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Sparsity in Linear Algebra

Motivation:

Inverse problems: We observe a vector b as linear measurements of an unknown

quantity x through a system A. We want to recover the initial information.

Problem: Possibly infinite candidates that explain the data.

Efficient representations: Consider a signal ∈ Rm. Storing it with only k values,

k << m? Idea: the signal may be really simple computed in a different basis! (e.g.

DFT of cosines: only 2 non zero values). How to find the suitable basis? and how

to compute the simple signal in this basis?

Core of the problem:


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

. . . . . . .

am1 am2 am3 . . . amn




x1

x2

x3

.

xn

 =


b1

b2

.

bm


What is the solution with the least non zero elements? The most sparse?
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Max-plus Algebra

In a variety of problems non linear representations arise (with maximum and additions):

Morphological signal and

image analysis.
Discrete event systems.

Optimal control and

Dynamic programming.
a11 a12 a13 . . . a1n
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What is the solution with the least number of non −∞ elements? The most sparse

solution?
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Contributions & Related Work

Contributions:

Sparse approximate solutions as a discrete optimization problem.

Analysis of the submodular properties of the corresponding problems.

Sparsity might be relevant to modern machine learning applications.

Related Work:

Connection between max-plus equations & discrete optimization (min set cover)

[Butkovič 2013].

[Gaubert et. al. 2011] Pruning in optimal control - related to sparse `1 approximate

solutions.

[Tsiamis & Maragos 2019] introduced the concept of sparsity in max-plus algebra.
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[Butkovič 2013].

[Gaubert et. al. 2011] Pruning in optimal control - related to sparse `1 approximate

solutions.

[Tsiamis & Maragos 2019] introduced the concept of sparsity in max-plus algebra.

Nikos Tsilivis , Anastasios Tsiamis , Petros Maragos ( School of ECE, National Technical University of Athens, Greece, ESE Department, SEAS, University of Pennsylvania, USA)May 27, 2021 5 / 19



Contributions & Related Work

Contributions:

Sparse approximate solutions as a discrete optimization problem.

Analysis of the submodular properties of the corresponding problems.

Sparsity might be relevant to modern machine learning applications.

Related Work:

Connection between max-plus equations & discrete optimization (min set cover)

[Butkovič 2013].
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max-plus preliminaries

Values from R ∪ {−∞}.
Max-plus and min-plus products:

[A� x]i ,
n∨
k=1

aik + xk , [A�
′
x]i ,

n∧
k=1

aik + xk

A max-plus equation A� x = b has a solution iff x̂ = −Aᵀ �′ b (principal solution)

satisfies it.

A� x̂ ≤ b.
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Submodularity preliminaries (1/2)

Definition (Submodular)

A set function f : 2U → R is called submodular if ∀A ⊆ B ⊆ U, k /∈ B holds:

f (A ∪ {k})− f (A) ≥ f (B ∪ {k})− f (B).

Figure: [Liu et al. 2019]
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Submodularity preliminaries (2/2)

Generalization of submodularity

Definition (Submodularity ratio of an increasing, non-negative function [Das &

Kempe 2018])

γU,k(f ) , min
L⊆U,S:|S|≤k,S∩L=∅

∑
x∈S f (L ∪ {x})− f (L)

f (L ∪ S)− f (L)

Proposition

An increasing function f : 2U → R is submodular if and only if γU,k(f ) ≥ 1, ∀ U, k.
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Sparsity in Max-plus algebra

Definition (Sparsity)

We call a vector x sparse if it contains many −∞ elements.

Definition (Support set)

The support set of a vector is the set of indices of its values that are not equal to −∞,

that is: supp(x) = {j | xj 6= −∞}.

e.g. |supp(1, 4,−∞,−2, 0, 0)| = 5

Theorem (Tsiamis & Maragos 2019)

Computing the sparsest solution of A� x = b is an NP-complete problem.

essentially: Minimum Set Cover.
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Sparse Approximate Solutions formulation

Problem formulation

arg min
x
|supp(x)|

s.t. ‖b− A� x‖pp ≤ ε,

A� x ≤ b,A ∈ Rm×n, y ∈ Rm.

