

Neural Sign Reenactor: Deep Photorealistic Sign Language Retargeting

Christina O. Tze¹, Panagiotis P. Filntisis¹, Athanasia-Lida Dimou², Anastasios Roussos³, Petros Maragos¹ ¹NTUA, Greece ²Athena RC, Greece ³ICS-FORTH, Greece

INSTITUTE OF COMPLITER SCIENC

- **Background:** The generation of synthetic Sign Language (SL) videos is historically tackled using computer-generated avatars [1].
- Problem: Low level of realism in terms of the avatars' appearance and motion reduces the plausibility and engagement of users with such technologies.
- **Our solution:** Novel neural rendering pipeline that generates highly realistic human actor videos.

2. Proposed Method

- A **neural rendering pipeline** for transferring the body and facial movements of a source actor to a target one.
- It is applied to the challenging case of SL videos.
- It can be particularly beneficial for SL Anonymization [2], SL Production [1], and reenactment of full-body activities [3].

- Our contributions can be summarized as follows:
- 1) Effective combination of two different body trackers
- 2) Novel scheme for **conditioning** the **neural renderer**
- 3) Novel pose retargeting step
- 4) Detailed qualitative and quantitative evaluations and user studies

4. Reenactment Methods

- Self-reenactment: Used during training. The source actor coincides with the target one.
- **Reenactment:** Main functionality of our method. The source and target actors are different from one another.
- **Cycle reenactment:** Used for quantitative comparisons. The movements of a source actor are transferred to a target and then back to the same source.

We condition our video rendering network to:
1) Color-coded body representations: These are generated using our novel color-coding scheme.

2) **Eye gaze images:** We tint the contour landmarks white and the pupils red.

6. Comparison with other methods

We compare our method with Everybody Dance Now (EDN) [4] and Video-to-Video Synthesis (Vid2Vid) [5].

8. Quantitative Comparisons

	Ours	EDM	Vid2Vid		8	6	8	0
Male	14.40	13.43	10.99	Out				
Female	10.55	13.60	108.42		6	6		0
Average	12.48	13.52	59.71	CON				10

9. User Studies

Realism	Study:
---------	--------

Ours vs	EDN	Ours vs. Vid2Vid		
Ours	EDN	Ours	Vid2Vid	
(39/42) 92.9%	(3/42) 7.1%	(40/42) 95.2%	(2/42) 4.8%	

• Sign Classification Study:

 Ours
 EDN
 Vid2Vid
 Real video

 (53/69) 76.8%
 (55/69) 79.7%
 (53/69) 76.8%
 (51/69) 73.9%

References	
aduation A Paulou CVDD 2021	[4] Chan et

[1] Rastgoo et al. Sign Language Production: A	Review. CVPR 2021	[4] Chan et al. EDN. ICCV 2019			
[2] Saunders et al. AnonySIGN. FG 2021		[5] Wang et al. Vid2Vid. NeurIPS 2018			
[3] Liu et al. Neural Rendering and Reenactment of Human Actor Videos. TOG 2019					