
Journal of Intelligent and Robotic Systems 20: 375–402, 1997. 375
c© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Robust Sliding-mode Control of Nine-link Biped
Robot Walking

SPYROS G. TZAFESTAS and THANASSIS E. KRIKOCHORITIS
Intelligent Robotics and Automation Laboratory, Department of Electrical and Computer
Engineering, National Technical University of Athens, 15773, Zografou Campus, Athens, Greece

COSTAS S. TZAFESTAS
Laboratoire Robotique de Paris-CRIIF, Univ. P. et M. Curie, 10-12 av. de l’Europe
78140 Velizy-Villacoublay, France

(Received: 18 December 1996; accepted: 16 June 1997)

Abstract. A nine-link planar biped robot model is considered which, in addition to the main links
(i.e., legs, thighs and trunk), includes a two-segment foot. First, a continuous walking pattern of the
biped on a flat terrain is synthesized, and the corresponding desired trajectories of the robot joints
are calculated. Next, the kinematic and dynamic equations that describe its locomotion during
the various walking phases are briefly presented. Finally, a nonlinear robust control approach
is followed, motivated by the fact that the control which has to guarantee the stability of the
biped robot must take into account its exact nonlinear dynamics. However, an accurate model
of the biped robot is not available in practice, due to the existence of uncertainties of various
kinds such as unmodeled dynamics and parameter inaccuracies. Therefore, under the assumption
that the estimation error on the unknown (probably time-varying) parameters is bounded by a
given function, a sliding-mode controller is applied, which provides a successful way to preserve
stability and achieve good performance, despite the presence of strong modeling imprecisions or
uncertainties. The paper includes a set of representative simulation results that demonstrate the
very good behavior of the sliding-mode robust biped controller.

Key words: nine-link biped robot, biped locomotion, biped walking pattern, biped kinematic model,
biped dynamic model, sliding-mode control.

1. Introduction

The study of the motion of living organisms by means of legs, especially the
locomotion of bipeds, has always been a challenging problem to scientists of dif-
ferent vocations: biologists, physiologists, medicine specialists, mathematicians,
and engineers. In spite of their efforts, however, this problem has not yet been
solved in a satisfactory way.

One of the primary motivations for designing biped robots is to perform tasks
in environments that are too dangerous for human beings. To be a satisfactory
substitute for the human being, the robot must be able to enter a region originally
designed for human access, and perfom tasks that are not already automated and
normally require the capabilities of a person. One measure of the success of a
biped design is how well it can emulate the agility of a human being. Therefore, a
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useful biped robot needs feet. It is not possible for a passive platform to stand in
a single, stable position if it is supported on only two points. However, a dynamic
system can balance on two points like stilts, if the supporting points are allowed
to move and are controlled by a sufficiently sophisticated control system. The stiff
legged stilt biped must remain in a continuous state of motion to maintain balance.

In this paper a 9-link planar biped model is studied which includes not only
the main links: legs, thighs, and trunk, but also a two segments foot. This biped
has two hip, two knee, two ankle, and two metatarsal joints, with one d.o.f. each
of them. The motion is constrained on the sagittal plane, and as a consequence,
the total number of degrees of freedom is going to be limited enough, always
depending on the phase of the walking being executed. This two dimensional
motion can in fact be achieved in reality, as it was shown by the Kenkyaku-
2 biped [1] which has a steel pipe attached to the lowest end of the leg in
order to maintain the lateral balance. The goal for the choice of this model is
the achievement of a more satisfactory substitute for the anthropomorphic gait,
giving special attention to the model of the foot. Most of the previous biped
studies consider the foot as one solid element. Here, each foot is composed of
two rigid parts connected at the transverse tarsal joint. The calcancus and talus,
as a single unit, form the proximal segment, and the remaining bones and joints
of the foot the distal segment. The work presented here is a continuation of
that described in [2], where a 5-link biped robot was considered (i.e., the robot
without the two-segment feet).

The structure of the paper is as follows: Section 2 describes the synthesis of
a continuous walking pattern consisting of several phases (single-leg-supporting
phase with non-kick or kick-action, leg support-exchange, collision of the swing
leg with the ground), and derives the corresponding trajectories of the robot
joints. Section 3 provides the kinematic and Lagrange dynamic models of the
9-link biped, which can be derived as in [2], and are fully reported in [5].
Section 4, which represents the main body of the paper, presents the detailed
derivation of the sliding-mode controller as applied to the present 9-link biped
robot, including a discussion of the general hierarchical structure of robot control
systems. Finally, Section 5 gives a set of simulation experimental results which
show the effectiveness of the controller.

2. The Walking Pattern

Among the analytical models of walking the most popular one is based on the
hypothesis that walking is performed such that to have the least expenditure of
energy. Indeed, experimental findings suggest that human walking is a learned
activity which aims to keep energy consumption as low as possible [3].

