding square modulation and (b, c, d) the NSS results for the fusion schemes, for the set size experiment. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

For the CC and NSS metrics, although the resulting slopes of the
curves are not the same with the original figure, the behavior is cap-
tured well enough: saliency slightly decreases for a larger set size in the
visual case, while it remains almost constant for the audiovisual case,
for all fusion schemes. Generally, saliency is higher for the audiovisual
case, which is also in line with behavioral results. Regarding AUC, we
notice that it yields an almost perfect prediction for both cases, thus,
maybe due to the nature of these stimuli, it probably cannot capture
well the differences between the visual and the audiovisual case.

4.2.2. ‘‘Pip and pop’’ temporal asynchrony experiment
A second behavioral experiment from [7] investigates audiovisual

integration in terms of asynchrony tolerance, namely when audio and
visual segments that belong to the same event are asynchronous to each
other. The findings indicate that audiovisual integration can tolerate a
certain amount of asynchrony. The authors depict how asynchrony is
related to RTs, showing that the larger the asynchrony is, the more the
performance drops and RT increases. Also, they claim that for the same
amount of asynchrony, when the auditory stream trails the visual one,
RT decreases more (saliency increases) than in the opposite case. All
the above are depicted in Fig. 5(a), an original figure from [7]. Using as
input the stimuli employed in the behavioral experiment, we compute
the saliency results from our model, depicted in Fig. 5.

Here, CC and NSS seem to reproduce well enough the behavioral
observations, yielding the maximum saliency when the auditory and
the visual streams are synchronized, and decreasing gradually as the
amount of asynchrony increases. Also, when audio stream trails the
visual one, saliency is slightly higher than in the opposite case, as
observed in the behavioral experiments as well. Again, AUC does not
reproduce equally well the corresponding behavioral results. Among
the several fusion schemes, the best results are given by the MI fusion
scheme, where the curve exhibits exactly the same behavior with the
original one. The CC fusion scheme does not capture exactly the form
of the behavioral results.

4.2.3. ‘‘Sine vs. square’’ set size experiment
In a similar fashion to the first ‘‘pip and pop’’ experiment, in [106]

experiments indicate that for visual-only stimuli, RTs increase analo-
gously with the set size (target saliency decreases). The same effect

appears even when audio is present, if luminance and audio change
with sine modulation (gradually). The authors attribute this effect to
the lack of audiovisual integration. On the contrary, when a brief
synchronized audio pip accompanies the target color flicker and both
are square-modulated, RT is independent of the set size. The same
effect appears even when the audio pip has a 180-phase difference
with luminance modulation. The original figures from [106] presenting
these results are Figs. 6(a) and 7(a): We investigate whether our model
does exhibit the same behavior. In Fig. 6, we present our results for the
NSS metric (due to lack of space, we do not present CC, which was very
similar) for the sine modulation and in Fig. 7 the corresponding results
for the square one.

We observe that for both sine and square modulation, our results
indicate a similar behavior to the behavioral ones. When there is no
audio pip, saliency decreases when set size increases in all cases. The
same happens for sine modulation, whether the pip is synchronized or
180-desynchronized with the luminance change. On the contrary, for
the square modulation, we can notice that saliency remains high and
almost constant independently of the set size, for both synchronized
and 180-desynchronized audiovisual stimuli, exactly as depicted in the
original paper figure. Direct fusion scheme yields better results than CC
and MI regarding square modulation.

4.3. Eye-tracking data collection on SumMe and ETMD databases

For the purposes of experimental evaluation with eye-tracking data,
since there are only a few databases with audiovisual eye-tracking data,
we decided to collect such data for two databases, SumMe [114] and
ETMD [83]. The SumMe database contains 25 unstructured videos,
while the ETMD contains 12 videos from six different hollywood
movies, both summing up to 37 videos totaling approximately 2 h
and 171,000 frames. For this reason, the group of participants and of
videos were split into two equivalent groups containing the half number
of people and videos, respectively. Thus, each video was seen by 10
different subjects. The subjects were recruited through the National
Technical University of Athens, with ages ranging from 23 − 55 (mean
35). Almost all subjects were naive as to the purposes of the experiment
and they all had normal vision. The employed videos ranged from 38
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to 388 s in length and they were converted from their original sources
to a MOV video format.

