
Advances in Large Vocabulary Continuous
Speech Recognition

GEOFFREY ZWEIG AND
MICHAEL PICHENY

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598
USA
gzweig@us.ibm.com
picheny@us.ibm.com

Abstract
The development of robust, accurate and efficient speech recognition systems is
critical to the widespread adoption of a large number of commercial applications.
These include automated customer service, broadcast news transcription and in-
dexing, voice-activated automobile accessories, large-vocabulary voice-activated
cell-phone dialing, and automated directory assistance. This article provides a re-
view of the current state-of-the-art, and the recent research performed in pursuit
of these goals.

1. Introduction . 250
2. Front End Signal Processing . 251

2.1. Mel Frequency Cepstral Coefficients . 252
2.2. Perceptual Linear Predictive Coefficients . 254
2.3. Discriminative Feature Spaces . 255

3. The Acoustic Model . 256
3.1. Hidden Markov Model Framework . 256
3.2. Acoustic Context Models . 257
3.3. Gaussian Mixture State Models . 259
3.4. Maximum Likelihood Training . 260

4. Language Model . 263
4.1. Finite State Grammars . 263
4.2. N -gram Models . 264

5. Search . 272
5.1. The Viterbi Algorithm . 273
5.2. Multipass Lattice Decoding . 275

ADVANCES IN COMPUTERS, VOL. 60 249 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)60007-0 All rights reserved.

250 G. ZWEIG AND M. PICHENY

5.3. Consensus Decoding . 276
5.4. System Combination . 277

6. Adaptation . 278
6.1. MAP Adaptation . 278
6.2. Vocal Tract Length Normalization . 279
6.3. MLLR . 281

7. Performance Levels . 284
8. Conclusion . 286

References . 286

1. Introduction

Over the course of the past decade, automatic speech recognition technology has
advanced to the point where a number of commercial applications are now widely
deployed and successful: systems for name-dialing [84,26], travel reservations [11,
72], getting weather-information [97], accessing financial accounts [16], automated
directory assistance [41], and dictation [86,9,78] are all in current use. The fact that
these systems work for thousands of people on a daily basis is an impressive tes-
timony to technological advance in this area, and it is the aim of this article to de-
scribe the technical underpinnings of these systems and the recent advances that have
made them possible. It must be noted, however, that even though the technology
has matured to the point of commercial usefulness, the problem of large vocabulary
continuous speech recognition (LVCSR) is by no means solved: background noise,
corruption by cell-phone or other transmission channels, unexpected shifts in topic,
foreign accents, and overly casual speech can all cause automated systems to fail.
Thus, where appropriate, we will indicate the shortcomings of current technology,
and suggest areas of future research. Although this article aims for a fairly compre-
hensive coverage of today’s speech recognition systems, a vast amount of work has
been done in this area, and some limitation is necessary. Therefore, this review will
focus primarily on techniques that have proven successful to the point where they
have been widely adopted in competition-grade systems such as [78,36,37,58,27,93].

The cornerstone of all current state-of-the-art speech recognition systems is the
Hidden Markov Model (HMM) [6,43,54,74]. In the context of HMMs, the speech
recognition problem is decomposed as follows. Speech is broken into a sequence
of acoustic observations or frames, each accounting for around 25 milliseconds of
speech; taken together, these frames comprise the acoustics a associated with an
utterance. The goal of the recognizer is to find the likeliest sequence of words w
given the acoustics:

arg max
w

P(w|a).

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 251

This can then be rewritten as:

arg max
w

P(w|a) = arg max
w

P(w)P (a|w)

P (a)
.

Since the prior on the acoustics is independent of any specific word hypothesis, the
denominator can be ignored, leaving the decomposition:

arg max
w

P(w|a) = arg max
w

P(w)P (a|w).

The first factor, P(w), is given by the language model, and sets the prior on word
sequences. The second factor, P(a|w) is given by the acoustic model, and links word
sequences to acoustics, and is described by an HMM.