In our 9-link biped robot model, it is assumed that at the middle of the
supporting leg period, i.e., when the swing leg moves before the suporting leg,
a new phase of the gait exists. This is the kick phase, where an ankle motion
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Figure 1. A ballistic walking model.

of the supporting leg is achieved, so that a maximum of the vertical force just
before the collision appears. Furthemore, it is assumed that the torque, applied to
the knee joint is zero, the desired trajectories of the angles θ and γ are specified
as a function of α, and in addition the reference signals are chosen so as to use
the effects of the gravity in a way that increases the angular momentum during
the single leg supporting phase (see Figure 1).

Therefore, trying to utilize the gravity effect skillfully, the following walking
pattern is adopted:

(1) The body is always kept upright.
(2) The knee of the supporting leg extends straight, and, as a result, the first

assumption is satisfied, since the relation between the thigh angle θ and the
shank angle α is θ = α.

(3) The ankle and foot joint of the supporting leg is free except for the kick-
phase.

(4) The foot of the swing leg is kept parallel to the ground.
(5) The leg-support-exchange is done in an instant. This means that the biped

locomotion has no double-leg-supporting phase, and therefore immediately
after the touchdown of the swing leg, the exchange of the supporting leg
takes place.

(6) At the touchdown, the knee joint of the swing leg is kept in bending state.
(7) The touchdown of the swing leg is assumed to occur in two stages. Firstly,

the toes of the swing leg take a collision with the ground, and then the
collision of the heel follows.

(8) The same reference signals are supplied at each step repeatedly.

Condition (6) has two effects, namely a decrease of the loss of the angular
momentum at the leg-support-exchange phase, and an increase of the angular
momentum during the single-leg-supporting phase. Condition (3) has the follow-
ing three effects:
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(i) A reduction of the up and down movement of the body.

(ii) A decrease of the loss of angular momentum at leg-support-exchange (due
to kick-action).

(iii) An additional decrease of the loss of angular momentum in leg-support-
exchange (due to the fact that the robot rotates around the ankle joint of the
supporting leg in non-kick-phase, and around the tiptoe of the same leg in
kick-phase), and an increase of the duration in which the clockwise torque
due to gravity acts on the robot system (due to kick-action) [1].

According to condition (2): (i) the ankle angle is selected to be always constant
at 90◦ (qr2(t) = 1.57 rads), and (ii) the reference signal qr3(t) of the knee joint of
the supporting leg is kept to be always zero. Similarly, according to condition (4),
the reference signal qr8(t) which reprsents the motion of the foot joint is kept
always constant at 110◦ (qr8(t) = 1.92 rads), while at the same time the reference
signal qr7(t) of the swing leg ankle joint will have to be kept constant at 90◦

(qr7(t) = 1.57 rads), when the swing leg is before the supporting leg.
The reference signals qr5(t) and qr6(t) play the most important role for the

synthesis of our 9-link biped robot gait. Before the collision of the swing leg,
these signals must take constant values qrs5 and qrs6, respectively, in order for
the position of the robot at the moment of collision to be the same in every step,
without taking into account the small deviations of each gait time. In addition
to the above condition, condition (6) must be satisfied, i.e., the knee joint of
the swing leg must be kept in bending state. This way, if the values qrs5 =
0.471 rads = 27◦ and qrs6 = 0.471 rads = 27◦ are assumed, after a short
period the shin of the swing leg is indeed kept vertical. Also, in analogy with the
reference signal qr7(t), for the short period during which the swing leg is behind
the supporting leg, the signal qr6(t) is desired to take values larger than 27◦.

According to condition (3), the torque at the foot joint of the supporting leg
is applied only during the kick phase. Therefore, the signal qr1(t) will be kept at
the constant value of 110◦ (qr1(t) = 1.92 rads) during the first phase, and then
during the kick phase it will be extended up to about 130◦, an angle which is large
enough for the collision to be achieved. Finally, the angular momentum might
become larger due to the effect of the torque caused by the gravity. Therefore,
it is necessary for the swing leg (i.e., for the angular position qr5(t)) to move
forward quickly so that the period, during which the c.o.g. of the robot is before
the ankle joint of the supporting leg, is larger than the period when the c.o.g. is
behind the ankle joint.

The reference signals shown in Figure 2 describe the change of the angular
position of the robot joints during the first two steps (1st step 0 → 1.3 s, 2nd
step 1.3→ 3.3 s). Note that the reference signals during the first step are a little
different, since the robot starts walking from the upright posture. The signals of
the second step are recurrently used at every other step.
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Figure 2. Reference signals for steady walking on an horizontal plane surface.
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Figure 3. 9-link planar biped robot model.

3. Kinematic and Dynamic Model of the 9-link Biped Robot

The methodology that has been applied to find the kinematic and dynamic models
of the 9-link biped robot is similar to the one that has been used for the 5-link
biped robot in [2].

