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Abstract
We study sparsity in the max-plus algebraic setting. We seek both exact and approximate
solutions of the max-plus linear equation with minimum cardinality of support. In the for-
mer case, the sparsest solution problem is shown to be equivalent to the minimum set
cover problem and, thus, NP-complete. In the latter one, the approximation is quantified
by the �1 residual error norm, which is shown to have supermodular properties under some
convex constraints, called lateness constraints. Thus, greedy approximation algorithms of
polynomial complexity can be employed for both problems with guaranteed bounds of
approximation. We also study the sparse recovery problem and present conditions, under
which, the sparsest exact solution solves it. Through multi-machine interactive processes,
we describe how the present framework could be applied to two practical discrete event sys-
tems problems: resource optimization and structure-seeking system identification. We also
show how sparsity is related to the pruning problem. Finally, we present a numerical exam-
ple of the structure-seeking system identification problem and we study the performance of
the greedy algorithm via simulations.

Keywords Max-plus algebra · Max-plus systems · Sparsity · Supermodularity

1 Introduction

Max-plus algebra has been used to model a subclass of nonlinear phenomena with some
linear-like structure. It is obtained from the linear algebra if we replace addition with max-
imum and multiplication with addition (Butkovič 2010). The development of this algebraic
theory was motivated by problems arising in scheduling theory, graph theory and opera-
tions research (Cuninghame-Green 1979). Later on, max-plus algebra was also employed
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in discrete event systems to deal mainly with synchronization problems (Cohen et al. 1985,
1999; Baccelli et al. 1992; De Schutter and van den Boom 2008). Other applications
include the max-algebraic approach to optimal control (Litvinov et al. 2001; McEneaney
2006), general max-plus dynamical systems and control (Adzkiya et al. 2015; Hardouin
et al. 2011) and generalized HMMs for audiovisual event detection (Maragos and Koutras
2015). An extensive survey about the applications of the max-plus algebra can be found
in Gaubert (2009). Generalizations of max-plus algebra using other idempotent semirings
are described in Gondran and Minoux (2008). A unification of max-type algebras and
their duals using weighted lattices with applications to nonlinear dynamical systems was
presented in Maragos (2017).

Meanwhile, in the last decade, we have experienced an increase of interest in sparsity
in linear equations and linear systems. A solution of a linear equation is sparse when it
has many zero elements. The reason we are interested in such solutions, is that they need
less elements to describe the same information. They provide us a way of compressing
the available data, throwing away those that are unnecessary (Donoho 2006). They also
reveal the structure of partially known signals (Candès et al. 2006) or systems (Chen et al.
2009). In control systems, sparsity has been sought in the sense of minimizing the number
of sensors or actuators, subject to energy (Tzoumas et al. 2016; Summers et al. 2016) or
observability-controllability constraints (Pequito et al. 2016).

Although sparsity has been extensively studied in the linear setting (Elad 2010), it is still
not much developed in more general nonlinear settings. In this work, we aim to define and
study sparsity in the max-plus algebraic setting. A sparse solution of a max-plus equation
is a solution with many non-informative elements, i.e. the infinite elements. As in the lin-
ear case, such solutions use the least number of elements to describe the same information,
thus yielding compressed data. But there are many other applications where sparsity could
be relevant. For example, in max-plus systems (either static or dynamical), finding sparse
inputs implies that we are activating fewer actuators/machines, thus, saving resources. Simi-
larly, the problem of selecting few sensors to observe a max-plus system could be expressed
in terms of designing sparse output matrices. Another application could be in max-plus sys-
tem identification problems, where the sparsity structure is unknown. In this case, sparse
solutions could be employed to reveal the unknown structure of the original system.

Our theoretical contributions are the following:

i) We define sparsity in the max-plus algebraic setting (see Section 3); a vector is defined
to be sparse when it has many −∞ elements.

ii) We define the problem of finding the sparsest exact solution to the max-plus equation
(see problem (6)). Then, in Section 4, we show that this problem is equivalent to the
minimum set-cover one and, thus, NP-complete (Theorem 1).

iii) We define the problem of finding the sparsest approximate solution (see problem (7)).
Here, we are searching for the sparsest solution that satisfies the following con-
straints: i) its �1 approximation error is bounded and ii) it satisfies some additional
convex constraints, called lateness constraints. In Section 5, we show that the �1-
error of approximation has supermodular properties (Theorem 3). Thus, a suboptimal
greedy approximate algorithm of polynomial complexity can be employed with guar-
anteed bounds on the suboptimality ratio (Theorem 4). Our analysis is extended
to the case when the components of the matrices are allowed to take −∞ values
(Theorem 5).

iv) We study the sparse recovery problem (see Section 6, Theorem 6). In particular, it
is explored whether we can recover a vector, for which we do not know the sparsity
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pattern, from its image under a max-plus linear transformation. We derive sufficient
conditions, under which, we can use the sparsity framework to recover that vector and
its sparsity pattern.

The paper is organized as follows. In Section 2, we revisit the max-plus equation and
its properties. Section 3 formulates the problems of finding the exact and approximate
sparsest solutions to the max-plus equation. Then, in Sections 4, 5, we present possible solu-
tions to the the former and the latter problem respectively. For completeness, in Section 5,
we also include a brief introduction to the supermodularity literature. In Section 6, we
study the sparse recovery problem. In Section 7, we study two applications of the sparsity
framework to multi-machine interactive production processes (Butkovič 2010): i) applica-
tion to resource optimization and ii) application to structure-seeking system identification.
There, we also show how our sparsity framework is related to the pruning problem (McE-
neaney 2009; Gaubert et al. 2011). In Section 8, we present a numerical example of the
system identification problem and we study the performance of the greedy algorithm via
simulations. Finally, in Section 9, we conclude the paper and discuss possible extensions
of the present work. All proofs which do not appear in the main text are included in
the Appendix.

1.1 Related work

The relation between set covers and solutions to the max-plus equation has been known
before (Vorobyev 1967; Zimmermann 1976; Butkovič 2003; Akian et al. 2005). We use
those previous results to prove the equivalence between the sparsest exact solution problem
and the minimum set cover problem in Theorem 1. Still, our paper is the first to explicitly
define and study the problem of finding the sparsest exact solution.

The most related problem to sparsity is the pruning one (McEneaney 2009; Gaubert et al.
2011). It arises in optimal control problems, where we try to approximate value functions
as the supremum of certain basis functions. The goal there is to replace the supremum over
many basis functions with the supremum over a smaller subset of basis functions, which has
fixed-cardinality; this subset is selected via minimizing an �1 approximation error cost. The
problem of finding the sparsest approximate solution (problem (7)) defined in this paper is
a “dual” version of the pruning one–see also Section 7. The minimization is over the cardi-
nality of the subset such that the �1-error remains bounded. Another difference is that the
pruning problem deals with basis functions defined on infinite spaces; the sparsity problem
deals with basis vectors instead of basis functions. In Gaubert et al. (2011), equation (34),
the pruning problem is reduced to a k−median problem, which can be shown to have super-
modular properties (Nemhauser et al. 1978). This argument could lead to an alternative
proof of Theorem 3. Finally, our sparsity framework also applies when the basis vectors are
allowed to have −∞ (null) components (Theorem 5).

The recovery problem, without any sparsity considerations, is related to the uniqueness
of the max-plus equation (see Chapter 15 of Cuninghame-Green 1979 or Butkovič 2010 or
Corollary 4.8 in Akian et al. 2005). However, the sparse recovery problem is quite different;
we might be able to solve the sparse recovery problem even if we have have infinite solutions
to the max-plus equation–see Section 6 for more details. The results of Schullerus et al.
(2006) are related to the result of Theorem 6. However, in Schullerus et al. (2006) there are
no sparsity considerations, e.g. the sparsity pattern of the involved matrices is considered
known. To the best of our knowledge, our paper is the first to define and address the sparse
recovery problem.
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2 Notation and background

Throughout this paper, matrices and vectors will be denoted by bold characters. If A is
a m × n matrix then its columns (m × 1 vectors) are denoted by Aj , j = 1, . . . , n. Its
components are denoted by Aij or [A]ij , for i = 1, . . . , m, j = 1, . . . , n. The transpose
matrix is denoted by Aᵀ. If x is a n × 1 vector, its components are denoted by xj or [x]j ,
for j = 1, . . . , n. Finally, for simplicity we denote the row and column index sets by I =
{1, 2, . . . , m} and J = {1, 2, . . . , n}, respectively.