Eye movements were binocularly monitored via a SR Research
Eyelink 2000 desktop mounted eye-tracker with 1000 Hz sampling
rate. Videos were displayed on a 1600 × 900 monitor at a 90 cm
distance from the viewer. Audio was delivered in stereo, through
headphones. A chin and headrest was used during the experiment, in
order to ensure the viewer’s minimal movement and avoid continuous
calibration. Presentation was controlled using the SR Research Experi-
ment Builder software. The subjects that participated in the experiment
were informed only that they would watch some videos and that they
should avoid moving during a video playback. The order of the clips
was randomized across participants. The whole experimental proce-
dure for each participant was approximately 90 min long, including
instructions, calibration, testing, and short breaks if needed.

Regarding calibration, a 13-point binocular calibration preceded the
experiment. Before each video, if central fixation accuracy was exceed-
ing a pre-defined threshold of 0.5◦, a full calibration was repeated.
The central fixation marker also served as a cue for the participant
and offered an optional break-point in the procedure. After checking
for a central fixation, the start of each trial was manually triggered.
Regarding post-processing, the 1000-Hz raw eye-tracking recordings
were sampled down to match each video’s frame rate. One sample
frame per video with its corresponding eye-tracking data superimposed,
and the distribution of eye-tracking data for the whole video can be
found in Figs. 8 and 9 for SumMe and ETMD databases for all videos.
The data are publicly released and can be found in http://cvsp.cs.ntua.
gr/research/aveyetracking.

4.4. Eye-tracking experiments

We evaluate four different visual spatio-temporal models fused with
audio via the three different fusion schemes and Min et al. [11]
audiovisual saliency model, with SR [75] for static model (which is
to the best of our knowledge the only publicly available audiovisual
model) on 6 eye-tracking databases: DIEM [115], AVAD [11], Coutrot1
and Coutrot2 [27,28], SumMe [114], and ETMD [83,116] that present
rather complicated and challenging stimuli.

For the evaluation of the fusion schemes, we experiment with sev-
eral state-of-the-art publicly available visual spatio-temporal saliency
models. We choose one model from each one of the basic approaches
in visual saliency: a biologically-inspired model, Itti et al. [9,51], de-
scribed previously, one information theoretic, SDSR [71], a frequency
domain one, PQFT [77], and a developed baseline deep learning frame-
work based on [87]. SDSR model includes one spatial and one temporal
model, thus to obtain a visual spatio-temporal model, we simply add
the final spatial and temporal saliency maps. Regarding the PQFT
model, from the image’s quaternion representation, we employ motion
as the temporal component and two color and one intensity channels
as the static part. Then we calculate the spatio-temporal saliency map
by applying the Quaternion Fourier Transform as in [77].

Regarding the deep model, a hybrid approach that incorporates a
state-of-the-art CNN network for static saliency and an optical flow
estimation for temporal saliency has been employed. For the static
component, we used the publicly available deep model from [87]
(pre-trained only on static images). For temporal visual saliency, we
extracted warped optical flow maps according to [117], which is based
on the TVL1 optical flow algorithm [118]. Temporal moving averag-
ing is applied over ten successive frames to smooth and remove the
noise from optical flow estimation in x and y directions. Finally, we
apply Difference-of-Gaussians (DoG) filtering to the optical flow mag-
nitude [119]. For the final spatio-temporal saliency map, we add the
two normalized maps. For auditory saliency, the biologically-inspired
Kayser et al. [10] model is used.

We do not aspire to fully optimize our models to achieve the
highest possible results compared to the literature, but to assess if visual

Table 1
Results for the various models and fusion schemes (with acronym and brief description)
on DIEM database.