3.1. KINEMATIC MODEL

The 9-link biped under consideration is shown in Figure 3. It includes the trunk
(link 5) and four links in each leg which represent the thigh (links 4 and 6),
the shin (links 3 and 7), the heel (links 2 and 8) and the metatarsal (links 1
and 9). The links labeled li (i = 1, . . . , 9) are joined together at ideal pin joints.
Hence, it has two hip joints (joints 4 and 5), two knee joints (joints 3 and 6), two
ankle joints (joints 2 and 7) and two metatarsal joints (joints 1 and 8), which are
assumed to be ideal (without friction) rotational joints (with one d.o.f. each of
them) driven by independent electric DC motors. At each joint, except the one
which contacts the ground, there is an ideal torque τi. Since the biped motion
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Figure 4. Parameters of the ith link. Figure 5. Parameters of the heel.

Table I. Nine-link biped model paramaters (heel angles (rads): α = 0.523, ε = 2.4436, γ =
1.396, δ = 0.872)

Link Inertia Ii (kg/m) Mass mi (kg) Radius di (m) Length Li (m)

1 1/6000 0.6 0.0828 0.1077
0.05 (d2)

2 1/6000 0.6 0.05
0.056 (d2)

3 0.105 4.550 0.267 0.502
4 0.089 7.630 0.247 0.431
5 2.350 49 0.280 0.827
6 0.089 7.630 0.247 0.431
7 0.105 4.550 0.267 0.502

0.05 (d8)
8 1/6000 0.6 0.05

0.056 (d8)
9 1/6000 0.6 0.0828 0.1077

is constrained to be on the sagittal plane, for a definite description, we use as
generalized variables the set of the angles of each link i with the vertical, which
are denoted as θi. The direction of the θi is as shown in Figure 3.

Each link has four parameters, namely the link mass mi, its moment of inertia
about the c.o.g. Ii, the length of the link li, and the distance between the c.o.g.
and the lower joint di. Figure 4 shows these parameters for the ith link. For
the heel, the notation is somewhat different (Figure 5). The numerical values of
these parameters were drawn from [4] and are listed in Table I.

The kinematic model which describes the relation between the velocity of the
foot of the swing leg and the change of generalized variables, is described by
the following equations (the details are given in [5]):
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VA =

[
ẋA

ẏA

]
=

[
−l1 cos θ1

−l1 sin θ1

]
θ̇1 +

[
−l2 cos(θ2 + γ)

l2 sin(θ2 + γ)

]
θ̇2

+

[
l3 cos θ3

−l3 sin θ3

]
θ̇3 +

[
l4 cos θ4

−l4 sin θ4

]
θ̇4

+

[
l6 cos θ6

l6 sin θ6

]
θ̇6 +

[
l7 cos θ7

l7 sin θ7

]
θ̇7 (1)

+

[
l8 cos(θ8 + γ)− d8 cos(θ8 + δ)− d′8 cos(θ8 − α)

−l8 sin(θ8 + γ)− d8 sin(θ8 + δ)− d′8 sin(θ8 − α)

]
θ̇8

VB =

[
ẋB

ẏB

]
= V 1−7

A +

[
l8 cos(θ8 + γ)

−l8 sin(θ8 + γ)

]
θ̇8 +

[
l9 cos θ9

l9 sin θ9

]
θ̇9.

3.2. DYNAMIC MODEL

3.2.1. Non-kick Action in Single-leg-supporting Phase

Here, the dynamic equations are studied when the biped robot has one supporting
leg and there is no raising of the heel (θ1, θ2 constant). Applying the Lagrange
dynamic model, the motion equations take the following closed form, for the
case of no-kick phase:

D(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = Tθ, (2)

where Tθi is the generalized torque corresponding to the variable θi, D(θ) is the
positive symmetric 9 × 9 inertia matrix, C(θ, θ̇) is the 9 × 9 matrix (with zero
diagonal terms) which includes terms from the centrifugal and Coriolis torques,
and G(θ) is the 9-dimensional vector which includes the gravitational torques.
The form of these matrices is given in [5], and, due to space limitation, are not
included here.

3.2.2. Kick Action in Single-leg-supporting Phase

As mentioned before, since our biped robot has a 2-link foot, here we adopt the
biped locomotion mode with kick-action (only in the single leg support phase)
which was firstly employed in Kenkyaku-2 [1]. A very good example of natural
and dynamic biped locomotion is human walking. In fact, human walking utilizes
the gravity effect very skillfully and does not depend on the ankle torque of
the supporting leg so much. For example, natural stop-motion is achieved by
reducing its angular momentum using the gravity effect. However, as seen from
the shape of the human foot, the ankle torque of the supporting leg can decrease
the walking speed but cannot increase it. Since the reduction of the speed causes
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an energy loss, and according to the assumption that the biped robot has to follow
a ballistic model (to keep its energy at a constant level), the ankle joint of the
supporting leg is set to be free, except for the kick phase when raising of the heel
exists. As a result, an additional variation of the angle θ2 occurs, while the angle
θ1 keeps on a constant value. Using again the Lagrange dynamic model, the
motion equations, during the kick phase, take a form similar to (2) (the matrices
D, C, G are similar to the corresponding matrices of the previous phase, with
some additional terms caused by the raising of the heel, see [5]).