The breakdown of a system into acoustic and language model components is one
of the main characteristics of current LVCSR systems, and the details of these mod-
els are discussed in Sections 3 and 4. However, even with well-defined acoustic and
language models that allow for the computation of P(w) and P(a|w) for any given
word and acoustic sequences w and a, the problem of finding the likeliest single se-
quence of words remains computationally difficult, and is the subject of a number
of specialized search algorithms. These are discussed in Section 5. The final com-
ponent of current LVCSR systems performs the function of speaker adaptation, and
adjusts the acoustic models to match the specifics of an individual voice. These tech-
niques include Maximum A-Posteriori (MAP) adaptation [28], methods that work
by adjusting the acoustic features to more closely match generic acoustic models
[24], and methods that adjust the acoustic models to match the feature vectors [51].
The field of speaker adaptation has evolved quite dramatically over the past decade,
and is currently a key research area; Section 6 covers it in detail. The combination
of acoustic and language models, search, and adaptation that characterize current
systems is illustrated in Fig. 1.

2. Front End Signal Processing

Currently, there are two main ways in which feature vectors are computed, both
motivated by information about human perception. The first of these ways produces
features known as Mel Frequency Cepstral Coefficients (MFCCs) [17], and the sec-
ond method is known as Perceptual Linear Prediction (PLP) [38]. In both cases, the
speech signal is broken into a sequence of overlapping frames which serve as the ba-
sis of all further processing. A typical frame-rate is 100 per second, with each frame
having a duration of 20 to 25 milliseconds.

After extraction, the speech frames are subjected to a sequence of operations re-
sulting in a compact representation of the perceptually important information in the

252 G. ZWEIG AND M. PICHENY

FIG. 1. Sample LVCSR architecture.

speech. Algorithmically, the steps involved in both methods are approximately the
same, though the motivations and details are different. In both cases, the algorithmic
process is as follows:

(1) compute the power spectrum of the frame,
(2) warp the frequency range of the spectrum so that the high-frequency range is

compressed,
(3) compress the amplitude of the spectrum,
(4) decorrelate the elements of the spectral representation by performing an in-

verse DFT—resulting in a cepstral representation.

Empirical studies have shown that recognition performance can be further en-
hanced with the inclusion of features computed not just from a single frame, but
from several surrounding frames as well. One way of doing this is to augment the fea-
ture vectors with the first and second temporal derivatives of the cepstral coefficients
[22]. More recently, however, researchers have applied linear discriminant analysis
[19] and related transforms to project a concatenated sequence of feature vectors into
a low-dimensional space in which phonetic classes are well separated. The following
subsections will address MFCCs, PLP features, and discriminant transforms in detail.

2.1 Mel Frequency Cepstral Coefficients

The first step in the MFCC processing of a speech frame is the computation of a
short-term power spectrum [17]. In a typical application in which speech is transmit-
ted by phone, it is sampled at 8000 Hz and bandlimited to roughly 3800 Hz. A 25
millisecond frame is typical, resulting in 200 speech samples.This is zero-padded,

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 253

FIG. 2. Mel frequency filters grow exponentially in size.

windowed with the Hamming function

W(n) = 0.54 + 0.46 cos

(
2πn

N − 1

)
and an FFT is used to compute a 128 point power spectrum.

The next step is to compute a warped representation of the power spectrum in
which a much coarser representation is used for the high frequencies. This mir-
rors psychoacoustic observations that human hearing is less precise as frequency
increases. To do this, the power spectrum is filtered by a sequence of triangularly
shaped filterbanks, whose centers are spaced linearly on the mel scale. The Mel fre-
quency warping [94] is given by

f ′ = 2595 log10

(
1 + f

700

)
,

so the bandwidth increases exponentially with frequency. Figure 2 illustrates the
shape of the mel-frequency filters.1 Typical applications use 18 to 24 filterbanks
spaced between 0 and 4000 Hz [78,46]. This mel frequency warping is similar to the
use of critical bands as defined in [100].

