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Introduction & Background
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Human Action Recognition

Human Action Recognition: It involves predicting the movement of a
person based on sensor data and traditionally involves deep domain expertise
and methods from signal processing to correctly engineer features from the
raw data in order to fit a machine learning model.

• Offline Action Recognition: Attempt to identify the actions occurring
in a short video clip given a-priori the information of future frames.

• Online Action Recognition: Attempt to identify the actions, per-
formed in each frame, as soon as it arrives, without taking into account
the future context.
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Temporal Recurrent Networks - TRNs I

The TRN cell functions in a manner similar to any RNN cell with the only
difference being the use of both current and future information generated
by anticipation.
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Temporal Recurrent Networks - TRNs II

• Temporal Decoder: Learns a feature representation and predicts ac-
tions for the future sequence.

• Future Gate: Embeds a hidden state vector as future context.

• Encoder: Estimates the action occurring in the current frame.
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Architectures
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Two-Stream TRN model

• We performed in-house testing for the baseline TRN [1].
• Inspired by the two-stream baseline model baseline with the former

stream consisting of the appearance features and the latter of the mo-
tion features.
• We experimented by extracting I3D features, which are low-level spatial

features.
[1] M.Xu et al, in Proc. ICCV 2019
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One-Stream TRN model

• We experimented with C3D features, being a very generic video feature
representation.

• We turned the two-stream model into a one-stream model as the C3D
modules can extract both spatial and temporal components.
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Two-Stream TRN model

• Skeleton joint coordinates are of high precision and can accurately rep-
resent the temporal dynamics of actions.

• We experimented with 2D skeletons extracted from OpenPose, over
the baseline RBG and Optical Flow features.
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Two-Stream TRN model

• Skeleton features are primarily motion features. So we arranged the
C3D features in the appearance stream and the pose features in the
motion stream.

• We arranged the I3D RGB data in the appearance stream and the
OpenPose data in the motion stream.
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Fused Two-Stream TRN Model

• Skeleton features sufficiently represent the temporal dynamics but the
appearance or motion information is still missing.

• We attempted to combine each of our two-stream models - baseline
and I3D - with the information from the skeleton.
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Experimental Setup
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Dataset & Tools I

THUMOS’14 dataset [3]: Long and untrimmed videos from various
sports events. Annotated with 20 actions increased by an ambiguous class
and a background class.

• Training Set: 200 untrimmed videos of sports events

• Testing Set: 213 untrimmed videos of sports events
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Dataset & Tools II

Openpose [4]: 2D models are used, each keypoint consists of two spatial
variables, its coordinates and a confidence parameter.

• Human Pose: 25 keypoints for pose/foot estimation and 2× 21 key-
points for hand estimation.

• Normalization: We define the middle of the pelvis as the center of
our coordinates and normalize with respect to the distance between the
pelvis and the shoulders (average height) [5].

TV-L1 [6]: The optical flow algorithm was used to extract the optical flow
frames through the Dense-Flow tool.

[3] Y.-G. Jiang et al, in Proc. ICCV 2013 [4] Z. Cao et al, in Proc. TPAMI 2019

[5]A. Shahroudy et al, in Proc CVPR 2016 [6]J. Sanchez et al, in Proc IPOL 2013
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Experimental Setup & Evaluation Protocol

• Hardware: Nvidia GeForce RTX2080 Ti GPUs.

• Optimizer: Adam optimizer with learning rate and weight decay
parameters set to 5× 10−4.

• Loss Function: Cross Entropy Loss.

• Batch Size: 2

• Input sequence length: 64

• Decoder Steps: 8

• Frequency Rate: We extracted video frames at 30 fps.

• Chunk Size: 6 & 16 frames in line with the examined set of experiment.

• Evaluation Protocol: We used the per-frame mean average precision
(mAP) metric.
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Results & Discussion
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Baseline & OpenPose TRN

Method Features Encoder Decoder - Time predicted into the future (seconds)
Chunk size = 6 frames 0.25s 0.50s 0.75s 1.00s 1.25s 1.50s 1.75s 2.00s Avg

Baseline 1 RGB – Flow 25.93 26.15 25.89 25.79 25.73 25.66 25.68 25.66 25.57 25.77
Ours {RGB + OpenPose} – Flow 24.25 23.11 25.63 26.72 26.18 25.57 24.94 24.40 23.94 25.06

Ours RGB – OpenPose 37.57 25.54 25.93 26.44 26.60 26.28 25.57 24.75 24.00 25.64

Ours OpenPose – Flow 36.30 21.77 22.59 23.57 23.19 22.28 21.30 20.49 19.83 21.88

• Chunk size has been set to 6.