In the two previous phases, introducing the transformations

q1 = θ1 + θ2 q5 = θ5 + θ6

q2 = −90◦ + ε+ θ2 − θ3 q6 = θ6 − θ7

q3 = θ3 − θ4 q7 = −90◦ + ε+ θ8 + θ7

q4 = θ4 − θ5 q8 = θ8 + θ9

τi =
9∑
j=1

Tθj
∂θj
∂qi

(i = 1, . . . , 8),

where qi is the joint angular position, and τi is the real driving torque exerted by
each independent actuator to each joint of the biped robot (the torque at the toes
of the supporting leg is zero because of the existence of one unpowered d.o.f.),
one gets the following closed form of dynamic equations

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ.

This dynamic model will be used in the control part of the paper.

3.2.3. Leg-support-exchange

The walking pattern adopted in this paper implies that the leg-support-exchange
is done in an instant, and therefore the double-leg-supporting phase is omitted.
Then, immediately after the touchdown of the swing leg, the exchange of the
supporting leg takes place. Hence, just before the collision, the biped robot is
instantly on the air. As a consequence, at the time of the swing leg collision with
the ground, the constraint xT = yT = constant, which exists during the single leg
supporting phase, is lost. In this case, given the fact that the motion of the biped
robot is constrained on the sagittal plane, two more variables (the coordinates
xT , yT of the supporting leg toes) are required for an exact description of the
position of the biped robot. The elements of the inertial matrix Da for this case
can again be found in [5].

3.2.4. Collision of the Swing Leg with the Ground

For a mobile robot, the collision with the environment is an ordinary affair. The
collision of a robotic system with the environment may be handled as an impact
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problem. There are two issues related to the impact problem. The first is how
the collision changes the generalized states of the system which are externally
observable. The second is how the collision brings impulsive forces to a robotic
system. These forces occur internally and are not observable.

One of the effects of robot collision with the environment is the abrupt change
of the joint angular velocities. Hence, a suitable mathematical model must be
derived to establish the quantitative relationship between this abrupt change and
the severity of the collision. Here, after the instant at which the 9-link biped
robot is on the air, the touchdown of the foot of the swing-leg follows, and, as a
result, the exchange of the supporting leg occurs. As mentioned in the walking
pattern description (Section 2), the collision with the ground takes place in two
stages. Firstly, the toes (B) of the swing leg collide with the ground and then the
collision of the heel (A) follows. Thus the velocity change is given by [6]:

∆θ̇ = D−1
a

BJTa
(BJaD−1

a
BJTa

)−1
∆ẋB, (3)

where Da is the inertia matrix of the robot model when it is instantly on the air,
and BJa is the associated Jacobian matrix. After the first collision, the velocity
of the toes (B) of the swing leg vanishes. Hence

θ̇B
after

= θ̇B
before

+D−1
a

BJTa
(BJaD−1

a
BJTa

)−1(− ẋB
before

)
. (4)

Then, the collision of the heel (A) of the swing leg occurs, in which case the
velocity change is given by:

∆θ̇ = D−1
a

AJTa
(AJaD−1

a
AJTa

)−1
∆ẋA, (5)

where

AJa =


∂xA
∂θ1

∂xA
∂θ2

· · · ∂xA
∂θ9

∂xA
∂xT

∂xA
∂yT

∂yA
∂θ1

∂yA
∂θ2

· · · ∂yA
∂θ9

∂yA
∂xT

∂yA
∂yT

 .
Similar to the first case, after the second collision, the velocity of the heel (A)
goes to zero. Thus

θ̇A
after

= θ̇A
before

+D−1
a

AJTa
(AJaD−1

a
AJTa

)−1(− ẋA
before

)
, (6)

where

θ̇A
before

= θ̇B
after

,

which is computed from the first collision.
From this relation one can compute the angular velocities of the joints after

the collision and the exchange of the supporting leg. In practice each robotic
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joint is equipped with an angular velocity sensor. An instantaneous change of
the sensor output indicates the occurrence of a collision. To recover the motion
from a collision, a special effort should then be made by the controller.

4. Sliding-mode Robust Control of the 9-link Biped Robot

The locomotion activity, and gait in particular, is a highly automated motion.
When a man is walking in a steady regime or in an environment imposing small
disturbances, the central nervous system is not involved. However, when large
disturbances occur, the system actions are directed only to the preservation of the
system overall stability, i.e., towards preventing the system from falling down.
This requirement is of primary importance in biped locomotion.

Usually, the control of biped and multi-legged robots has a hierarchical struc-
ture, which most often is vertical, so that each control level deals with some wider
aspects of the overall system behaviour than the next lower level. A higher con-
trol level always refers to the lower ones, and controls those system parameters
that vary more slowly. A higher control level communicates with a lower level,
giving to it instructions, and receiving from it relevant information required for
the decision-making process. After obtaining the information from a lower level,
each hierarchical level makes decisions taking into account general instructions
obtained from a higher level, and forwards them to the lower level for execution.