Model/Fusion scheme CC NSS AUCs

Itti_V [51]/- 0.195 1.121 0.507
Itti_AV1 [51]/Direct 0.199 1.150 0.588
Itti_AV2 [51]/CC 0.196 1.127 0.521
Itti_AV3 [51]/MI 0.196 1.128 0.511

PQFT_V [77]/- 0.119 0.725 0.555
PQFT_AV1 [77]/Direct 0.118 0.713 0.554
PQFT_AV2 [77]/CC 0.119 0.717 0.552
PQFT_AV3 [77]/MI 0.118 0.711 0.554

SDSR_V [71]/- 0.088 0.524 0.542
SDSR_AV1 [71]/Direct 0.089 0.528 0.542
SDSR_AV2 [71]/CC 0.108 0.642 0.556
SDSR_AV3 [71]/MI 0.108 0.645 0.559

Deep_V Modif.[87]/- 0.265 1.563 0.636
Deep_AV1 Modif.[87]/Direct 𝟎.𝟐𝟕𝟎 𝟏.𝟓𝟖𝟓 𝟎.𝟔𝟑𝟔
Deep_AV2 Modif.[87]/CC 0.243 1.4192 0.611
Deep_AV3 Modif.[87]/MI 0.258 1.518 0.633

Min et al. (SR) [11,31] 0.121 0.722 0.593

saliency performance is improved when fused with auditory saliency.
Thus, it is rather a comparative study between visual and audiovi-
sual combinations. We also evaluate the Min et al. [11] audiovisual
attention model with SR for static model, as released by the authors.

4.4.1. DIEM database
DIEM database [115] consists of 84 movies of all sorts, sourced from

publicly accessible repositories, including advertisements, documen-
taries, game trailers, movie trailers, music videos, news clips, and time-
lapse footage. Thus, the majority of DIEM videos are documentary-like,
which means that audio and visual information do not correspond to
the same event. Eye movement data from 42 participants were recorded
via an Eyelink eye-tracker, while watching the videos in random order
and with the audio on. We evaluate our models on this database and
we compare the performance of visual-only models with audiovisual
ones. Results are depicted in Table 1. Regarding Itti et al. [51] and
SDSR [77], the audiovisual models outperform the visual ones for all
metrics and fusion schemes, while audiovisual deep models with direct
fusion yield the highest saliency result.

4.4.2. AVAD database
Finally, we apply our models on AVAD database [11] that contains

45 short clips of 5-10 s duration with several audiovisual scenes,
e.g. dancing, guitar playing, bird signing, etc. The majority of the
videos might contain soundtrack or other ambient sound, but they
also contain one dominant sound that corresponds to a visual event.
Additionally, the joint audiovisual event is always present and usu-
ally centered throughout the whole video duration. Eye-tracking data
from 16 participants have been recorded. For this database, we have
re-evaluated the Min et al. (SR) [11] model with our evaluation frame-
work. The results are presented in Table 2. Audiovisual models out-
perform the visual ones for all almost all combinations and metrics
except for the deep models, where the visual models perform better
than the audiovisual ones for the first two metrics. Deep models also
outperform Min et al. [11] model, which achieves the second best
performance in terms of CC and NSS. This might be due to the fact
that deep models in general learn to capture well semantic information,
like faces, musical instruments, etc., especially when those appear in
the center of the image. These clips are very short and specific and
contain the audiovisual event without any transition from visual to
audiovisual. Thus, probably there is nothing more to be highlighted by
the audio that has not been already captured by the visual deep models.
For AUCs metric, that is more robust to center bias, there is still a slight
improvement.
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Fig. 8. Sample video frames with eye-tracking data from SumMe database, along with the distribution of eye-tracking data for the whole video.

Fig. 9. Sample video frames with eye-tracking data from ETMD database, along with the distribution of eye-tracking data for the whole video.

Fig. 10. Example of consecutive frames where the collected eye-tracking data have been overlaid, for SumMe (left) and ETMD (right). Second and third row depict the corresponding
visual-only and audiovisual saliency maps.

4.4.3. Coutrot databases
We also apply our model on Coutrot databases [27,28]: Coutrot1

contains 60 clips with dynamic natural scenes split in 4 visual cate-
gories: one/several moving objects, landscapes, and faces. Eye-tracking
data from 72 participants have been recorded. Coutrot2 contains 15
clips of 4 persons in a meeting and the corresponding eye-tracking data

from 40 persons. The results are presented in Table 3. Contrary to the

DIEM database, here the majority of the videos contains scenes where

video and audio originate from the same event. Thus, we expect the

results to be better than in DIEM for the audiovisual models. Indeed,

audiovisual models outperform the visual ones for all combinations and
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Table 2
Results for the various models and fusion schemes on AVAD database. (* Re-evaluated
with the current evaluation framework.).

