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Background: The generation of synthetic Sign Language (SL) videos is
historically tackled using computer-generated avatars [1].

Problem: Low level of realism in terms of the avatars’ appearance and
motion reduces the plausibility and engagement of users with such
technologies.

Our solution: Novel neural rendering pipeline that generates highly
realistic human actor videos.

2. Proposed Method

A neural rendering pipeline for transferring the body and facial
movements of a source actor to a target one.

It is applied to the challenging case of SL videos.

It can be particularly beneficial for SL Anonymization [2], SL Production
[1], and reenactment of full-body activities [3].
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Our contributions can be summarized as follows:
1) Effective combination of two different body trackers
2) Novel scheme for conditioning the neural renderer
3) Novel pose retargeting step
4) Detailed qualitative and quantitative evaluations and user studies
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1. Introduction 3. Pipeline

Training of neural renderer
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Self-reenactment: Used during training.
The source actor coincides with the target
one.

Reenactment: Main functionality of our
method. The source and target actors are
different from one another.

Cycle reenactment: Used for quantitative
comparisons. The movements of a source
actor are transferred to a target and then
back to the same source.

4. Reenactment Methods 5. Color-coded Conditioning

We condition our video rendering network to:

1) Color-coded body representations: These
are generated using our novel color-coding
scheme.

2) Eye gaze images: We tint the contour
landmarks white and the pupils red.
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7. Qualitative Comparisons
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Ours | EDN | Vid2Vid | |

Male 1440 | 1343 1099 | !
Female 10.55 13.60 108.42 |
Average | 1248 | 13.52 39.71 i

i

¢ Realism Study:

Ours vs. EDN | Ours vs. Vid2Vid
Ours | __EDN | Ours [ Vid2vid
(39/42) 92.9% | (W) T.1% || (40042) 95.2% | (2042) 4.8%

* Sign Classification Study:

Ous | EDN Vid2Vid | Real video
(53769) 76.5% | (55/69) 79.7% | (53/69) 76.8% | (51/69) 73.0%

6. Comparison with other methods

We compare our method with Everybody Dance Now (EDN) [4] and Video-to-Video Synthesis
(Vid2vid) [5].
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