In general, four hierarchical levels are used in robot control, namely:

1. The highest (organizational) level, which recognizes the obstacles in the
operating space and the conditions under which a task is carried out, and
decides how the required task has to be accomplished.

2. The strategic level, which divides the imposed operation into elementary
movements.

3. The tactical level, which performs the distribution of an elementary move-
ment to the motion of each d.o.f. of the robot.

4. The execution level, which executes the desired motion of each d.o.f. via
suitable actuators.

The complexity of the control structure for locomotion robots depends pri-
marily on whether the robot walks on a terrain of known or unknown profile.
The walking on a terrain of unknown profile requires all four hierarchical con-
trol levels, also employing techniques of artificial intelligence. If the walk is
performed on a terrain of known profile, then only the two lowest control levels
are required. The trajectories of each link can be defined off-line, as well as the
corresponding torques and controls of each actuator. All these data may be stored
at the robot controller and used when the walk is performed. This is a problem
which is solved at the tactical level. Then, the task imposed at the execution lev-
el is how to ensure the achievement of the precalculated trajectories if a certain
perturbation occurs. This problem reduces to that of eliminating the deviation of
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the actual system state from the precalculated one, and this is the only part of
the control task which should be solved in real time.

To face the important problem of stability, the control design must be per-
formed in two stages. At the first stage, called the stage of nominal regimes, the
control has to be designed so as to ensure the system’s motion along the exact
nominal trajectories calculated in advance in the absence of any disturbance. It
has to satisfy the conditions of both the desired gait type and overall system equi-
librium. The nominal trajectories ensure that the system is in equilibrium under
ideal conditions, i.e., when the model of the system is perfect, the trajectories
are perfectly realized, and no perturbations are acting upon the system. Since
these conditions are never fulfilled, additional control is necessary to ensure the
tracking of these nominal trajectories and preserve the system equilibrium in the
presence of disturbances. Hence at the second stage, called the stage of perturbed
regimes, only the deviation of the actual state vector from its nominal value is
considered, and additional control is applied to force the system state to its nom-
inal. To this end, various approximate methods have been proposed. The most
frequently used technique in the control of biped robots is the simple decentral-
ized controller, which assumes that each joint is controlled independently from
the rest of the system.

However, a decentralized controller cannot stabilize the entire system because
of the strong dynamic coupling between the joints, and the necessity to indirectly
control unpowered d.o.f. and to preserve the system equilibrium in the perturbed
regimes. Therefore additional feedback loops have to be designed and applied.
A method that has been proposed is the application of global control by force
feedback and by on-line computation of the dynamic coupling between the joints.
By measuring the moments at the joints one gets direct information on the cou-
pling between them. Thus, one may easily establish the global control which can
compensate for the effects of joint coupling. Similarly, by measuring the forces
between the sole of the supporting leg and the ground, one may establish the
global control which would maintain the system equilibrium.

A measure of the system overall deviation from nominal trajectories, which
is usually adopted, is the deviation of the zero moment point (ZMP) from its
nominal position. The actual position of the ZMP can be computed from the
measured values of the vertical reaction forces acting from the ground upon the
supporting feet. By using these reaction forces, an additional feedback can be
introduced that enables the system to maintain itself in the equilibrium state, i.e.,
to keep the ZMP position within a limited area. Therefore, the control which
aims to ensure the stability of a biped robot must take into account the dynamics
of the system.

In this paper we follow this path and consider the possibility of implementing
global control by on-line computation of the dynamic forces. This means that: (i)
the control computer has to compute the dynamic moments about the biped joints
at every 1–2 ms in order to achieve a sampling rate compatible with the system
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dynamics (in particular, if the algorithms are programmed in assembly, the com-
putation time is of the order of 3–4 ms, but using suitable fast inverse dynamics
algorithms, or parallelizing the computations, this figure can go down to less than
1–2 ms – another improvement can be obtained if all the trigonometric functions
involved are prestored and called from a ROM memory); (ii) nonlinear control
may be necessary for achieving the desired peformance, since the tasks of a
biped robot involve large range and/or high speed motions. Therefore, the com-
puted torque control law has been proposed, which is a special type of feedback
linearization for rigid robots. This nonlinear feedback technique transforms the
highly coupled and nonlinear robot dynamics into equivalent, decoupled linear
systems (one for each d.o.f.) and then the well known and powerfull linear design
techniques can be used to complete the control design.

This approach is based on the assumption that an accurate model of the biped
robot is known, a condition that is never fulfilled because of the existence: (i) of
structured uncertainties which correspond to inaccuracies in the model parame-
ters (e.g., imprecision on the mass properties or the loads or the robot geometry,
and inaccuracies on the torque constants of the actuators) or to additive distur-
bances (e.g., Coulomb friction, and stiction), and (ii) of unstructured uncertainties
(unmodeled dynamics), which reflect the errors on the system order (e.g., struc-
tural resonant modes, neglected time delays, and finite sampling rate). Actually,
the problem is that we only have an estimation D̂(q), Ĉ(q, q̇) of the inertia
matrix D(q) and the matrix C(q, q̇) which represents the centrifugal, Coriolis,
gravitational and friction torques. Hence, the closed-loop system takes the form:

q̈ =
(
D−1D̂

)
τ + D−1(Ĉ− C) (7)

and the objective is to design a control input τ (probably nonlinear) which min-
imizes the sensitivity of the system performance under the presence of dynamic
model uncertainty.