Notes

We restrict the `p, p <∞, error to be small.

We add an extra constraint A� x ≤ b.

Observe that for ε = 0 reduces to an NP-complete problem.

The case p = 1 was examined in [Tsiamis & Maragos 2019].
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Sparsity as a discrete optimization problem

Problem formulation

arg min
x
|supp(x)|

s.t. ‖b− A� x‖pp ≤ ε,

A� x ≤ b,A ∈ Rm×n, y ∈ Rm.

(1)

Proposition (Informal)

We can fix the values of x to be equal to those of x̂, and search only over the support

set T .

New Problem formulation

arg min
T
|T |

s.t. Ep(T ) ≤ ε
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Greedy Algorithm

Algorithm 1: Approximate solution of problem (1)

Input: A, b

Compute x̂ = (−A)ᵀ �
′
b

if Ep(J) > ε then
return Infeasible

Set T0 = ∅, k = 0

while Ep(Tk) > ε do
j = arg mins∈J\Tk Ep(Tk ∪ {s})
Tk+1 = Tk ∪ {j}
k = k + 1

end

xj = x̂j , j ∈ Tk and xj = −∞, otherwise

return x,Tk

Time complexity: O(nm + n2)
Approximation ratio: O(log(m∆p)), ∆ =

∨
i ,j(bi − Aij − x̂j).
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Sparse `∞ Approximate Solutions (1/2)

Searching only for approximate sub-solutions is restrictive. Can we overcome this?

We shift our attention to the `∞ norm.

arg min
x
|supp(x)|

s.t. ‖b− A� x‖∞ ≤ ε,A ∈ Rm×n, b ∈ Rm.
(2)

Proposition (Informal)

Problem (2) can also be written as a set-search problem.

New Problem formulation

arg min
T
|T |

s.t. E∞(T ) ≤ ε

Unfortunately ..
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Sparse `∞ Approximate Solutions (1/2)

E∞ is not even approximately supermodular (γ(E∞) = 0) ⇒ a greedy solution might

have arbitrarily big support set!

Proposal: Solve the `p problem greedily and add to the solution the half of its `∞ error.

Proposition

If xp,ε is a solution of `p Problem (1), then x∗ = xp,ε + ‖b−A�xp,ε‖∞
2

has the smallest `∞
error over all sparse vectors with the same support set T .

Computational overhead: O(m|T |)
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Morphological Neural Networks

Neural networks with layers that perform Morphological Operations, such as

dilations and erosions [Ritter & Sussner 1996].

Recent studies have highlighted their ability to be pruned effectively and produce

interpretable models [Charisopoulos & Maragos 2017, Zhang et al. 2019].
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Neuron pruning as a sparsity problem

Consider a simple two layer network that performs a linear transformation followed by a

dilation (max-plus block [Zhang et al. 2019]):

z =Wx,

y = A� z.

After training: fix y,A and search for a sparse solution over z. Then, keep neurons that

correspond to finite values.
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Experiments on MNIST & FashionMNIST

2 networks of 64 and 128 neurons, trained for 20 epochs, with SGD.

We are able to find the 10 most important neurons automatically and prune the

rest of them (recording same accuracy).

MNIST FashionMNIST

64 128 64 128

Full model 92.21 92.17 79.27 83.37

Pruned (n = 10) 92.21 92.17 79.27 83.37

Table: Test set accuracy before and after pruning.
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Conclusion & Future work

Sparsity in max-plus algebra.

Analysis of the submodular structure of the problems ⇒ also relevant to other

problems in max-plus algebra (unconstrained optimal `2 approximations).

Sparse framework to assist advances in training and optimizing morphological

models.

Future work: A complete sparse representation theory in complete lattices with

efficient algorithms for sparse approximate solutions to max-plus, max-min, smooth

idempotent spaces and more.

Thank you for your attention!
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