2.1 Themax-plus algebra

The max-plus algebra (or the (∨, +) semiring) is the set Rmax = R ∪ {−∞} equipped with
the maximum operator ∨ as “addition” and + as “multiplication” (Gaubert and Plus 1997).1

If x, y ∈ Rmax, then x∨y � max{x, y}. The zero element for the maximum operator ∨ is
−∞. The operator + is defined in the usual way with 0 as the identity element and −∞
as the null element. Similarly, we can define the min-plus algebra on Rmin = R ∪ {+∞},
equipped with the minimum operator ∧ and addition +.

If x, y ∈ R
n
max are vectors, we overload ∨ with componentwise maximum

[x∨y]i = xi∨yi, i = 1, · · · , n.

Operators <, ≤ are interpreted with the vector partial order, induced by componentwise
comparison. We also define the addition x + a of a scalar a ∈ Rmax to a vector x ∈ R

n
max

componentwise as follows:

[x + a]i = xi + a, i = 1, · · · , n,

This can be interpreted as the scalar “multiplication” counterpart of linear algebra.
If A ∈ R

m×n
max , B ∈ R

m×n
max are matrices, then we define their componentwise maximum

[A∨B]ij = Aij∨Bij , i = 1, · · · ,m, j = 1, · · · , n. If A ∈ R
m×n
max and B ∈ R

n×p
max , then

their max-plus matrix “multiplication” A�B ∈ R
m×p
max is defined as:

[A�B]ij =
n∨

k=1

(Aik + Bkj ), i = 1, · · · ,m, j = 1, · · · , p.

If A ∈ R
m×n
min , B ∈ R

n×p

min , their min-plus matrix multiplication A�′B ∈ R
m×p

min is defined
similarly:

[A�′B]ij =
n∧

k=1

(Aik + Bkj ), i = 1, · · · ,m, j = 1, · · · , p.

1An alternative notation that has been used in the literature is ⊕ for maximum (max-plus “addition”) and
⊗ for addition (max-plus “multiplication”)–see Cuninghame-Green (1979) or Baccelli et al. (1992). Here,
we follow the notation of lattice theory–see Birkhoff (1967), Maragos (2013), Maragos (2017), where the
symbol ∨/∧ is used for max/min operations. We also use the classic symbol “+” for real addition, without
obscuring the addition with the less intuitive symbol ⊗. Further, we avoid the symbol ⊕ because it is used
in signal and image processing to denote max-plus convolution and in set theory to denote Minkowski set
addition.
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2.2 Max-plus linear equation and exact solution

The max-plus equation has a form similar to the linear equation Ax = b, though we replace
addition with maximum and multiplication with addition. In particular, given A ∈ R

m×n
max ,

x ∈ R
n
max, b ∈ R

m, it is given by the following formula:2

n∨

j=1

(Aij + xj ) = bi, i = 1, · · · ,m

or in compact form
A � x = b. (1)

Next, we define the set of all solutions of Eq. 1 S(A, b):

S(A, b) = {x ∈ R
n
max : A � x = b} (2)

We can also write (1) as A � x =
n∨

j=1
(Aj + xj ) = b. Hence, in this form, A � x can be

interpreted as a “max-plus linear combination” of the columns of A with weights xj .
To analyze the max-plus equation, we need the definition of the principal solution x̄ ∈

R
n
min (Cuninghame-Green 1979): 3

x̄ = (−A)ᵀ�′b,

whose components can be expressed as:

x̄j =
m∧

i=1

(bi − Aij ), ∀j ∈ J . (3)

Although the principal solution belongs to R
n
min, in this paper we will only deal with cases

where x̄ ∈ R
n. When the max-plus Eq. 1 admits a solution, it turns out that the principal

solution x̄ is also an actual solution (see Theorem 7 in the Appendix). In other words, the
set S(A, b) is non-empty if and only if x̄ is a solution to Eq. 1 (Cuninghame-Green 1979).

2.3 Max-plus linear equation and approximate solution

Although the principal solution x̄ is always defined, it may not be a solution of (1). In
this case, system (1) cannot be solved. However, we may find an approximate solution,
by minimizing the �1 norm of the residual error b − A� x. Still, without any additional
constraint this problem is hard to solve. For this reason, the convex constraint

A� x ≤ b, (4)

also called the lateness constraint (Cuninghame-Green 1979), is added to the minimiza-
tion problem. This relaxation, adopted in Cuninghame-Green (1979), is also motivated by

2In the general case, b ∈ R
m
max (Butkovič 2010). However, in this paper we will only consider finite b ∈ R

m.
See also Assumption 1 in Section 3.
3The principal solution can also be expressed in terms of residuation theory–see, for example, Baccelli
et al. (1992). The map Π(x) = A� x is residuated, with Π�(b) = (−Aᵀ)�′b being the residual map,
where �′ denotes the min-plus matrix product. Both maps are increasing and they satisfy the property
(Π ◦ Π�)(b) ≤ b, (Π� ◦ �)(x) ≥ x. Then, the principal solution x̄ can be written as x̄ = Π�(b). The notion
of residuated and residual maps is also related to the notion of adjunctions in lattice theory, e.g. see Maragos
(2013), Maragos (2017), as well as the notion of Galois Connections, e.g see Akian et al. (2005).



168 Discrete Event Dynamic Systems (2019) 29:163–189

time constraints in operations research (see also Section 7.1.1). The approximate solution
problem can be described with the following optimization problem:

minimize
x∈Rn

max

‖b − A� x‖1
subject to A� x ≤ b, (5)

which can be recast as a linear program. It turns out that the principal solution x̄ is the largest
possible element that satisfies the constraint A� x ≤ b. Therefore, it is also an optimal
solution to problem (5) (see Theorem 8 in the Appendix).

3 Problem statement

In this section, we define the problem of finding the sparsest exact and approximate solu-
tions to the max-plus equation A� x = b. In linear algebra, the sparsity pattern of a vector
or a matrix is determined by the set of its nonzero components. In a similar fashion, in max-
plus algebra, the sparsity pattern of any matrix or vector is determined by the set of its finite
elements, since the zero element is −∞. We define the support of an element x ∈ R

n
max as

supp(x) = {j ∈ J : xj �= −∞},

i.e. the set of the indices of its finite components.
The first problem studied in this paper is finding the sparsest solution to Eq. 1. Formally,

given the matrices A ∈ R
m×n
max , b ∈ R

m, we want to determine the optimal (possibly non-
unique) solution x∗ ∈ R

n
max to the following optimization problem:

x∗ = arg min
x∈Rn

max

|supp(x)|
subject to A � x = b (6)

where |T | denotes the cardinality of a set T .
However, a solution to equation A� x = b may not exist. Meanwhile, solving prob-

lem (5) might not work either, since it does not guarantee a sparse approximate solution.
Instead of optimizing with respect to the residual error, one option would be to search
for sparse approximate solutions to Eq. 1, within some allowed error. We define an ε-
approximate solution to Eq. 1 as a vector x ∈ R

n
max that: i) has residual error bounded

by positive constant ε > 0 or ‖b − A� x‖1 ≤ ε, and ii) satisfies the lateness constraint
A� x ≤ b.

In the second problem, given a prescribed constant ε > 0, we seek the sparsest (possibly
non-unique) ε-approximate solution. Equivalently, we solve the optimization problem:

x∗ = arg min
x∈Rn

max

|supp(x)|
subject to ‖b − A� x‖1 ≤ ε

A� x ≤ b (7)

We may recover the exact sparsest solution problem if we select ε = 0. Notice that we
need to select ε ≥ ‖b − A� x̄‖1 in order to guarantee feasibility of problem (7) (follows
from Theorem 8).
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To guarantee that the problem we are solving is not trivial, we make the following
assumption about A and b, which holds throughout the paper. It has been a standard
assumption in the literature (see chapter 15 in Cuninghame-Green 1979).