After the spectrum is passed through the mel frequency filters, the output of each
filter is compressed through the application of a logarithm, and the cepstrum is com-
puted. With F filterbank outputs xk , the ith MFCC is given by:

MFCCi =
F∑

k=1

xk cos

[
i

(
k − 1

2

)
π

F

]
, i = 1,2, . . . ,F.

In a typical implementation, the first 13 cepstral coefficients are retained.
MFCCs have the desirable property that linear channel distortions can to some

extent be removed through mean subtraction. For example, an overall gain applied to

1The original paper [17] used fixed-width filters below 1000 Hz.

254 G. ZWEIG AND M. PICHENY

the original signal will be removed through mean-subtraction, due to the logarithmic
nonlinearity. Therefore, mean-subtraction is standard.

2.2 Perceptual Linear Predictive Coefficients

Perceptual Linear Prediction is similar in implementation to MFCCs, but different
in motivation and detail. In practice, these differences have proved to be important,
both in lowering the overall error rate, and because PLP-based systems tend to make
errors that are somewhat uncorrelated with those in MFCC systems. Therefore, as
discussed later in Section 5.4, multiple systems differing in the front-end and other
details can be combined through voting to reduce the error rate still further.

The principal differences between MFCC and PLP features are:

• The shape of the filterbanks.

• The use of equal-loudness preemphasis to weight the filterbank outputs.

• The use of cube-root compression rather than logarithmic compression.

• The use of a (parametric) linear-predictive model to determine cepstral coeffi-
cients, rather than the use of a (non-parametric) discrete cosine transform.

The first step in PLP analysis is the computation of a short-term spectrum, just
as in MFCC analysis. The speech is then passed through a sequence of filters that
are spaced at approximately one-Bark intervals, with the Bark frequency Ω being
related to un-warped frequency ω (in rad/s) by:

Ω(ω) = 6 log
{
ω/1200π + [

(ω/1200π)2 + 1
]0.5}

.

The shape of the filters is trapezoidal, rather than triangular, motivated by psycho-
physical experiments [79,101].

Conceptually, after the filterbank outputs are computed, they are subjected to
equal-loudness preemphasis. A filterbank centered on (unwarped) frequency ω is
modulated by

E(ω) = [(
ω2 + 56.8 × 106)ω4]/[(

ω2 + 6.3 × 106)2 × (
ω2 + 0.38 × 109)].

This reflects psycho-physical experiments indicating how much energy must be
present in sounds at different frequencies in order for them to be perceived as equally
loud. In practice, by appropriately shaping the filters, this step can be done simulta-
neously with the convolution that produces their output. The weighted outputs are
then cube-root compressed, o′ = o0.33.

In the final PLP step, the warped spectrum is represented with the cepstral coef-
ficients of an all-pole linear predictive model [56]. This is similar to the DCT op-
eration in MFCC computation, but the use of an all-pole model makes the results

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 255

more sensitive to spectral peaks, and smooths low-energy regions. In the original
implementation of [38], a fifth-order autoregressive model was used; subsequent im-
plementations use a higher order model, e.g., 12 as in [46].

2.3 Discriminative Feature Spaces

As mentioned earlier, it has been found that improved performance can be ob-
tained by augmenting feature vectors with information from surrounding frames
[22]. One relatively simple way of doing this is to compute the first and second
temporal derivatives of the cepstral coefficients; in practice, this can be done by ap-
pending a number of consecutive frames (nine is typical) and multiplying with an
appropriate matrix.

More recently [35,88], it has been observed that pattern recognition techniques
might be applied to transform the features in a way that is more directly related to
reducing the error rate. In particular, after concatenating a sequence of frames, linear
discriminant analysis can be applied to find a projection that maximally separates the
phonetic classes in the projected space.

Linear discriminant analysis proceeds as follows. We will denote the class asso-
ciated with example i as c(i). First, the means µj and covariances Σj of each class
are computed, along with the overall mean µ and variance Σ :

µj = 1

Nj

∑
i s.t. c(i)=j

xi , Σj = 1

Nj

∑
i s.t. c(i)=j

(xi − µj)(xi − µj)
T,

µ = 1

N

∑
i

xi , Σ = 1

N

∑
i

(xi − µ)(xi − µ)T.