• Baseline exhibit the highest accuracy of 25.77% for the precision task
and one of the lowest, approximately 25.93% for the classification task.

• The replacement of flow information with OpenPose features gives an
increase of 11 points approximately reaching the 37.57%.

• Replacing or enhancing the RGB information with pose features does
not provide any further improvement.

1It was re-implemented with batch size 2 so we have a fair comparison, which dropped
the accuracy to 25.93%. It was the state of the art with an accuracy of 47.2%.
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C3D & OpenPose TRN

Method Features Encoder Decoder - Time predicted into the future (seconds)
Chunk size = 16 frames 0.25s 0.50s 0.75s 1.00s 1.25s 1.50s 1.75s 2.00s Avg

Ours C3D (One-Stream) 35.43 34.34 31.05 28.22 26.46 25.37 24.75 24.39 24.22 27.35
Ours {C3D (RBG)} – OpenPose 36.44 32.98 30.56 28.37 26.61 25.38 24.54 23.78 23.22 26.93

• Chunk size has been set to 16.

• Adding a second stream of human pose features the detection accu-
racy increased to 36.44% while the anticipation accuracy decreased to
26.93%.

By comparing this table to the previous one:

• Although in C3D models we observe larger anticipation accuracy, the
action detection accuracy does not exceed that of the models of the
previous table.
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I3D & OpenPose TRN

Method Features Encoder Decoder - Time predicted into the future (seconds)
Chunk size = 16 frames 0.25s 0.50s 0.75s 1.00s 1.25s 1.50s 1.75s 2.00s Avg

Ours I3D 55.25 52.57 46.69 41.94 38.39 35.90 34.22 33.00 32.08 39.35
Ours {I3D (RGB) + OpenPose} – {I3D (Flow)} 49.21 46.65 40.78 36.42 33.19 30.90 29.42 28.43 27.71 34.19

Ours {I3D (RGB)} – OpenPose 47.43 44.59 40.08 36.77 34.24 32.37 31.29 30.56 30.06 35.00

Ours {I3D (RGB)} – {I3D (Flow) + OpenPose} 44.47 29.55 31.92 29.62 27.21 25.63 24.78 24.20 23.68 27.07

• Chunk size has been set to 16

• Both the simple I3D model and its modifications show much better
performance with the greatest reaching reaching 39.35% in the antici-
pation phase and 55.25% in the detection phase.

• In contrast with the previous cases, here the pose features limited its
effectiveness.
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Results Comparisons

Method Features Encoder
Decoder - Time predicted into the future (seconds)

0.25s 0.50s 0.75s 1.00s 1.25s 1.50s 1.75s 2.00s Avg

Baseline RGB – Flow 25.93 26.15 25.89 25.79 25.73 25.66 25.68 25.66 25.57 25.77
Ours {RGB + OpenPose} – Flow 24.25 23.11 25.63 26.72 26.18 25.57 24.94 24.40 23.94 25.06

Ours RGB – OpenPose 37.57 25.54 25.93 26.44 26.60 26.28 25.57 24.75 24.00 25.64

Ours OpenPose – Flow 36.30 21.77 22.59 23.57 23.19 22.28 21.30 20.49 19.83 21.88

Ours C3D (One-Stream) 35.43 34.34 31.05 28.22 26.46 25.37 24.75 24.39 24.22 27.35
Ours {C3D (RBG)} – OpenPose 36.44 32.98 30.56 28.37 26.61 25.38 24.54 23.78 23.22 26.93

Ours I3D 55.25 52.57 46.69 41.94 38.39 35.90 34.22 33.00 32.08 39.35
Ours {I3D (RGB) + OpenPose} – {I3D (Flow)} 49.21 46.65 40.78 36.42 33.19 30.90 29.42 28.43 27.71 34.19

Ours {I3D (RGB)} – OpenPose 47.43 44.59 40.08 36.77 34.24 32.37 31.29 30.56 30.06 35.00

Ours {I3D (RGB)} – {I3D (Flow) + OpenPose} 44.47 29.55 31.92 29.62 27.21 25.63 24.78 24.20 23.68 27.07
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Results Visualization
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Contributions
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Contributions & Future Work

• Explored several ways to improve online action detection, building upon
Temporal Recurrent Networks.

• Highlighted the value of temporal context and human pose as useful
cues for localizing action in time.

• Most of our models outperform the original TRN method.

• Future Work: We believe that the use of different models for anticipa-
tion and recognition could benefit the task of online action detection.
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Thank You
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