In this paper, it is assumed that: (i) the dynamic model of the 9-link biped robot
is not exactly known, and (ii) the estimation error of unknown (and probably time-
varying) parameters is bounded by some known function. Hence, we employ a
sliding-mode controller which provides a successful way for maintaining stability
and consistent performance in the presence of modeling imprecisions, and at the
same time is able to quantify the resulting modeling/performance trade offs (for
example, the effect of discarding any particular term of the dynamic model on
the tracking performance).

The dynamic model of the biped robot with n d.o.f. has the general form (see
Equation (2)):

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (8)

where D(q) is the n×n inertia matrix (which is symmetric and positive definite),
C(q, q̇)q̇ is an n-vector of centripetal and Coriolis torques (C(q, q̇) is a n × n
matrix), and G(q) is the n-vector of gravitational torques.
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By looking at the physics of the biped robot, one verifies that the matrix
(Ḋ − 2C) is skew-symmetric (a very important property of robot dynamics).
Furthemore one notes that, since D and therefore Ḋ, are symmetric matrices, the
skew-symmetricity of the matrix (Ḋ− 2C) can also be written as:

Ḋ = C + CT . (9)

Now, define a time-varying surface S(t) in the state-space Rn by the vector
equation s(q; t) = 0, with

si =
( d

dt
+ λi

)
q̃i, (10)

where q̃i = qi − qdi is the tracking error at the ith joint, and λi is a strictly
positive constant which symbolizes the control bandwidth. Hence, the vector s
is defined as

s = ˙̃q + Λq̃, (11)

where Λ is a symmetric positive definite matrix, or more generally a matrix such
that Λ is Hurwitz.

Furthemore, s can be interpreted as a ‘velocity error’ term

s = q̇− q̇r, (12)

where

q̇r = q̇d −Λq̃. (13)

The ‘reference velocity’ vector q̇r is formed by shifting the desired velocities q̇d
according to the position error q̃. It simply provides a notational representation
that allows the translation of energy-related properties (expressed in terms of
the actual joint velocity vector q̇) into trajectory control properties (expressed in
terms of the virtual velocity error vector s).

The vector s conveys information about the boundedness and convergence of
q and q̇, since the definition Equation (11) of s can also be viewed as a stable
first-order differential equation in q̃, with s as an input. Hence, given initial
conditions qd(t = 0) = q(t = 0), the problem of tracking q(t) ≡ qd(t) is
equivalent to that of remaining on the surface S(t) for all t > 0. Indeed, s ≡ 0
represents a set of linear differential equations whose unique solution is q̃ ≡ 0
(given the above initial condition).

The simplified objective of keeping the scalar si at zero can now be achieved
by choosing the control law such that outside of S(t) the following condition
holds:

1
2

d
dt
s2
i 6 −ηi|si|, (14)
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where ηi is a strictly possitive constant. Essentialy, (14) states that the squared
‘distance’ to the surface, as measured by s2, decreases along all system trajecto-
ries. Thus, it constraints the trajectories to point towards the surface S(t).

The basic idea behind Equations (10) and (14) is to pick up a well behaved
function of the tracking error s, according to (10), and then select the feedback
control law such that s2 remains a Lyapunov-like function of the closed loop
system, despite the presence of model imprecisions and disturbances. Hence, if

V (s, t) = (1/2)ssT

then based on Lyapunov theory for non-autonomous systems and by virtue of
the properties:

(i) V (s, t) is a positive definite, scalar function with continuous partial deriva-
tives;

(ii) V (s, t)→∞ as ‖s‖ → ∞;
(iii) V̇ (s, t) 6 −η|s| ⇒ V̇ (s, t) < 0 (for s 6= 0)

we come to the conclusion that s ≡ 0 is a globally asymptotically stable equi-
librium point. Therefore, the sliding surface S(t) becomes an invariant set. In
particular, once on the surface, the system trajectories remain on the surface. Fur-
themore, these properties imply that some disturbances or dynamic uncertainties
can be tolerated while still keeping the surface an invariant set.

We are now ready to address the robust trajectory control problem. Let us
define:

V (t) = (1/2)[sTDs]. (15)

Differentiating V (t) gives:

V̇ (t) = sT (Dq̈− Dq̈r) + (1/2)sT Ḋs.

Therefore, substituting Dq̈ from the system dynamics,

Dq̈ = τ− Cq̇−G = τ− C(s + q̇r)−G

yields

V̇ (t) = sT (τ− Dq̈r − Cq̇r −G),

where the skew-symmetry of (Ḋ − 2C) has been used to eliminate the term
(1/2)sT Ḋs.