Next, the total within class variance W is computed

W = 1

N

∑
j

NjΣj .

Using θ to denote the LDA transformation matrix, the LDA objective function is
given by:

θ̂ = arg max
θ

|θTΣθ |
|θTWθ | ,

and the optimal transform is given by the top eigenvectors of W−1Σ .
While LDA finds a projection that tends to maximize relative interclass distances,

it makes two questionable assumptions: first, that the classes are modeled by a full
covariance Gaussian in the transformed space, and second that the covariances of

256 G. ZWEIG AND M. PICHENY

all transformed classes are identical. The first assumption is problematic because, as
discussed in Section 3.3, full covariance Gaussians are rarely used; but the extent
to which the first assumption is violated can be alleviated by applying a subsequent
transformation meant to minimize the loss in likelihood between the use of full and
diagonal covariance Gaussians [31]. The MLLT transform developed in [31] applies
the transform ψ that minimizes∑

j

Nj

(
log

∣∣diag
(
ψΣjψ

T)∣∣ − log
∣∣ψΣj ψT

∣∣)
and has been empirically found to be quite effective in conjunction with LDA [77].

To address the assumption of equal covariances, [77] proposes the maximization
of ∏

j

(|θΣθT|
|θΣjθT|

)Nj

and presents favorable results when used in combination with MLLT. A closely re-
lated technique, HLDA, [50] relates projective discriminant analysis to maximum
likelihood training, where the unused dimensions are modeled with a shared covari-
ance. This form of analysis may be used both with and without the constraint that
the classes be modeled by a diagonal covariance model in the projected space, and
has also been widely adopted. Combined, LDA and MLLT provide on the order of a
10% relative reduction in word-error rate [77] over simple temporal derivatives.

3. The Acoustic Model

3.1 Hidden Markov Model Framework

The job of the acoustic model is to determine word-conditioned acoustic probabil-
ities, P(a|w). This is done through the use of Hidden Markov Models, which model
speech as being produced by a speaker whose vocal tract configuration proceeds
through a sequence of states, and produces one or more acoustic vectors in each
state. An HMM consists of a set of states S , a set of acoustic observation probabil-
ities, bj (o), and a set of transition probabilities aij . The transition and observation
probabilities have the following meaning:

(1) bj (o) is a function that returns the probability of generating the acoustic vec-
tor o in state j . bj (ot) is the probability of seeing the specific acoustics as-
sociated with time t in state j . The observation probabilities are commonly
modeled with Gaussian mixtures.

(2) aij is the time-invariant probability of transitioning from state i to state j .

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 257

FIG. 3. A simple HMM representing the state sequence of three words. Adding an arc from the final
state back to the start state would allow repetition.

Note that in the HMM framework, each acoustic vector is associated with a spe-
cific state in the HMM. Thus, a sequence of n acoustic vectors will correspond to
a sequence of n consecutive states. We will denote a specific sequence of states
s1 = a, s2 = b, s3 = c, . . . , sn = k by s. In addition to normal emitting states, it
is often convenient to use “null” states, which do not emit acoustic observations.
In particular, we will assume that the HMM starts at time t = 0 in a special null
start-state α, and that all paths must end in a special null final-state ω at t = N + 1.
In general, having a specific word hypothesis w will be compatible with only some
state sequences, s, and not with others. It is necessary, therefore, to constrain sums
over state sequences to those sequences that are compatible with a given word se-
quence; we will not, however, introduce special notation to make this explicit. With
this background, the overall probability is factored as follows:

P(a|w) =
∑

s

P(a|s)P (s|w) =
∑

s

∏
t=1,...,n

bst (ot)ast st−1 .

Figure 3 illustrates a simple HMM that represents the state sequences of three
words.