CC NSS AUCs

Itti_V 0.154 1.436 0.529
Itti_AV1 0.172 1.627 0.542
Itti_AV2 0.161 1.502 0.532
Itti_AV3 0.154 1.434 0.528

PQFT_V 0.093 0.886 0.527
PQFT_AV1 0.095 0.911 0.527
PQFT_AV2 0.095 0.909 0.525
PQFT_AV3 0.096 0.920 0.528

SDSR_V 0.098 0.922 0.521
SDSR_AV1 0.099 0.929 0.522
SDSR_AV2 0.117 1.091 0.526
SDSR_AV3 0.115 1.072 0.526

Deep_V 𝟎.𝟏𝟗𝟗 𝟏.𝟖𝟗𝟑 0.552
Deep_AV1 0.194 1.844 𝟎.𝟓𝟓𝟑
Deep_AV2 0.192 1.830 0.551
Deep_AV3 0.196 1.859 0.552

Min et al. (SR)* 0.174 1.652 0.550

Table 3
The results for the various models and fusion schemes on Coutrot databases.

Coutrot1 Coutrot2

CC NSS AUCs CC NSS AUCs

Itti_V 0.181 1.015 0.544 0.164 1.362 0.593
Itti_AV1 0.183 1.062 0.559 0.239 2.005 0.632
Itti_AV2 0.187 1.055 0.548 0.177 1.475 0.600
Itti_AV3 0.182 1.013 0.543 0.166 1.373 0.593

PQFT_V 0.128 0.845 0.543 0.162 1.584 0.588
PQFT_AV1 0.130 0.853 0.544 0.166 1.615 0.588
PQFT_AV2 0.128 0.845 0.542 0.159 1.550 0.582
PQFT_AV3 0.131 0.862 0.544 0.169 1.640 0.588

SDSR_V 0.115 0.674 0.539 0.072 0.622 0.560
SDSR_AV1 0.116 0.677 0.540 0.073 0.627 0.561
SDSR_AV2 0.128 0.748 0.542 0.096 0.829 0.586
SDSR_AV3 0.128 0.744 0.544 0.098 0.839 0.589

Deep_V 0.266 1.585 0.586 0.248 2.094 0.624
Deep_AV1 𝟎.𝟐𝟕𝟎 𝟏.𝟔𝟓𝟎 𝟎.𝟓𝟗𝟏 𝟎.𝟐𝟓𝟑 𝟐.𝟏𝟓𝟕 𝟎.𝟔𝟐𝟕
Deep_AV2 0.264 1.598 0.588 0.249 2.113 0.623
Deep_AV3 0.266 1.595 0.589 0.251 2.132 0.626

Min et al. (SR) 0.115 0.666 0.550 0.127 1.043 0.605

almost all metrics. In both Coutrot1 and Coutrot2, the best results are
achieved by the audiovisual deep models with direct fusion.

4.4.4. SumMe database
SumMe database [114] contains 25 unstructured videos as well as

their corresponding multiple-human created summaries, which were
acquired in a controlled psychological experiment. As mentioned be-
fore, we have collected eye-tracking data, and use them for evaluation.
A few frames with their eye-tracking data and the corresponding visual
and audiovisual saliency maps (using Deep models) are depicted on
the left side of Fig. 10. The viewers attend mostly to the moving
child instead of the car, which is mirrored better on the audiovisual
maps compared to the visual ones. Results are presented in Table 4.
The audiovisual combinations yield better results than the visual-only
models for most cases: For Itti et al. [51] the best performance is
achieved with CC fusion, while for SDSR and PQFT direct and MI
fusion yield the best results respectively. Regarding deep models, only
direct fusion yields a slightly improved AUCs compared to visual-only
models, a fact that has also been recently observed in the comparison
of spatial-only to spatio-temporal deep models for visual saliency [120].

4.4.5. ETMD database
ETMD database [83,116] contains 12 movie clips from 6 movies.

Movie clips are complex stimuli because they are highly edited and

Table 4
The results concerning the various models and fusion schemes on SumMe and ETMD
databases.