Assumption 1 All elements of b in Eq. 1 are finite: b ∈ R
m. Every row and column of

matrix A ∈ R
m×n
max in Eq. 1 has at least one finite element:4

i-th row:
n∨

k=1

Aik �= −∞, i = 1, . . . , m

j -th column:
m∨

l=1

Alj �= −∞, j = 1, . . . , n

If this assumption is not satisfied, it leads to trivial situations. For example, if the k-th
column Ak consists only of −∞ elements, then xk does not influence the solution at all,
since Aik + xk = −∞, i = 1, . . . m for every x ∈ R

n
max. So, we may remove k-th column

and variable xk without any effect.

Remark 1 The lateness constraint A� x ≤ b is desirable in many discrete-event systems
applications (see also Section 7.1.1), where we want some tasks to be completed at times
A� x, before some deadlines b. In general, it makes problem (7) more tractable. How-
ever, in other situations where it is not needed, it might lead to less sparse solutions or
higher residual error. It is a subject of future work to explore how we could remove it in
problem (7).

Remark 2 The sparsest solution problemmakes sense even ifm > n and we have an overde-
termined system. When system (1) is solvable, we might have infinite solutions. Among
those solutions some might be sparse.

In the following sections we study problems (6), (7). Then, we explore the sparse
recovery problem as well as applications.

4 Sparsest exact solution

In this section, we present our results about the solution to the first problem (6). We show
that the sparsest solution problem is equivalent to a minimum set cover problem and, thus,
NP-complete. Recall that J = {1, . . . , n} is used for column indices, while I = {1, . . . , m}
is used for row indices.

Although the principal solution x̄ defined in Eq. 3 is a solution when S(A, b) is non-
empty, it is not sparse, as the next result shows.

Lemma 1 Under Assumption 1, the principal solution x̄ of Eq. 1, defined in Eq. 3, is finite
or equivalently x̄ ∈ R

n.

4Such matrices are also called doubly R-astic in Butkovič (2010) and doubly G-astic in Cuninghame-Green
(1979).
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Proof Since bi is finite (Assumption 1), for every i ∈ I, j ∈ J , we have bi − Aij > −∞.
Thus, x̄j > −∞, for all j ∈ J . Moreover, from Assumption 1, for every j ∈ J , there exists
at least one k ∈ I , such that Akj is finite, which implies bk − Akj is finite. Thus,

x̄j =
m∧

i=1

(bi − Aij ) ≤ bk − Akj < +∞,

and x̄j is finite for all j ∈ J .

The above result implies that we should find another way to compute sparse solutions.
In particular, we can leverage results from Vorobyev (1967), Zimmermann (1976), (see
Butkovič 2003 for an English source or Theorem 7 in the Appendix) which show that any
solution of Eq. 1 has to agree with the principal one at some components. To each element
x ∈ S(A, b), we assign the set of indices Jx , which indicates the components where x

agrees with x̄:
Jx = {j ∈ J : xj = x̄j } (8)

We will call this set the agreement set of x. By Lemma 1, since x̄ if finite, we have
Jx ⊆ supp(x) for every solution x ∈ S(A, b). The main idea is that if x ∈ S(A, b) is a
solution, we can construct a new sparser solution x̂ ∈ S(A, b) such that supp(x̂) = Jx .
Thus, solving the sparsest solution problem is equivalent to finding an agreement set of the
smallest possible cardinality |Jx |.

However, we cannot have arbitrarily small agreement set Jx . There are some necessary
conditions that should be satisfied. For each j ∈ J , we define the set of row indices Ij ⊆ I ,
where the minimum in Eq. 3 is attained:

Ij =
{

i ∈ I : bi − Aij =
m∧

k=1

(bk − Akj ) = x̄j

}
. (9)

Those necessary conditions require the sub-collection Ij :, j ∈ Jx to be a set cover of I

(see Theorem 7 in the Appendix).
The next theorem proves that the solution to problem (6) can be reduced to finding the

minimum set cover of I , by the subsets Ij :, j ∈ J ; the minimum is with respect to the
number of subsets required for the cover. Conversely, any minimum set cover problem can
be reduced to solving an instance of problem (6), for suitably defined matrices A, b. Thus,
problem (6) is NP-complete.

Theorem 1 i) The problem (6) of computing the sparsest max-plus solution is equivalent
to finding the minimum set cover of I by the subset-collection {Ij : j ∈ J } defined in
Eq. 9. In particular, let x̄ be the principal solution defined in Eq. 3. Given a minimum
set cover {Ij : j ∈ K�}, K� ⊆ J , the element x̂ ∈ R

n
max defined as:

x̂j = x̄j , j ∈ K�

x̂j = −∞, j ∈ J \ K�, (10)

is an optimal solution to problem (6).
ii) Any minimum set cover problem can be reduced to solving problem (6), for suitably

defined matrices A, b. Thus, problem (6) is NP-complete.

Remark 3 (Suboptimal solution to problem (6)) According to Theorem 1, we can solve
problem (6), by finding the minimum set cover {Ij : j ∈ K∗} of I , and by using Eq. 10
to construct an optimal solution x∗. Although the minimum set cover is an NP-complete
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problem, it can be approximated by a greedy algorithm of polynomial complexity with
approximation ratio 1 + log(n) (Chvatal 1979). Alternatively, we could solve problem (6)
by solving problem (7) for ε = 0, using the techniques of Section 5.

The next example illustrates the results of this section.

Example 1 Suppose we are given the equation
⎡

⎣
1 0 1

−2 2 1
1 1 0

⎤

⎦�

⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
2
0
2

⎤

⎦

From Eq. 3, the principal solution is

x̄ =
⎡

⎣
(2 − 1)∧(0 + 2)∧(2 − 1)
(2 − 0)∧(0 − 2)∧(2 − 1)
(2 − 1)∧(0 − 1)∧(2 − 0)

⎤

⎦ =
⎡

⎣
1

−2
−1

⎤

⎦ .

From Eq. 9, the row index sets Ij are:

I1 = {1, 3}, I2 = {2}, I3 = {2}.
The minimum set cover of I = {1, 2, 3} is either I1 ∪ I2 or I1 ∪ I3. Hence, we have two
possible sparsest solutions: x∗

1 = [1 − 2 − ∞]T and x∗
2 = [1 − ∞ − 1]T .

5 Approximate solution and supermodular approach

In this section, we present the approximate solution to problem (7), which uses tools from
the supermodular optimization literature; a brief introduction to supermodularity is included
in Section 5.1. In Section 5.2, we reformulate problem (7) to a simpler one, where we
only optimize over the support of the optimal solution. Then, in Section 5.3, we prove that
this new optimization problem has supermodular properties if A has only finite elements
(Theorem 3). This allow us to approximately solve problem (7) via a greedy algorithm of
polynomial complexity with guaranteed bounds of approximation (Theorem 4). In some
sense, this greedy solution is similar to the “matching pursuit” algorithm in Mallat and
Zhang (1993), applied to linear systems. Finally, in Section 5.4, we extend the results to the
case where matrix A can also have infinite elements (Theorem 5).

5.1 Supermodularity preliminaries

Supermodularity (Krause and Golovin 2012) is a property of set functions, which enables
us to approximately solve some optimization problems of combinatorial complexity. In
particular, greedy algorithms of polynomial complexity can be employed, with theoretical
guarantees (bounds) regarding the ratio of approximation (Wolsey 1982), Nemhauser et al.
(1978). A set function f : 2J → R is a function that takes a subset T ⊆ J and returns a real
value f (T ). Two useful properties of set functions are supermodularity and monotonicity.
A set function f : 2J → R is supermodular if for every C ⊆ B ⊆ J and k ∈ J :

f (C ∪ {k}) − f (C) ≤ f (B ∪ {k}) − f (B) (11)

Respectively, a set function f : 2J → R is decreasing if for every C ⊆ B ⊆ J , f (C) ≥
f (B).
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Finally we present a result from Wolsey (1982),5 which shows how we can approx-
imately solve cardinality minimization problems subject to a supermodular equality
constraint. Let the optimization problem be:

minimize
T ⊆J

|T |
subject to f (T ) = f (J ) (12)

where f : 2J → R is supermodular and decreasing, while |T | denotes the cardinality of set
T . Suppose we use the following greedy algorithm.