The following sections describe the components of the HMM acoustic model in
more detail. Section 3.2 will focus on the mapping from words to states that is nec-
essary to determine P(s|w). Section 3.3 discusses the Gaussian mixture models that
are typically used to model bj (o). The transition probabilities can be represented
in a simple table, and no further discussion is warranted. The section closes with a
description of the training algorithms used for parameter estimation.

3.2 Acoustic Context Models

In its simplest form, the mapping from words to states can be made through the
use of a phonetic lexicon that associates one or more sequences of phonemes with
each word in the vocabulary. For example,

258 G. ZWEIG AND M. PICHENY

barge | B AA R JH
tomato | T AH M EY T OW
tomato | T AH M AA T OW

Typically, a set of 40 phonemes is used, and comprehensive dictionaries are available
[14,15].

In practice, coarticulation between phones causes this sort of invariant mapping to
perform poorly, and instead some sort of context-dependent mapping from words to
acoustic units is used [95,5]. This mapping takes each phoneme and the phonemes
that surround it, and maps it into an acoustic unit. Thus, the “AA” in “B AA R
JH” may have a different acoustic model than the “AA” in “T AH M AA T OW.”
Similarly, the “h” in “hammer” may be modeled with a different acoustic unit de-
pending on whether it is seen in the context of “the hammer” or “a hammer.”
The exact amount of context that is used can vary, the following being frequently
used:

(1) Word-internal triphones. A phone and its immediate neighbors to the left and
right. However, special units are used at the beginnings and endings of words
so that context does not persist across word boundaries.

(2) Cross-word triphones. The same as above, except that context persists across
word boundaries, resulting in better coarticulation modeling.

(3) Cross-word quinphones. A phone and its two neighbors to the left and right.
(4) A phone, and all the other phones in the same word.
(5) A phone, all the other phones in the same word, and all phones in the preced-

ing word.

When a significant amount of context is used, the number of potential acoustic
states becomes quite large. For example, with triphones the total number of pos-
sible acoustic models becomes approximately 403 = 64,000. In order to reduce this
number, decision-tree clustering is used to determine equivalence classes of phonetic
contexts [5,95]. A sample tree is shown in Fig. 4. The tree is grown in a top-down
fashion using an algorithm similar to that of Fig. 5. Thresholds on likelihood gain,
frame-counts, or the Bayesian information criterion [10] can be used to determine an
appropriate tree depth.

In a typical large vocabulary recognition system [78], it is customary to have a
vocabulary size between 30 and 60 thousand words and two or three hundred hours
of training data from hundreds of speakers. The resulting decision trees typically
have between 4000 and 12,000 acoustic units [78,46].

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 259

FIG. 4. Decision tree for clustering phonetic contexts.

1. Create a record for each frame that includes the frame and the phonetic context
associated with it.

2. Model the frames associated with a node with a single diagonal-covariance
Gaussian. The frames associated with a node will have a likelihood according to
this model.

3. For each yes/no question based on the context window, compute the likelihood that
would result from partitioning the examples according to the induced split.

4. Split the frames in the node using the question that results in the greatest likelihood
gain, and recursively process the resulting two nodes.

FIG. 5. Decision tree building.

3.3 Gaussian Mixture State Models

The observation probabilities bj (o) are most often modeled with mixtures of
Gaussians. The likelihood of the d-dimensional feature vector x being emitted by
state j is given by:

bj (x) =
∑

k

mjk

(
(2π)d |Σjk|

)−1/2 exp

(
−1

2
(x − µjk)

TΣ−1
jk (x − µjk)

)
where the coefficients mjk are mixture weights,

∑
k mjk = 1. This can be expressed

more compactly as

bj (x) =
∑

k

mjkN (x;µjk,Σjk).

In order to minimize the amount of computation required to compute observation
probabilities, it is common practice to use diagonal covariance matrices. Between
150,000 and 300,000 Gaussians are typical in current LVCSR systems.

The use of diagonal covariance matrices has proved adequate, but requires that
the dimensions of the feature vectors be relatively uncorrelated. While the linear
transforms described in Section 2 can be used to do this, recently there has been
a significant amount of work focused on more efficient covariance representations.