SumMe ETMD

CC NSS AUCs CC NSS AUCs

Itti_V 0.157 1.290 0.628 0.166 1.216 0.617
Itti_AV1 0.157 1.289 0.628 0.167 1.221 0.619
Itti_AV2 0.156 1.294 0.631 0.166 1.218 0.620
Itti_AV3 0.157 1.289 0.629 0.166 1.217 0.618

PQFT_V 0.095 0.874 0.586 0.101 0.816 0.577
PQFT_AV1 0.096 0.877 0.587 0.102 0.820 0.577
PQFT_AV2 0.096 0.846 0.589 0.099 0.800 0.571
PQFT_AV3 0.072 0.667 0.564 0.102 0.823 0.576

SDSR_V 0.092 0.747 0.591 0.066 0.484 0.555
SDSR_AV1 0.093 0.751 0.593 0.067 0.490 0.557
SDSR_AV2 0.098 0.805 0.605 0.083 0.619 0.576
SDSR_AV3 0.099 0.809 0.607 0.084 0.623 0.580

Deep_V 𝟎.𝟏𝟗𝟒 𝟏.𝟓𝟗𝟓 0.653 𝟎.𝟐𝟓𝟒 𝟏.𝟖𝟖𝟎 0.703
Deep_AV1 𝟎.𝟏𝟗𝟒 1.592 𝟎.𝟔𝟓𝟒 0.253 1.868 𝟎.𝟕𝟎𝟒
Deep_AV2 0.175 1.482 0.653 0.218 1.627 0.694
Deep_AV3 0.178 1.482 0.656 0.223 1.653 0.696

Min et al. (SR) 0.080 0.650 0.605 0.117 0.857 0.634

contain a lot of semantics. A few frames with their eye-tracking data
and the corresponding visual and audiovisual saliency maps (with Deep
models) are depicted on the right side of Fig. 10. The viewers attend
mostly to the slamming door, which is mirrored better on the audiovi-
sual maps compared to the visual ones. The results appear in Table 4,
and indicate a similar trend as in SumMe database. The audiovisual
combinations yield better results than the visual-only models for almost
all metrics except for deep models, where they are only comparable to
the visual-only. This may be due to the fact that movies contain a lot
of semantic information that is already integrated into the spatial-only
model (during training on large image datasets). These results indicate
that for proper audiovisual integration, top-down information is also
required, an observation that also highlights the appropriateness of the
collected eye-tracking data for further research.

4.4.6. Analysis and discussion
We aim to analyze the performance of the various models across

datasets and assess in which cases and under what circumstances the
inclusion of audio indeed improves attention modeling. Regarding all
databases, results on complex stimuli indicate that the audiovisual
saliency model can improve eye fixation prediction results compared
to the visual-only model. In some cases the improvement is small,
e.g., for audiovisual PQFT on SumMe and ETMD, but in some other
cases it is significant. Figs. 11, 12 present two examples from two
different databases, Coutrot1 and ETMD, where the first three rows
depict uniformly sampled frames from the whole video with overlayed
eye-tracking data, the corresponding visual-only saliency maps and the
corresponding audiovisual saliency maps. The fourth row depicts the
audio waveform, while the fifth one presents the auditory saliency
curve. Finally in the sixth row the visual-only saliency curve (denoted
with red color) and the audiovisual saliency curve (denoted with green
color) as yielded by the Deep_V and Deep_AV1 models, in terms of NSS
metric are depicted. These two figures can offer an insight on how
saliency evolves over time and how auditory saliency contributes to
the total audiovisual saliency in our modeling. How and when auditory
saliency affects visual attention has also been studied in [98].