The following theorem provides a bound on the approximation ratio of Algorithm 1.

Theorem 2 (Wolsey 1982) Suppose f : 2J → R is supermodular and decreasing. Algo-
rithm 1 returns a suboptimal solution Tk ⊆ J to problem (12) with |Tk| = k. If T ∗ is the
optimal solution then the following bound holds

|Tk|
|T ∗| ≤ 1 + log

(
f (∅) − f (J )

f (Tk−1) − f (J )

)
(13)

In the next sections, we reformulate problem (7) in order to reveal its supermodular
structure and leverage the results of Theorem 2.

5.2 Reformulation of problem (7)

Given any feasible point 6 x of problem (7), we can construct a new one by forcing every
component in the support to be equal to the respective component of the principal solution.
In this way, we reduce problem (7) to just finding the support of x, skipping the decision
over the finite values of x. Formally, suppose x ∈ R

n
max, with support supp(x) = T , satisfies

the inequality A� x ≤ b. Now, define a new element z ∈ R
n
max with the same support

as x, supp(z) = T . Then, replace all its finite components with the ones of the principal
solution: zj = x̄j , j ∈ supp(x). In terms of the agreement set defined in Eq. 8, we have
Jz = supp(z) = T . The next lemma shows that the new vector z not only is feasible, but
also has smaller residual error than x.

5The result in Wolsey (1982) is for submodular and increasing functions. But f is supermodular (decreasing)
if and only if −f is submodular (increasing). Hence, the result is also valid for supermodular and decreasing
functions.
6The feasible points of an optimization problem are the elements that satisfy the constraints.
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Lemma 2 Fix a subset T ⊆ J . Let

XT = {x ∈ R
n
max : supp(x) = T , A� x ≤ b}

be the set of elements which satisfy the lateness constraint and have support equal to T .
Assume that z ∈ R

n
max has support and agreement set equal to T :

Jz = T

supp(z) = T .

Then, z ∈ XT and

‖b − A� x‖1 ≥ ‖b − A� z‖1,
for all x ∈ XT .

Since for any fixed support supp(x) = T ⊆ J , we can select xj = x̄j , j ∈ T and
xj = −∞, j ∈ J \ T , the only decision variable that matters in problem (7) is T ⊆ J .
To introduce more compact notation, we can rewrite A� x = ∨

j∈J (Aj + xj ) as a max-
plus linear combination. But if supp(x) = T ⊆ J , then this max-plus linear combination
becomes:

A � x =
∨

j∈T

(Aj + xj ), if supp(x) = T .

Choosing xj = −∞ is equivalent to ignoring column Aj in the max-plus linear
combination. The next definition uses this notation.

Definition 1 We define the error vector e : 2J → R
m
min as:

e(T ) = b −
∨

j∈T

(Aj + x̄j ), for T �= ∅

e(∅) =
∨

j∈J

e({j}). (14)

The �1-error function E(T ) : 2J → Rmin is defined as the �1-norm of the error vector:

E(T ) = ‖e(T )‖1, (15)

where ‖e(T )‖1 = ∞ if ej (T ) = ∞, for some j ∈ J .

We note that for the empty set we consider the singletons’ error vectors and take the
component-wise maximum in the above definition. This selection guarantees that the �1-
error function E is supermodular and decreasing.

The next corollary exploits the result of Lemma 2 and proves that we can rewrite
problem (7) as:

min |T | subject to E(T ) ≤ ε (16)

Corollary 1 Problem (7) is equivalent to problem (16). In particular, if T̂ is a optimal
solution to problem (16), then the element x̂ ∈ R

n
min defined as:

x̂j = x̄j , j ∈ T̂

x̂j = −∞, j ∈ J \ T̂ , (17)

is an optimal solution to problem (7).
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5.3 Finite element case

Now, we can show that if A has only finite elements, the �1 error set function E(T ),
defined in Eq. 15, is supermodular. An alternative proof can be found if we follow the steps
of Gaubert et al. (2011), Section VI.7

Theorem 3 Suppose A ∈ R
m×n. The �1 error set function E(T ) defined in Eq. 15, is

decreasing and supermodular.

The above result along with Corollary 1 enable us to approximately solve problem (7),
using Algorithm 2 below. First, we compute the approximate solution to problem (16) in
a greedy way. Define Tk ⊂ J to be the collection of k elements, selected greedily in a
sequential way. Starting from the empty set T0 = ∅, at each time k, we select the index
j , which achieves the smallest �1-error E(Tk−1 ∪ {j}). Then, we update Tk = Tk−1 ∪ {j}
and this is repeated until the error E(Tk) becomes less than ε. After the selection of Tk , we
construct an approximate solution according to Eq. 17. The complexity of the algorithm is
O(n2), since the minimization step requires an inner loop of at most n iterations, while the
outer loop requires at most n iterations.

Since E(T ) is a supermodular function, it follows that Ē(T ) = max(E(T ), ε) is also
supermodular (Krause and Golovin 2012). Thus, the constraint E(TN) > ε is equivalent to
Ē(T ) = ε. Now, by applying the results of Wolsey (1982) (Theorem 2), we can obtain an
upper bound to the approximation ratio of Algorithm 2.

Theorem 4 Assume that A ∈ R
m×n has only finite elements. Suppose ε ≥ 0 is such that

E(J ) ≤ ε and E(∅) > ε, where E is defined in Eq. 15. Let k be the time Algorithm 2 termi-
nates with x̂, Tk the respective outputs. Then, x̂ is a suboptimal solution to problem (7) with

7Function E(T ) can be expressed as the cost function of a k-median problem–see Gaubert et al. (2011). This
function is known to be supermodular (Nemhauser et al. 1978).
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Tk = supp(x̂). Moreover, if T ∗ = supp(x∗), where x∗ is an optimal solution of problem (7),
the following inequality holds:

|Tk|
|T ∗| ≤ 1 + log

(
m�

E(Tk−1) − ε

)
(18)

where � = ∨
i∈I,j∈J

(bi − Aij − x̄j ) and x̄j are the components of the principal solution

defined in Eq. 3.

Parameter� is the largest element of the normalized matrix [bi −Aij −x̄j ], i ∈ I, j ∈ J .
Since A has only finite elements, � is also finite. The presence of the logarithm mitigates
the effect of a large � or small E(Tk−1) − ε differences. In general, term E(Tk−1) depends
on A, b, but by allowing more memory, it can be precomputed for all possible k with
complexity O(n2) (O(n) per k).

Nonetheless, there are special cases, where data independent bounds for the difference
E(Tk−1)−ε are possible. For example, if both A and b are integer valued, which is common
in timing applications, then the error function is also integer valued and E(Tk−1) ≥ �ε +1�.
Then, the bound of Theorem 4 becomes |Tk ||T ∗| ≤ 1+ log

(
m�

�ε+1�−ε

)
. Quantized elements can

also be dealt in a similar fashion.

5.4 Infinite element case

If A has infinite elements, then we cannot directly apply the results of Theorem 2. However,
we can replace the infinite elements of the error vector e(T ), T ⊆ J with a sufficiently
large positive constant M > 0 and then exploit the results of the finite case. The idea to
replace infinite elements with big constants M is motivated by the “big-M” method in linear
optimization (Bertsimas and Tsitsiklis 1997).