260 G. ZWEIG AND M. PICHENY

One example of this is EMLLT [70], in which the inverse covariance matrix of each
Gaussian j is modeled as the sum of basis matrices. First, a set of d dimensional
basis vectors al is defined. Then inverse covariances are modeled as:

Σ−1
j =

D∑
l=1

λ
j
l alaT

l .

One of the main contributions of [70] is to describe a maximum-likelihood training
procedure for adjusting the basis vectors. Experimental results are presented that
show improved performance over both diagonal and full-covariance modeling in a
recognition system for in-car commands. In further work [3], this model has been
generalized to model both means and inverse-covariance matrices in terms of basis
expansions (SPAM).

3.4 Maximum Likelihood Training

A principal advantage of HMM-based systems is that it is quite straightforward
to perform maximum likelihood parameter estimation. The main step is to compute
posterior state-occupancy probabilities for the HMM states. To do this, the following
quantities are defined:

• αj (t): the probability of the observation sequence up to time t , and accounting
for ot in state j .

• βj (t): the probability of the observation sequence ot+1 . . . oN given that the
state at time t is j .

• P = ∑
k αk(t)βk(t): the total data likelihood, constant over t .

• γj (t) = αj (t)βj (t)∑
k αk(t)βk(t)

: the posterior probability of being in state j at time t .

• mixjk(t) = mjkN (ot ;µjk ,Σjk)∑
f mjfN (ot ;µjf ,Σjf)

: the probability of mixture component k given

state j at time t .

The α and β quantities can be computed with a simple recursion:

• αj (t) = ∑
i αi(t − 1)aij bj (ot).

• βj (t) = ∑
k ajkbk(ot+1)βk(t + 1).

The recursions are initialized by setting all αs and βs to 0 except:

• αα(0) = 1.

• βω(N + 1) = 1.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 261

Once the posterior state occupancy probabilities are computed, it is straightfor-
ward to update the model parameters for a diagonal-covariance system [54,94,73].

• âij =
∑

t αi (t)aijbj (ot+1)βj (t+1)∑
t αi (t)βi(t)

.

• µ̂jk =
∑

t γj (t)mixjk (t)ot∑
t γj (t)mixjk (t)

.

• Σ̂jk =
∑

t γj (t)mixjk (t)(ot−µ̂jk)(ot−µ̂jk)
T∑

t γj (t)mixjk (t)
.

This discussion has avoided a number of subtleties that arise in practice, but are
not central to the ideas. Specifically, when multiple observation streams are avail-
able, an extra summation must be added outside all others in the reestimation for-
mulae. Also, observation probabilities are tied across multiple states—the same “ae”
acoustic model may be used in multiple HMM states. This entails creating summary
statistics for each acoustic model by summing the statistics of all the states that use it.
Finally, in HMMs with extensive null states, the recursions and reestimation formu-
lae must be modified to reflect the spontaneous propagation of probabilities through
chains of null states.

3.4.1 Maximum Mutual Information Training

In standard maximum likelihood training, the model parameters for each class are
adjusted in isolation, so as to maximize the likelihood of the examples of that partic-
ular class. While this approach is optimal in the limit of infinite training data [62], it
has been suggested [63,4] that under more realistic conditions, a better training ob-
jective might be to maximize the amount of mutual information between the acoustic
vectors and the word labels. That is, rather than training so as to maximize

Pθ (w,a) = Pθ(w)Pθ (a|w)

with respect to θ , to train so as to maximize∑
w,a

Pθ (w,a) log
Pθ (w,a)

Pθ (w)Pθ (a)
.

Using the training data D to approximate the sum over all words and acoustics, we
can represent the mutual information as∑

D

log
Pθ(a,w)

Pθ (w)Pθ (a)
=

∑
D

log
Pθ (w)Pθ (a|w)

Pθ (w)Pθ (a)
=

∑
D

log
Pθ (a|w)

Pθ (a)

=
∑
D

log
Pθ (a|w)∑

w′ Pθ(w′)Pθ (a|w′)
.