Now, define the control input to be of the form

τ = τ̂−Ksgn(s), (16)

where Ksgn(s) is defined as the vector with components Kisgn(si), and τ̂ is the
control input vector which would make V̇ equal to zero if the dynamics were
exactly known (D̂ = D, Ĉ = C, Ĝ = G):

τ̂ = D̂q̈r + Ĉq̇r + Ĝ. (17)
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We then have

V̇ = sT
[
D̃(q)q̈r + C̃(q, q̇)q̇r + G̃(q)

]
−

n∑
i

Ki|si|.

As mentioned before, because of the parametric uncertainty, the only a priori
knowledge we have available are the bounds of the estimation errors:

D̃ = D̂− D, C̃ = Ĉ− C, and G̃ = Ĝ−G.

Now, we can easily see that choosing the components Ki of the vector K
such that

Ki >
∣∣∣[D̃(q)q̈r + C̃(q, q̇)q̇r + G̃(q)

]
i

∣∣∣+ ηi, (18)

where the constants ηi are strictly positive, allows one to satisfy the sliding
condition

V̇ 6 −
n∑
i=1

ηi|si|. (19)

The above sliding condition guarantees that the surface s = 0 is reached in a
finite time, and that, once on the surface, the trajectories remain on the surface
and, therefore, tend to qd(t) exponentially.

However, as can be seen from (16), in order to account for the presence of
modeling imprecision, the control law has to be discontinuous across S(t). Since
the implementation of the associated control switchings is necessarily imper-
fect, this leads to chattering which is undesirable in practice, since it involves
high control activity and may excite high frequency dynamics neglected in the
course of modeling (such as unmodeled dynamics modes, neglected time delays,
and so on). Thus, in a further step, the discontinuous control law τ is suitably
smoothed, in order to achieve robustness to high frequency unmodeled dynam-
ics.

This can be done by smoothing out the control discontinuity in a thin boundary
layer B(t) neighboring the switching surface:

B(t) = {q, |si(q, t)| 6 Φi}, Φ > 0,

where Φ is the boundary layer thickness. In other words, outside B(t) we choose
the control law as before, which guarantees that the boundary layer is attractive
and hence invariant (all trajectories starting inside B(t = 0) remain inside B(t)
for all t > 0), and then we interpolate τ inside B(t), replacing the term sgn(si)
by si/Φi in the expression of τ.

Thus, instead of simply requiring (14) to be satisfied outside the boundary
layer, we now require that

JINTST14.tex; 25/11/1997; 10:45; v.7; p.16



ROBUST SLIDING-MODE CONTROL OF 9-LINK BIPED ROBOTS 391

|s| > Φ⇒ 1
2

d
dt

[sTDs] 6 (Φ− η)|s|. (20)

In order to satisfy (20), the quantity −Φi is added to the control discontinuity
gain Ki. Accordingly, the control law τ becomes:

τ = τ̂−K sat
( s
Φ

)
, (21)

where

K = K−Φ. (22)

The effect of control interpolation in a boundary layer can be discussed fur-
ther, and help to select the design parameters λi and Φi. In fact, the ranges Φi

of the interpolation can be chosen so that the maximum value of each Ki/Φi

is approximately equal to the control badwidth λi. This condition could give an
approximate trade-off between control bandwidth (which represents the robust-
ness to unmodeled dynamics), tracking precision, and parametric uncertainty
(which is represented by K).

For our 9-link biped robot, we have assumed that although the accuracy of the
estimation of the robot dynamic parameters is not known, we have available the
limits of the unknown parameter uncertainty (i.e., the bound of our estimation
error). For the experiments we have assumed a maximum uncertainty of 45% on
the mass properties (mass mi, rotational inertia Ii) of the biped robot, and 10%,
and 20% on the link length li and on the radius di of the c.o.g. from the lower
joint, respectively, i.e.,

|mi − m̂i| 6 0.45m̂i, |Ii − Îi| 6 0.45Îi, |li − l̂i| 6 0.1l̂i,

|di − d̂i| 6 0.2d̂i.

Based on the estimates m̂i, Îi, l̂i and d̂i of the parameters, and on the limits
em, eI , el and ed of the uncertainty, one can compute the bounds of the modeling
errors, as:

D̃11 6
[
(1 + eI)Î1 − Î1

]
+
[
(1 + em)m̂1(1 + ed)2d̂1 − m̂1d̂

2
1
]

+
[
(1 + em)(m̂3 + · · ·+ m̂9)(1 + el)2 l̂21 − (m̂3 + · · ·+ m̂9)l̂

2
1
]

= eIÎ1 + m̂1d̂
2
1
[
(1 + em)(1 + ed)2 − l

]
+
(
m̂3 + · · ·+ m̂9

)
l̂21
[
(1 + em)(1 + el)2 − l

]
.