It is sufficient to replace matrix A ∈ R
m×n
max with a new one, denoted by Â(M) ∈ R

m×n
max ,

where:

Âij (M) = Aij , if Aij �= −∞
−M + bi − x̄j , if Aij = −∞

}
, for all i ∈ I, j ∈ J . (19)

This new matrix Â(M) has only finite elements. Thus, we can now apply Algorithm 2 to
matrices Â(M), b instead of A, b and leverage Theorem 4 to bound the approximation
ratio. However, we first have to require that the optimal solution remains the same with this
change. This is indeed the case if M is large enough. In particular, if M > ε, it turns out
that the optimal solution remains the same, as the following lemma shows.

Lemma 3 Suppose M > ε ≥ 0. Then for Â(M) defined in Eq. 19 the following problem:

min
x∈Rn

max

|supp(x)|

subject to
∥∥∥b − Â(M)� x

∥∥∥
1

≤ ε

Â(M)� x ≤ b (20)

is equivalent to problem (7).

Now, we can just apply Theorem 4 to the finite matrices Â(M) and b.



176 Discrete Event Dynamic Systems (2019) 29:163–189

Theorem 5 Suppose M > ε ≥ 0 are constants such that E(∅) > ε and E(J ) ≤ ε, where
E is defined in Eq. 15. Let k be the time Algorithm 2 terminates under input Â(M), b, where
Â(M) is defined in Eq. 19. Let x̂, Tk be the respective outputs. Then, x̂ is a suboptimal
solution to problem (7) with Tk = supp(x̂). Moreover, if T ∗ = supp(x∗), where x∗ is an
optimal solution of problem (7), the following inequality holds:

|Tk|
|T ∗| ≤ 1 + log

(
m�

min{E(Tk−1),M} − ε

)
(21)

where � = ∨
i∈I,j∈J

(bi − Âij (M) − x̄j ).

Proof Let Ê(T ) = b − ∨
j∈T

(Â(M)j + x̄j ) be the �1-error function for Â(M), b. From

Theorem 4 and Lemma 3, we obtain:

|Tk|
|T ∗| ≤ 1 + log

(
m�

Ê(Tk−1) − ε

)

But either Ê(Tk−1) = E(Tk−1) if there is no infinite component in e(Tk−1), or Ê(Tk−1) ≥
M if there is some infinite component in e(Tk−1).

Remark 4 Consider the notation of the previous theorem. Notice that:

� = max

⎧
⎨

⎩
∨

i∈I,j∈J,Aij �=−∞
(bi − Aij − x̄j ),M

⎫
⎬

⎭ ,

where M is used to replace the −∞ elements in Eq. 19. By increasing M we might make
the nominator in Eq. 21 bigger. Thus, in the sufficient condition M > ε it might be a good
choice to select M close to ε. On the other hand, we should not choose M too close to
ε, since we might make the denominator small. In the case of integer valued elements, a

reasonable selection could be M = ε + 1, since it guarantees ‖TN‖
|T ∗| ≤ 1+ log

(
m�

�ε+1�−ε

)
as

in the finite element case.

6 Application to the sparse recovery problem

In the recovery problem, the goal is to reconstruct an unknown vector z ∈ R
n
max from the

measurements A� z ∈ R
m, by solving the equation:

A� x = A� z. (22)

If the equation A� x = A� z has a unique solution then the principal solution can recover
z. Uniqueness holds only if the whole collection {Ij : j ∈ J } is needed to cover I (see
Chapter 15 of Cuninghame-Green 1979 or Butkovič 2010 or Corollary 4.8 in Akian et al.
2005), where Ij are defined in Eq. 9. In other words, the principal solution will recover z

only if z is dense. If the original z is sparse then, in general, the equation A� x = A� z,
will not have a unique solution and the principal solution will misidentify the −∞ elements
as finite.

Here, we explore conditions under which we could estimate a sparse z by computing x∗,
i.e. one of the sparsest solutions to problem (6). We call this the sparse recovery problem.
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Problem 1 (Sparse Recovery) Consider an arbitrary vector z ∈ R
n
max such that the pair

(A, b) = (A, A� z) satisfies Assumption 1. Let x∗ be the optimal solution of problem (6)
for the pair (A, b) = (A, A� z). We say that the Sparse Recovery Problem is solved if x∗
recovers z or

z = x∗.

This problem is also related to the system identification problem (Schullerus et al. 2006),
where, however, the sparsity patter is considered known. Notice that in general there might
be multiple sparsest solutions to the max-plus equation–see Example 1. However, the sparse
recovery problem above can only be solved exactly when the sparsest solution x∗ = z

is unique.8 Even if x∗ is unique, it will have more −∞ components than z in general.
Nonetheless, under some sufficient conditions, the sparse recovery problem can be solved
as the next theorem proves.

Theorem 6 Consider an element z ∈ R
n
max such that the pair (A, A� z) satisfies Assump-

tion 1. Let x∗ be the optimal solution of problem (6) for (A, b) = (A, A� z). Then, x∗ = z

if the following sufficient condition holds: For every finite component j ∈ supp(z), there
exists a row index i = i(j) ∈ I such that:

1. for all other indices in the support, k ∈ supp(z), k �= j , we have:

Aij > Aik + zk − zj

2. for all indices in the complement of the support, l ∈ J \ supp(z), there exists at least
one row index s = s(j, l) ∈ I , such that:

Asl > Ail + [A� z]s − [A� z]i .

Intuitively, the first part of the condition of the preceding theorem states that for any
component j ∈ J with zj �= −∞, there must be at least one row index i for which Aij is
large enough, in order to observe the influence of zj in A� z. Given the previous pair (i, j),
the second part of the condition requires that for every l ∈ J \ supp(z), there exists some
row s ∈ I such that the component Asl is large enough to reveal that zl is smaller than zj ;
small enough to be −∞.

Both conditions can be guaranteed if, for example, m ≥ n and A has large enough
leading diagonal elements (or large diagonal elements up to permutations–see Section 8).
In this case, if Ajj , j ∈ supp(z), is large enough across the j -th row then part a) is satisfied
with i = j . Similarly if All , l ∈ J \ supp(z), is large enough across the l-th column, then
part b) is satisfied by choosing s(j, l) = l for all j ∈ supp(z).

7 Applications

In this section, we give several applications of the present framework. First, we provide
two possible applications in discrete-event systems: i) resource optimization; and ii) system
identification with unknown sparsity pattern. Then, we show how the pruning problem can
be formulated as a sparsity problem.

8We note that uniqueness of the sparsest solution x∗ is different than the uniqueness of the equation A� x =
b. The former requires a unique minimum set-cover, while the later requires that the minimum set-cover is
the whole collection {Ij : j ∈ J }.
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7.1 Discrete event systems

We motivate the application to discrete-event systems through multi-machine interactive
production processes (Butkovič 2010). Considerm different products, which are made using
n machines. A machine j ∈ J contributes to the completion of a product i ∈ I by making
a partial product. It processes all partial products in parallel as soon as it starts working.
A system matrix G ∈ R

m×n
max determines how much time it takes for the partial products to

be made. Each element Gij represents the time needed for machine j to make the partial
product for product i. Thus, either Gij ≥ 0 or Gij = −∞ if product i does not depend on
machine j . An input u ∈ Rn describes the times the machines start working; uj is the time,
at which machine j starts working. If uj = −∞, then the machine j is not used at all. The
output

y = G�u (23)

describes the times the products are made; product i is completed at time yi . We will use
the above model to explore the following problems.

7.1.1 Resource optimization

Suppose that the products have delivery deadlines d ∈ R
m, which should not be exceeded.

This implies that the outputs y should satisfy the lateness constraint y ≤ d. Meanwhile,
it costs storage resources to make the products before the delivery time. Thus, we wish to
restrict the earliness ‖d − y‖1. Suppose now that we have an extra constraint; we also want
to minimize the number of machines used, which consume energy resources. Recall that
when uj = −∞, then machine j is not used. Thus, the number of used machines is equal to
the cardinality of the support of vector u. This problem could be formulated as an instance
of problem (7) with A = G, x = u, b = d . Sparsity here implies resource efficiency, since
we use fewer machines. Notice that in this case the lateness constraint is not a relaxation
but a desired property.