262 G. ZWEIG AND M. PICHENY

If we assume that the language model determining Pθ (w) is constant (as is the case
in acoustic model training) then this is identical to optimizing the posterior word
probability:∑

D

logPθ(w|a) =
∑
D

log
Pθ (a|w)Pθ (w)∑

w′ Pθ (w′)Pθ (a|w′) .

Before describing MMI training in detail, we note that the procedure that will
emerge is not much different from training an ML system. Procedurally, one first
computes the state-occupancy probabilities and first and second order statistics ex-
actly as for a ML system. This involves summing path posteriors over all HMM
paths that are consistent with the known word hypotheses. One then repeats exactly
the same process, but sums over all HMM paths without regard to the transcripts.
The two sets of statistics are then combined in a simple update procedure. For histor-
ical reasons, the first set of statistics is referred to as “numerator” statistics and the
second (unconstrained) set as “denominator” statistics.

An effective method for performing MMI optimization was first developed in [30]
for the case of discrete hidden Markov models. The procedure of [30] works in gen-
eral to improve objective functions R(θ) that are expressible as

R(θ) = s1(θ)

s2(θ)

with s1 and s2 being polynomials with s2 > 0. Further, for each individual probability
distribution λ under adjustment, it must be the case that λi � 0 and

∑
i λi = 1. In this

case, it is proved that the parameter update

λ̂i = λi

(∂ logR(λ)
∂λi

+ D
)

∑
k λk

(∂ logR(λ)
∂λk

+ D
)

is guaranteed to increase the objective function, with a large enough value of the
constant D. In the case of discrete variables, it is shown that

∂ logR(λ)

∂λi
= 1

λi

(
Cnum

λi
− Cden

λi

)
where λi is probability of event associated with λi being true, and Cλi is count of
times this event occurred, as computed from the α–β recursions of the previous
section.

Later work [68,92], extended these updates to Gaussian means and variances, and
[92] did extensive work to determine appropriate values of D for large vocabulary
speech recognition. For state j , mixture component m, let S(x) denote the first order
statistics, S(x2) denote the second order statistics, and C denote the count of the

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 263

number of times a mixture component is used. The update derived is

µ̂jm = Snum
jm (x) − Sden

jm (x) + Dµjm

Cnum
jm − Cden

jm + D
,

σ̂ 2
jm = Snum

jm (x2) − Sden
jm (x2) + D(σ 2

jm + µ2
jm)

Cnum
jm − Cden

jm + D
− µ̂2

jm.

For the mixture weights, let fjm be the mixture coefficient associated with mixture
component m of state j . Then

f̂jm =
fjm

(∂ logR(λ)
∂fjm

+ D
)

∑
k fjk

(∂ logR(λ)
∂fjk

+ D
)

with

∂ logR(λ)

∂fjk

= 1

fjk

(
Cnum

jk − Cden
jk

)
.

Several alternative ways for reestimating the mixture weights are given in [92].
MMI has been found to give a 5–10% relative improvement in large vocabulary

tasks [92], though the advantage diminishes as systems with larger numbers of Gaus-
sians are used [58]. The main disadvantage of MMI training is that the denominator
statistics must be computed over all possible paths. This requires either doing a full
decoding of the training data at each iteration, or the computation of lattices (see
Section 5.2). Both options are computationally expensive unless an efficiently writ-
ten decoder is available.

4. Language Model

4.1 Finite State Grammars

Finite state grammars [1,39] are the simplest and in many ways the most conve-
nient way of expressing a language model for speech recognition. The most basic
way of expressing one of these grammars is as an unweighted regular expression
that represents a finite set of recognizable statements. For example, introductions to
phone calls in a three-person company might be represented with the expression

(Hello | Hi) (John | Sally | Sam)? it’s
(John | Sally | Sam)

264 G. ZWEIG AND M. PICHENY

At a slightly higher level, Backus Naur Form [64] is often used for more elaborate
grammars with replacement patterns. For example,

<SENTENCE> ::= Greeting.
Greeting ::= Intro Name? it’s Name.
Intro ::= Hello | Hi.
Name ::= John | Sally | Sam.