The bounds for the other terms can be computed in the same way.
A first key question is to determine how large Λ can be chosen. Although

the tuning of this single scalar may in practice be done experimentally, con-
siderable insight on the overall design can be obtained by explicitly analyzing
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the various factors limiting λi. In mechanical systems, for instance, given clean
measurements, λi is typically limited by the following three factors: (i) struc-
tural resonant modes, (ii) neglected time delays, (iii) sampling rate. Since in this
problem we have no a priori information on the first two constraining factors,
the only limit results from the last factor. Hence, by choosing a value of 0.5 kHz
(T = 2 ms) for sampling rate, we achieve a maximum desired control band-
width of about 100 rad/s, since λ > (1/5)νsampling [8]. This is a simple limit
for λi, since in our case the ideal values have been computed through the trial
and error technique in the simulations, and have also been justified by Lyapunov
analysis.

Given initial conditions outside the boundary layer, and in order to achieve
fast tracking of the trajectories inside this region, one must choose large values
for ηi (which, formally, reflects the time to reach the boundary layer starting
from the outside), since the time needed for the boundary layer to be reached
by the trajectories is inverselly proportional to ηi. At the same time, ηi has
to be chosen small enough, compared to the average value of K, in order to
fully exploit the available knowledge on the structure of parametric uncertain-
ty.

Finally, the bound Φi of the boundary layer is selected to have small values,
in order for the tracking error q̃i and the velocity error ˙̃qi, for each joint, to
be limited in small values. However, at the same time the value of Φi should
be large enough to avoid the chattering which appears due to the discontinuous
control law outside of the boundary layer. The above choice for the value Φi

has to do with the fact that when the control discontinuity is smoothed in a thin
boundary layer neighboring the switching surface, the asymptotic stability is lost,
and the only things that can be achieved are: (i) a tracking error limited inside
a region which is proportional to the bound Φi and inverselly proportional to
the control bandwidth λi, and (ii) a velocity error limited in a region which is
proportional to the bound Φi (obviously, both errors are also dependent on the
initial conditions).

5. Simulation Experimental Results

The 9-link biped robot, initially at upright posture, is commanded a desired trajec-
tory similar to that synthesized by the reference signals adopted for the walking
pattern generation (Figure 2). The corresponding angular positions and position
errors, during the first two steps (in a 3.5-s interval), are shown in Figures 6
and 7, respectively. These diagrams show clearly the very good tracking of the
desired reference signals, achieved despite the presence of the large uncertainty,
which is also obvious from the fact that the average tracking error for the first
and second steps is 0.017 rads and 0.062 rads, respectively. Figure 8 depicts the
variation of the driving torques of the biped in the same interval from which
one can observe: (i) the increased values of these torques required for facing the
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Figure 6. Angle displacements and reference signals of the 9-link, human-sized biped joints.
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Figure 6. Continued.
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Figure 7. Angle tracking errors of the 9-link, human-sized biped joints.
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Figure 7. Continued.
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Figure 8. Driving torques of the 9-link, human-sized biped joints.
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Figure 8. Continued.
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Figure 9. Locomotion mode of 9-link biped (stick diagram).

existing parametric uncertainty, and (ii) the chattering of the sliding-mode control
outside the boundary layer (occurring at the beginning of each phase). Finally,
the walking mode of a 9-link human-sized biped on the horizontal surface in a
5-s interval has the form of Figure 9, where one can easily see that this walking
mode satisfies all necessary properties that have been adopted in Section 2 in
order to utilize the gravity effect skillfully.

The present robust control technique has also been tested in the case where the
actual parameter inaccuracy on the mass properties of the biped robot is larger
than the maximum uncertainty of 45% which was initially assumed during the
design of the sliding mode controller. The corresponding diagrams for the case
where the actual parameter inaccuracy is 200% are shown in Figure 10. One can
see that again a very good robustness to large parameter inaccuracies is achieved
contrary to any initial expectations.

The results presented (as well as others not included here due to limited
space) have fully verified the theoretically expected performance equivalence
of the present sliding-mode control scheme with other robust-adaptive control
techniques, especially for situations where there exist large parametric uncertainty
(see, e.g., [9]).
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Figure 10. Angle tracking errors for the case where the actual parameter inaccuracy is
200%.
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Figure 10. Continued.

6. Concluding Remarks

In this paper the effectiveness of sliding-mode robust control applied to the
walking of a 9-link (8 d.o.f.) biped robot was investigated. The biped robot
was assumed to involve large parametric uncertainty, while its locomotion was
constrained to be on the sagittal plane. The eight degrees of freedom correspond
to two hip, two knee, two ankle, and two metatarsal (foot) joints.

The sliding-mode controller ensures that the trajectories point towards the
sliding surface S(t) (which is actually an invariant set) and reach it starting from
any initial condition in a finite time. The exact form of the control law involves
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the sgn(·) switching function which leads to undesired ‘control signal chattering’.
This chattering is considerably reduced through smoothening obtained by using
the saturation function in place of the signum function.

The performance of the controller was extensively tested through simulation
using bipeds of several sizes, and uncertainties of several levels. In all cases
(including the case of 200% parametric inaccuracy) the controller showed very
good robustness and the biped was able to walk safely and accurately. Therefore,
one can conclude from these experiments that sliding-mode control is a good
potential scheme for application in practice.
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