7.1.2 Structure-seeking system identification

Assume we have an unknown system matrix G ∈ R
m×n
max . Our goal is to recover G from a

sequence of K input-output pairs (ul , yl ) ∈ R
n
max × R

m, l ∈ L = {1, . . . , K}. Those pairs
are related via the max-plus model (23): yl = G � ul , l ∈ L (we assume the output is
finite). If we stack the inputs and outputs together, we obtain a set of max-plus equations:

⎡

⎢⎣
y
ᵀ
1
...

y
ᵀ
K

⎤

⎥⎦

︸ ︷︷ ︸
Y

=
⎡

⎢⎣
u
ᵀ
1
...

u
ᵀ
K

⎤

⎥⎦

︸ ︷︷ ︸
U

�Gᵀ

or

Y = U � Gᵀ. (24)

Notice that Y ∈ R
K×m, U ∈ R

K×n
max . System (24) consists of m separate max-plus equations

written together in matrix form.
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In this scenario, the infinite elements of G reflect the structure of the system. As men-
tioned before, Gij = −∞ means that the product i does not depend on the machine j . Here,
we are interested in obtaining a solution that not only solves the above equation but also
reveals the system structure. (We assume that we do not have any a priori knowledge about
the structure of system G; the only information is input-output pairs.)

Without any sparsity constraints, the principal solution Ḡ will have only finite elements,
hiding the actual sparsity pattern of the original system matrix G. Thus, we have to find
another way to identify the −∞ elements. One way to approach this problem would be
to solve the sparse recovery problem instead. If the sufficient conditions of Theorem 6 are
satisfied, then exact reconstruction is possible. In fact, those conditions also suggest a way
to do experiment design, i.e. to design the inputs U . It is sufficient to select U with large
enough leading diagonal elements such that the sparsest solution recoversG. Without know-
ing G, we may not be able to compute how large the leading diagonal elements should be.
Nonetheless, we could overcome this problem by exploiting bounds on the finite elements
of G.

7.2 Pruning

The pruning problem emerged as a curse-of-dimensionality-free method for approxi-
mating optimal control value functions–see McEneaney (2009), Gaubert et al. (2011)
for more details and motivation behind the method. Next, we show that a “dual” ver-
sion of the pruning problem can be formulated in terms of a sparsity problem as
in Eq. 7.

Suppose that φ =
n∨

j=1
φj , where φj ∈ R

m
max are basis vectors. The goal is to find a

reduced representation φ̃ = ∨
j∈S⊆J

φj such that the approximation error
∥∥∥φ − φ̃

∥∥∥
�1
is small.

Let x ∈ R
n
max indicate which basis columns should be selected. If xj = −∞, then we ignore

column φj , otherwise we select it. To solve the pruning problem, we could formulate it as
an ε−approximate sparsity problem:

min
x∈Rn

max

|supp(x)|
subject to

∥∥φ − [φ1 . . . φn]�x
∥∥
1 ≤ ε

[φ1 . . .φn]� x ≤ φ.

The formulation here is a “dual” version of the one that appears in Gaubert et al. (2011).
There, the minimization is with respect to

∥∥φ − [φ1 . . .φn] � x
∥∥
1, while the cardinality of

the support |supp(x)| = k is kept fixed to a value k.

8 Numerical examples and simulations

8.1 System identification

In this subsection, we present a numerical example, where we apply our results to the sys-
tem identification problem. We implemented the greedy Algorithm 2 in Matlab to obtain
solutions to problems (6), (7). For the small examples below, we can verify by hand that the
greedy solution will also be optimal.



180 Discrete Event Dynamic Systems (2019) 29:163–189

Consider a multi-machine interactive production process, as defined in Section 7, with
system matrix G ∈ R

m×n
max

G =
⎡

⎣
2 3 −∞
1 1 −∞

−∞ 2 6

⎤

⎦

Now consider K = 4 input instances ul , l = 1, . . . , 4, which are imposed to the system:

Uᵀ = [u1 . . .u4] =
⎡

⎣
0 10 0 2
10 0 0 0
5 5 10 2

⎤

⎦

For each input instance ul , the respective outputs yl , l = 1, . . . , 4 are:

Yᵀ = [y1 . . . y4] = G�Uᵀ =
⎡

⎣
13 12 3 4
11 11 1 3
12 11 16 8

⎤

⎦ .

Our goal is to determine G from the given inputs and the corresponding outputs. The
principal solution gives:

Ḡ =
⎡

⎣
2 3 −7
1 1 −9
1 2 6

⎤

⎦ ,

which hides the sparsity pattern of the original matrix G. Notice that some −∞ elements in
G, i.e. G13, correspond to negative elements in Ḡ, i.e. Ḡ13 = −7. Those can be identified
as −∞, since G, can only have positive or −∞ elements. However, not all of them are
negative. For instance, Ḡ31 = 1. Thus, this method does not guarantee that all−∞ elements
are revealed.

Suppose now that we compute the sparsest solution G∗, by solving problem (6). In this
case, we obtain:

G∗ = G.
This result is expected, since U is designed to have large diagonal values under the column
permutation {2, 1, 3} and satisfies the assumptions of Theorem 6. Thus, without any prior
knowledge, we managed to identify for all products, which machines they depend on. If
this condition is not satisfied, i.e. if we change U12 from 10 to U12 = 1, then the sparsest
solution falsely yieldsG∗

32 = −∞ �= G32, but it correctly identifies the remaining elements.
For the next example, suppose that due to some unexpected delay the last output is

y4 = [4.2 3 8]ᵀ. The equation Y = U �Gᵀ is no longer satisfied. In this case, we solve
problem (7) and find the sparsest approximate solution Ĝ. For ε = 0.3, we have Ĝ = G and
we recover G. However, if the error gets bigger, for example Y41 = 5, the sparsest approx-
imate solution falsely returns G∗

32 = −∞ for ε = 1. The results for the sparse recovery
problem, presented in Section 6, are only applicable to the exact solution case. Nonetheless,
from the last numerical example, it seems that if the delay is small, they might still be valid
for the approximate solution case. It is subject of future work to provide a formal analysis.

8.2 Greedy algorithm performance

In this subsection, we explore the performance of the greedy Algorithm 2 with respect to
problem (7). First, we construct an example where the greedy Algorithm 2 is suboptimal.
Then, we compare Algorithm 2 with the brute force one, using random matrices A, b. For
the brute force algorithm, we solve a combinatorial problem; we search over all possible
supports supp (x).
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Table 1 Comparison between the greedy and the brute force algorithm for random matrices A, b

(m, n) (8,16) (8,17) (9,18) (9,19) (10,20) (10,21) (11,22)

suboptimality ratio 0.970 0.948 0.952 0.968 0.967 0.955 0.979

time greedy (sec) 0.0012 0.0013 0.0015 0.0017 0.0019 0.0020 0.0022

time brute force (sec) 0.09 1.33 2.72 5.56 11.30 22.37 46.73

For every pair of (m, n), the average is over 40 independent samples. The greedy algorithm performs very
well on average for small (m, n). It has suboptimality ratio close to one and is much faster than the brute
force algorithm

Example 2 (Suboptimality of greedy algorithm) Consider the matrices:

A =
⎡

⎣
0 0 −10

−2 0 −10
−2 −10 0

⎤

⎦ , b =
⎡

⎣
0
0
0

⎤

⎦

and let ε = 1. The optimal solution to problem (7) is x∗ = [−∞ 0 0]ᵀ. The greedy algo-
rithm will initially select T1 = {1}, since the first column of A leads to the smallest error.
However, in this example, it is sufficient and necessary for both components 2,3 to be
included in the support in order to have error less than ε. Hence, the greedy algorithm will
return the set T3 = {1, 2, 3} and the suboptimal solution x̂ = [0 0 0]ᵀ.

Next, we compare the greedy algorithm with the brute force one. Both were implemented
in Matlab. For the comparison we compute the suboptimality ratio of the greedy algorithm
as well as the execution times. Due to the exponential complexity of the brute force algo-
rithm, this comparison can only be made for small values of n, where n is the number of
columns of matrix A.