The figures indicate that auditory saliency can reinforce the total
saliency during actual audiovisual events. For example, in Fig. 11, when
the related audio event begins, a boost in performance is observed, and
the audiovisual saliency seems to model human attention better than
visual-only saliency, an indication also reflected on eye-tracking data.
Before or after the audio event, auditory saliency does not reinforce
visual saliency, but at the same time, it does not degrade performance,
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Fig. 11. An example stimulus from AVAD database. (a) Original frames with overlaid eye-tracking data are depicted along with (b) visual and (c) audiovisual saliency maps. In
(d) the audio waveform and in (e) the auditory saliency curve are presented, while (f) depicts the visual-only (in red color) and the audiovisual (in green color) saliency curve
in relation to NSS metric. In the beginning of the video there is noise audio, not related to the visual content. The actual audio event appears approximately in the middle of
the video. Till the related audio event appears, audiovisual and visual saliencies are almost equal as seen in NSS curve (f), but when it appears, the performance of audiovisual
saliency surpasses significantly the visual one. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

which is the desired behavior of the developed model. In such cases,
audiovisual performance is almost equal to visual-only one. In Fig. 12
where the stimulus is more complex and the deep model has already
achieved a high performance when the related audio event begins
(horse galloping), still there is a small improvement depicted by the
green line (audiovisual) versus the red line (visual-only). This improve-
ment vanishes before and after the audio event, and in some cases,
visual-only saliency performs slightly better than audiovisual one.

Regarding the several models, the integration of audio in
Itti et al. [51] model has yielded better performance compared to
the visual-only case for all databases. We performed some indicative
ANOVA tests to confirm the statistical significance of our results. In
Coutrot1 database, ANOVA test between Itti_V and Itti_AV1 yields an
F-statistic of 𝐹 = 8.267 (p<0.005) for CC, while for Coutrot2 it yields
𝐹 = 3810 (p<0.001) for NSS. For all databases, the developed deep
models yield the best absolute results, in most cases with audiovisual
fusion increasing the performance compared to visual-only saliency. In
many cases, Deep_V and Deep_AV1 are very close, thus we perform
ANOVA tests again to assess the statistical significance of these results.
For Coutrot1 database the ANOVA test yields 𝐹 = 9.5113 (p<0.005),

52.822 (p<0.001), 𝐹 = 9.890 (p<0.001) for CC, NSS, AUCs and for
Coutrot2 𝐹 = 32.642 (p<0.001), 𝐹 = 43.941 (p<0.001), 𝐹 = 5.518
(p<0.05) respectively. In ETMD database the corresponding results for
Deep_V and Deep_AV1 are 𝐹 = 85.284 (p<0.001), 𝐹 = 65.350 (p<0.001)
and 𝐹 = 4.726 (p<0.05).

Regarding the comparison with the employed state-of-the-art audio-
visual model, Min et al. method [11] performs second best in AVAD
database [11], but its performance in terms of CC and NSS is lowered
when applied on more complex stimuli of longer duration, like movies,
that might contain very few actual audiovisual events. Regarding AUCs
results though, Min et al. performance is better than Itti_AV1, and
comparable to Deep models, especially in DIEM and ETMD databases.

5. Conclusion

We have developed a computational audiovisual saliency model
based on behaviorally-inspired fusion schemes between well-known
individual saliency models and aspire to validate its plausibility via hu-
man behavioral experiments and eye-tracking data. We propose three
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Fig. 12. An example stimulus from ETMD database. (a) Original frames with overlaid eye-tracking data are depicted along with (b) visual and (c) audiovisual saliency maps. In
(d) the audio waveform and in (e) the auditory saliency curve are presented, while (f) depicts the visual-only (in red color) and the audiovisual (in green color) saliency curve in
relation to NSS metric. Also the blue rectangle indicates the duration of an audiovisual event (horse galopping). Although the differences between audiovisual and visual saliencies
here are small, we can still notice that during the audio event, NSS metric for audiovisual saliency is slightly better, while before and after the event, they are almost equal or
alternating between better and worse. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

fusion schemes and subsequently evaluate them. Our first validation ef-
fort concerns the ‘‘pip and pop’’ and ‘‘sine vs. square’’ effects, where our
model exhibits a similar behavior to the experimental results compared
to visual-only models. Regarding the second evaluation strategy, with
human audiovisual eye-tracking data, we assess the performance of the
several fusion schemes and saliency models on six different databases
of variable complexity, DIEM, AVAD, Coutrot1, Coutrot2, SumMe, and
ETMD. For SumMe and ETMD, we have collected audiovisual eye-
tracking data which we are going to publicly release, which is another
contribution of this work. Results for both evaluation strategies and
across multiple datasets are promising and indicate the superiority of
audiovisual saliency versus visual-only one, even in complex stimuli.
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