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Sparsity in Linear Algebra

Motivation:

Inverse problems: We observe a vector b as linear measurements of an unknown
quantity x through a system A. We want to recover the initial information.
Problem: Possibly infinite candidates that explain the data.
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What is the solution with the least non zero elements? The most sparse?
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Max-plus Algebra

In a variety of problems non linear representations arise (with maximum and additions):

Morphological signal and
image analysis.

Optimal control and

Discrete event systems. . .
Dynamic programming.

b1 = max(a11 + x1, a2 + X2, . . ., @10 + Xn),

by = max(a21 + Xx1,80n + X2, ..., am+ Xn)
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Max-plus Algebra

In a variety of problems non linear representations arise (with maximum and additions):

Morphological signal and
image analysis.

Optimal control and

Discrete event systems. . .
Dynamic programming.

X1
ail di2  d13 ... din b1
X2
asi a2 a3 ... aon b
H X3 =
dmi dm2 am3 ... Admn ’ bm
Xn

What is the solution with the least number of non —co elements? The most sparse
solution?
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Contributions & Related Work

Contributions:

Sparse approximate solutions as a discrete optimization problem.
Analysis of the submodular properties of the corresponding problems.
Sparsity might be relevant to modern machine learning applications.
o Related Work:
Connection between max-plus equations & discrete optimization (min set cover)
[Butkovi¢ 2013].
[Gaubert et. al. 2011] Pruning in optimal control - related to sparse £; approximate
solutions.
[Tsiamis & Maragos 2019] introduced the concept of sparsity in max-plus algebra.
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max-plus preliminaries

Values from RU {—oo}.
Max-plus and min-plus products:

[AHBX] = \/ aik + Xk, [A = x]; & /\ aik + Xk

k=1 k=1
5> A max-plus equation A B x = b has a solution iff X = —AT 8’ b (principal solution)
satisfies it.
> ABX <b.
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Submodularity preliminaries (1/2)

Definition (Submodular)

A set function f : 2Y — R is called submodular if YA C B C U, k ¢ B holds:

F(AU{k}) — f(A) > F(BU {k}) — (B).
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Submodularity preliminaries (2/2)

Generalization of submodularity

Definition (Submodularity ratio of an increasing, non-negative function [Das &

Kempe 2018])

ne o SesfLUGH - (L)
LCU,S:|S|<k,SNL=0 f(LUS)— f(L)
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Submodularity preliminaries (2/2)

Generalization of submodularity

Definition (Submodularity ratio of an increasing, non-negative function [Das &

Kempe 2018])

A S FLUB) - (L)

LCU.SS1ek Sni=0 f(LUS) —f(L)

An increasing function f : 2Y — R is submodular if and only if yur(f) > 1, V U, k.
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Sparsity in Max-plus algebra

Definition (Sparsity)

We call a vector x sparse if it contains many —oo elements.

Definition (Support set)
The support set of a vector is the set of indices of its values that are not equal to —oo,
that is: supp(x) = {J | x; # —oo}.

e.g. |supp(1l,4, —00,—2,0,0)| =5

Theorem (Tsiamis & Maragos 2019)
Computing the sparsest solution of ABH x = b is an NP-complete problem.

essentially: Minimum Set Cover.
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Sparse Approximate Solutions formulation

Problem formulation

arg min|supp(x)|
s.it. [b—ABx|; <e
AHBHx<b AcR™" yecR".
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Sparse Approximate Solutions formulation

Problem formulation

arg min|supp(x)|
X

s.it. [b—ABx|; <e
AHBHx<b AcR™" yecR".

@ We restrict the £,, p < oo, error to be small.
@ We add an extra constraint ABHx < b.

@ Observe that for € = 0 reduces to an N'P-complete problem.

@ The case p = 1 was examined in [Tsiamis & Maragos 2019].
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Sparsity as a discrete optimization problem

Problem formulation

arg min|supp(x)|
st [[b—ABx|) <e (1)
ABHx<b AcR™"yecR".
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Sparsity as a tractable discrete optimization problem

Theorem

Error function E, is decreasing and supermodular.
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Sparsity as a tractable discrete optimization problem

Error function E, is decreasing and supermodular.