We generated randomm×nmatricesAwith elements taking values in the set {0, . . . , n−
2} and m × 1 vectors b with elements taking values in {0, . . . , n + 5}, for several (m, n)

pairs–see Table 1. Because the times and the suboptimality ratios depend on the randomly
sampled matrices, we averaged them over 40 independent iterations for each (m, n) pair. To
guarantee feasibility, in all of the cases we selected ε = ‖b − A� x̄‖ + 1, where x̄ is the
principal solution. We observe that the average suboptimality ratio of the greedy algorithm
is very close to one and does not decrease noticeably. Meanwhile, as we expected, the
execution time of the greedy algorithm scales much better than the brute force one. Thus,
empirically the greedy algorithm performs very well on average for small values of m, n.
As we stated above, it is not easy to empirically evaluate the performance for larger values
of m, n since the brute force algorithm requires a lot of time to terminate.

9 Conclusion

We studied the problem of finding the sparsest solution of the max-plus equation and proved
that it is NP-complete. Then we studied the problem of finding the sparsest approximate
solution subject to a lateness constraint. The degree of approximation was measured via a
�1 norm function, which was proved to have supermodular properties. Thus, we developed a
greedy algorithm of polynomial complexity, which approximates the optimal solution with
guaranteed ratio of approximation. We also derived sufficient conditions such that the sparse
recovery problem can be solved. The present framework can be applied to discrete event
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systems applications such as resource optimization or system identification. In future work
we will explore whether we can drop the lateness constraint when searching for the sparsest
approximate solution. We will also study whether the sufficient conditions of the sparse
recovery problem can be relaxed. Another direction is extending the concepts of sparsity to
max-plus dynamical systems. Finally, we would like to extend the results to more general
idempotent semi-rings by using residuation theory.
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Appendix A: Previous results

The result below was originally proved in Vorobyev (1967) and Zimmermann (1976). A
reference in English can be found in Butkovič (2003).

Theorem 7 (Covering theorem) An element x ∈ R
n
max is a solution to Eq. 1 or x ∈ S(A, b)

if and only if:

a) x ≤ x̄

b)
⋃

j∈Jx

Ij = I,

where x̄ is the principal solution defined in Eq. 3, set Jx is defined in Eq. 8, and sets Ij are
defined in Eq. 9.

Theorem 8 (Cuninghame-Green 1979) Let x̄ be the principal solution defined in Eq. 3.
The following equivalence holds:

A� x ≤ b ⇔ x ≤ x̄. (25)

Moreover, x̄ is an optimal solution to problem (5).

Appendix B: Proofs

Proof of Theorem 1
First, we prove i). Suppose that x∗ is an optimal solution to Eq. 6. Since it is a solution

of the equation A� x = b, by Theorem 7, the subcollection {Ij : j ∈ Jx∗ }, determined by
the agreement set Jx∗ = {j ∈ J : x∗

j = x̄j }, is a set cover of I . We will show that the size
|Jx∗ | of the set cover is minimum. By optimality of x∗, we necessarily have x∗

j = −∞, for
j ∈ J \ Jx∗ and the support of x∗ is the same as the agreement set; otherwise, we could
create a sparser solution by forcing the elements outside of the agreement set to be −∞.
So, |supp(x∗)| = |Jx∗ |. Now, take any set cover {Ij : j ∈ K ⊆ J } of I and define element
x(K) as:

x(K)j = x̄j , j ∈ K

x(K)j = −∞, j ∈ J \ K (26)

Notice that |supp(x(K))| = |K| and by Theorem 7, x(K) is also a solution to the max-
plus equation A� x = b. By optimality, x∗ has the smallest support, or |supp(x∗)| ≤
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|supp(x(K))|. But this implies that |Jx∗ | ≤ |K|, which shows that {Ij : j ∈ Jx∗ } is a
minimum set cover of I .

Conversely, suppose the collection {Ij : j ∈ K∗ ⊆ J } is a minimum set cover of I .
Then, we can define the solution x̂ as in Eq. 10. We will show that x̂ is an optimal solution
to Eq. 6. Suppose x∗ is one optimal solution to Eq. 6. Then, the collection {Ij : j ∈ Jx∗ } is
a set cover with Jx∗ = {j ∈ J : x∗

j = x̄j }. Since x∗ is the sparsest solution, we can only
have |supp(x∗)| = |Jx∗ |. Meanwhile, by optimality of the set cover we have

∣∣supp(x̂)
∣∣ = ∣∣K∗∣∣ ≤ |Jx∗ | = ∣∣supp(x∗)

∣∣ .
Hence, x̂ is also an optimal solution to Eq. 6.
Second, we prove ii). This part is adapted from Butkovič (2003). Suppose we are given

an arbitrary collection of nonempty subsets

Sj ⊆ {1, . . . , m} = I, j ∈ {1, . . . , n} = J,

for some m, n ∈ N, such that
⋃

j∈J Sj = I . Define Aij = 1(i ∈ Sj ) for all i ∈ I, j ∈ J ,
where 1 is the indicator function, and bi = 1, for all i ∈ I . By Eqs. 3, 9, it follows that the
principal solution is x̄ = [1 . . . 1]ᵀ, while the sets Sj are equal to the sets Ij . But following
the analysis of i), finding the minimum set cover of I using Sj = Ij is equivalent to finding
the solution to problem (6) with the above selection of A, b. This completes the proof of
part ii).

Proof of Lemma 2
By construction, the agreement set and the support are equal to T or

zj = x̄j , for j ∈ T

zj = −∞, for j ∈ J \ T

Thus, z ≤ x̄ and by Theorem 8, also A� z ≤ b, which proves that z ∈ XT .
To prove the second part, again from Theorem 8, if x ∈ XT then

xj ≤ x̄j = zj , for j ∈ T

xj = zj = −∞, for j ∈ J \ T

As a result, x ≤ z for any x ∈ XT . Now, since A�· is increasing (Cuninghame-Green
1979) we obtain the inequality:

b − A� z ≤ b − A� x,

for any x ∈ XT . Since both x, z satisfy the lateness constraint (4), we finally have

‖b − A � x‖1 = 1ᵀ(b − A � x) ≥ 1ᵀ(b − A � z) = ‖b − A � z‖1
for any x ∈ XT , where 1 = [1 · · · 1]ᵀ.

Proof of Corollary 1
Let x∗, T̂ be the optimal solutions of problems (7), (16) respectively. Denote by T � =

supp(x∗) the support of x∗. Then construct a new vector z∗ such that z∗
j = x̄j , j ∈ T ∗ and

z∗
j = −∞, i ∈ J \ T ∗. By Lemma 2,

E(T ∗) = ∥∥b − A� z∗∥∥
1 ≤ ∥∥b − A� x∗∥∥

1 ≤ ε.
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Thus, T ∗ = supp(x∗) is a feasible point of problem (16), implying |T̂ | ≤ |T ∗|.
Conversely, define x̂ as in Eq. 17. By construction and the feasibility of T̂ and Lemma 2,

we have:
∥∥b − A� x̂

∥∥
1 = E(T̂ ) ≤ ε.

A� x̂ ≤ b

Thus, x̂ is a feasible point of problem (7), which implies |T ∗| ≤ |T̂ |. From the above
inequalities we obtain |T ∗| = |T̂ |, which also proves that x̂ is an optimal solution to
problem (7).

Proof of Theorem 3
Notice that we have:

∨

j∈T

(Aj + x̄j ) ≤
∨

j∈J

(Aj + x̄j ) = A� x̄ ≤ b

Thus, we get by construction that the error vector e(T ) has only positive components, for
every T ⊆ J , which implies:

E(T ) = ‖e(T )‖ = 1ᵀe(T ), (27)

where 1ᵀ = [1 . . . 1]ᵀ. For convenience, define matrix Â ∈ R
m×n
max as Âij = Aij + x̄j .

Then, by the definition (14) of error vector:
∨

j∈T

Âj = b − e(T ).