@ Proof leverages the submodularity ratio which clarifies the analysis.

@ Problem becomes: Cardinality minimization problem subject to a supermodular
equality constraint = Fast greedy algorithm works!
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Greedy Algorithm

Algorithm 1: Approximate solution of problem (1)
Input: A, b
Compute 8 = (—A) H'b
if Ep(J) > € then
| return Infeasible
Set To=0,k=0
while E,(Tx) > € do
J =arg minseJ\Tk Ep(Tk U {S})
Tir1 = Tk U{j}
k=k+1
end
Xj = Xj,J € Tx and x; = —o0, otherwise
return x, Ty

Time complexity: O(nm -+ n?)
Approximation ratio: O(log(mAP)), A =V, (bi — Aj — %).
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Sparse £, Approximate Solutions (1/2)

Searching only for approximate sub-solutions is restrictive. Can we overcome this?

We shift our attention to the £, norm.
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We shift our attention to the £, norm.

arg min|supp(x)|
X

(2)
st. |b—ABx|w<eAeR™" beR".

Proposition (Informal)

Problem (2) can also be written as a set-search problem.

New Problem formulation

arg min | T|
st. Ex(T) <€

Unfortunately ..
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Sparse £, Approximate Solutions (1/2)

E is not even approximately supermodular (7y(Ex) = 0) = a greedy solution might
have arbitrarily big support set!
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Sparse £, Approximate Solutions (1/2)

E is not even approximately supermodular (7y(Ex) = 0) = a greedy solution might
have arbitrarily big support set!

Proposal: Solve the £, problem greedily and add to the solution the half of its £ error.

Proposition

If Xp. is a solution of £, Problem (1), then x* = xp + % has the smallest £
error over all sparse vectors with the same support set 7.

Computational overhead: O(m|T]|)
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Morphological Neural Networks

@ Neural networks with layers that perform Morphological Operations, such as
dilations and erosions [Ritter & Sussner 1996].
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Morphological Neural Networks

@ Neural networks with layers that perform Morphological Operations, such as
dilations and erosions [Ritter & Sussner 1996].

@ Recent studies have highlighted their ability to be pruned effectively and produce
interpretable models [Charisopoulos & Maragos 2017, Zhang et al. 2019].
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Neuron pruning as a sparsity problem

Consider a simple two layer network that performs a linear transformation followed by a
dilation (max-plus block [zZhang et al. 2019]):

z = Wy,
y=AHz
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dilation (max-plus block [Zhang et al. 2019]):

z = Wy,
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After training: fix y, A and search for a sparse solution over z. Then, keep neurons that
correspond to finite values.
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Neuron pruning as a sparsity problem

Consider a simple two layer network that performs a linear transformation followed by a
dilation (max-plus block [Zhang et al. 2019]):

z = Wy,
y=AHz

After training: fix y, A and search for a sparse solution over z. Then, keep neurons that
correspond to finite values.

z =Wx

QOO0 0O
O
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Experiments on MNIST & FashionMNIST

@ 2 networks of 64 and 128 neurons, trained for 20 epochs, with SGD.

@ We are able to find the 10 most important neurons automatically and prune the
rest of them (recording same accuracy).

MNIST FashionMNIST

64 128 64 128

Full model 02,21 92.17 || 79.27 83.37
Pruned (n=10) | 92.21 92.17 || 79.27 83.37

Table: Test set accuracy before and after pruning.
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@ Analysis of the submodular structure of the problems = also relevant to other
problems in max-plus algebra (unconstrained optimal £, approximations).

@ Sparse framework to assist advances in training and optimizing morphological
models.

Future work: A complete sparse representation theory in complete lattices with
efficient algorithms for sparse approximate solutions to max-plus, max-min, smooth
idempotent spaces and more.

Thank you for your attention!
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