First, we show that E(T ) is decreasing. Let B, C be two nonempty subsets of J with
C ⊆ B ⊂ J . Then,

∨
j∈C

Âj ≤ ∨
j∈B

Âj . Consequently, e(B) ≤ e(C). Now if C is empty and

B is non-empty, then by construction e(∅) ≥ ∨
k∈J

e({k}) ≥ e(B) (if C, B are both empty we

trivially have e(C) = e(B)). In any case, by Eq. 27, we obtain E(C) ≥ E(B).
Second, we show that E(T ) is supermodular. Let C ⊆ B ⊆ J and k ∈ J \ B. It is

sufficient to prove that:

e(C ∪ {k}) − e(C) ≤ e(B ∪ {k}) − e(B). (28)

For C �= ∅ define:

u =
∨

j∈C

Âj , v =
∨

j∈C∪{k}
Âj

z =
∨

j∈B

Âj , w =
∨

j∈B∪{k}
Âj .

By this definition, vi = ui∨Âik , wi = zi∨Âik for every i ∈ I . Also, by monotonicity
u ≤ z, v ≤ w. There are three possibilities:

i) If ui > Âik then vi = ui . But also wi = zi , since by monotonicity z ≥ u and
zi ≥ ui > Âik . In this case, vi − ui = wi − zi = 0.

ii) If ui ≤ Âik and zi > Âik then vi − ui = Âik − ui ≥ 0 and wi − zi = 0 ≤ vi − ui .
iii) If both ui ≤ Âik and zi ≤ Âik then vi − ui = Âik − ui ≥ Âik − zi = wi − zi , since

by monotonicity zi ≥ ui .
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If C is the empty set, we define u = b − e(∅) and v, z,w are defined as before. Since by
construction e(∅) ≤ e(k) for all k ∈ J , we also have u ≤ v and u ≤ z. Thus, either case ii)
or case iii) applies.

In any case, v −u ≥ w − z which is equivalent to Eq. 28. Finally, multiplying both sides
of Eq. 28 from the left by 1ᵀ gives the desired result: E(C ∪ {k}) − E(C) ≤ E(B ∪ {k}) −
E(B).

Proof of Theorem 4
Define the truncated error set function

Ē(T ) = max(E(T ), ε).

By Theorem 3, the error set function E(T ) is supermodular and decreasing. Thus, so is
the truncated error function (Krause and Golovin 2012). This enables as to express the
constraint E(T ) ≤ ε as Ē(T ) = Ē(J ). Then, the lines 6 − 11 of Algorithm 2 are a version
of Algorithm 1. Hence, Theorem 2 readily applies giving the bounds

|Tk|
|T̂ | ≤ 1 + log

(
Ē(∅) − Ē(J )

Ē(Tk−1) − Ē(J )

)
,

where T̂ is the optimal solution of problem (16). From Corollary 1 we can replace T̂ with
T ∗. By the assumption E(∅) > ε and the definition of the �1-error set function at ∅:

Ē(∅) = E(∅) =
∑

i∈I

∨

j∈J

(bi − Aij − x̄j ) ≤ m�.

Meanwhile, we have Ē(J ) ≥ 0 and the result for the nominator in the logarithm follows.
For the denominator, notice that k is such that E(Tk−1) > ε and E(Tk) ≤ ε. Such k exists
since E(J ) ≤ ε and in the worst case, Algorithm2 halts at k = |J | with Tk = J . Thus, we
have Ē(Tk−1) = E(Tk−1) and Ē(J ) = ε.

Proof of Lemma 3
It is sufficient to prove that the feasible regions of both problems are identical. First, we

prove that:

A� x ≤ b ⇔ Â(M)� x ≤ b (29)

But from Theorem 8, it is equivalent to show that x̄ = ˆ̄x, where x̄ is the original principal
solution defined in Eq. 3 and ˆ̄x is the new principal solution with Â(M) instead of A:

ˆ̄xj =
m∧

i=1

(
bi − Âij (M)

)
, ∀j ∈ J . (30)

By construction, Aij ≤ Âij (M), which by Eqs. 3, 30, implies ˆ̄x ≤ x̄. To show the other
direction, we have

ˆ̄xj = bk − Âkj (M), for some k ∈ I .

There are two cases:

i) Âkj (M) = Akj . Then, ˆ̄xj = bk − Akj ≥ ∧
i∈I

bi − Aij = x̄j .

ii) Âkj (M) = bk − M − x̄j . Then, ˆ̄xj = M + x̄j > x̄j , since M > 0.

Thus, we also have ˆ̄x ≥ x̄. This proves x̄ = ˆ̄x.
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Second, we prove that under the constraint A� x ≤ b (which we showed is equivalent
to Â(M)� x ≤ b) we have:

‖b − A� x‖1 ≤ ε ⇔ ‖b − Â(M)� x‖1 ≤ ε (31)

“⇒” direction. Since Aij ≤ Âij (M), we obtain

A� x ≤ Â(M)� x.

But we have A� x ≤ b, Â(M)� x ≤ b. Thus,

‖b − Â(M)� x‖1 ≤ ‖b − A� x‖1 ≤ ε.

“⇐” direction. For every i ∈ I , there exists an index ji ∈ J such that:

‖b − Â(M)� x‖1 =
m∑

i=1

(bi − Âiji
(M) − xji

)

Now assume that some element Âkjk
(M) is equal to −M + bi − x̄ji

, for some k ∈ I . Then,
this implies

ε ≥ ‖b − Â(M)� x‖1 =
m∑

i=1

(bi − Âiji
(M) − xji

)

≥ bk − Âkjk
(M) − x̄jk

= M,

where the second inequality follows from Â(M)� x ≤ b and the equivalent fact x ≤ x̄

(see Theorem 8). But since M > ε, this is a contradiction and the only possible case is
Âijk

(M) = Aiji
, for all i ∈ I . Finally,

ε ≥ ‖b − Â(M)� x‖1 =
m∑

i=1

(bi − Aiji
− xji

)

≥
m∑

i=1

⎛

⎝bi −
∨

j∈J

(Aij + xj )

⎞

⎠ = ‖b − A� x‖1.

This completes the proof.

Proof of Theorem 6
Define b = A� z. It is sufficient to show that for any solution x ∈ R

n
max of equation

A� x = b, we have:
xj = zj , for all j ∈ supp(z). (32)

Then, since x∗ is also a solution we have x∗
j = zj , for j ∈ supp(z). But x∗ is the sparsest

solution. Thus, we necessarily have x∗
j = −∞ for j �∈ supp(z); otherwise, z would be a

sparser solution contradicting the assumptions. This implies that z = x∗.
We now prove (32). Given a j ∈ supp(z), let i = i(j) ∈ I be the row index such that the

condition of the theorem holds. Consider the row index sets Ij ⊆ I , j ∈ J defined in Eq. 9.
Part b) of the condition implies that

x̄l =
∧

t∈I

bt − Atl ≤ bs − Asl < bi − Ail, for all l ∈ J \ supp(z).

This implies that the above minimum is not attained at i or:

i �∈ Il, for all l ∈ J \ supp(z). (33)
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Part a) of the condition implies that

bi =
∨

p∈J

(Aip + zp) = Aij + zj .

Moreover, by the definition (3) of the principal solution:

x̄j =
∧

q∈I

(bq − Aqj ) ≤ bi − Aij = zj .

But by Theorem 7, only x̄j = zj is possible since the principal solution dominates every
other solution. Let k ∈ supp(z), k �= j be another index in the support of z. We can similarly
show that x̄k = zk . Now, we claim that i �∈ Ik . If we had i ∈ Ik , then zk = x̄k = bi − Aik

or by replacing bi = Aij + zj :

Aij + zj = Aik + zk,

which contradicts the theorem hypothesis Aij + zj > Aik + zk . Thus:

i �∈ Ik, for all k ∈ supp(z) \ {j}. (34)

Since the system A� x = b is solvable, from Eqs. 33, 34 j is the unique index such that
i ∈ Ij . Hence, set I cannot be covered without including set Ij in the covering. By Theorem
7, any solution x ∈ R

n
max must necessarily have xj = x̄j = zj .
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