In fact, BNF is able to represent context free grammars [13]—a broad class of gram-
mars in which recursive rule definitions allow the recognition of some strings that
cannot be represented with regular expressions. However, in comparison with regu-
lar expressions, context-free grammars have had relatively little affect on ASR, and
will not be discussed further.

Many of the tools and conventions associated with regular expressions were devel-
oped in the context of computer language compilers, in which texts (programs) were
either syntactically correct or not. In this context, there is no need for a notion of
how correct a string is, or alternatively what the probability of it being generated by
a speaker of the language is. Recall, however, that in the context of ASR, we are in-
terested in P(w), the probability of a word sequence. This can easily be incorporated
in to the regular expression framework, simply by assigning costs or probabilities to
the rules in the grammar.

Grammars are frequently used in practical dialog applications, where develop-
ers have the freedom to design system prompts and then specify a grammar that is
expected to handle all reasonable replies. For example, in an airline-reservation ap-
plication the system might ask “Where do you want to fly to?” and then activate
a grammar designed to recognize city names. Due to their simplicity and intuitive
nature, these sorts of grammars are the first choice wherever possible.

4.2 N -gram Models

N -gram language models are currently the most widely used LMs in large vo-
cabulary speech recognition. In an N -gram language model, the probability of each
word is conditioned on the n − 1 preceding words:

P(w) = P(w1)P (w2|w1) · · ·P(wn−1|w1 . . .wn−2)

×
i=N∏
i=n

P (wi |wi−1,wi−2, . . . ,wi−n+1).

While in principle this model ignores a vast amount of prior knowledge concerning
linguistic structure—part-of-speech classes, syntactic constraints, semantic coher-

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 265

ence, and pragmatic relevance—in practice, researchers have been unable to signifi-
cantly improve on it.

A typical large vocabulary system will recognize between 30 and 60 thousand
words, and use a 3 or 4-gram language model trained on around 200 million words
[78]. While 200 million words seems at first to be quite large, in fact for a 3-gram LM
with a 30,000 word vocabulary, it is actually quite small compared to the 27 × 1012

distinct trigrams that need to be represented. In order to deal with this problem of data
sparsity, a great deal of effort has been spent of developing techniques for reliably
estimating the probabilities of rare events.

4.2.1 Smoothing

Smoothing is perhaps the most important practical detail in building N -gram
language models, and these techniques fall broadly into three categories: additive
smoothing, backoff models, and interpolated models. The following sections touch
briefly on each, giving a full description for only interpolated LMs, which have been
empirically found to give good performance on a variety of tasks. The interested
reader can find a full review of all these methods in [12].

4.2.1.1 Additive Smoothing. In the following, we will use the compact
notation w

y
x to refer to the sequence of words wx,wx+1 . . .wy , and c(w

y
x) to the

number of times (count) that this sequence has been seen in the training data. The
maximum-likelihood estimate of P(wi |wi−1

i−n+1) is thus given as:

P
(
wi |wi−1

i−n+1

) = c(wi
i−n+1)

c(wi−1
i−n+1)

.

The problem, of course, is that for high-order N -gram models, many of the pos-
sible (and perfectly normal) word sequences in a language will not be seen, and
thus assigned zero-probability. This is extraordinarily harmful to a speech recogni-
tion system, as one that uses such a model will never be able to decode these novel
word sequences. One of the simplest ways of dealing with such a problem is to use
a set of fictitious or imaginary counts to encode our prior knowledge that all word
sequences have some likelihood. In the most basic implementation [42], one simply
adds a constant amount δ to each possible event. For a vocabulary of size |V |, one
then has:

P
(
wi |wi−1

i−n+1

) = δ + c(wi
i−n+1)

δ|V | + c(wi−1
i−n+1)

.

266 G. ZWEIG AND M. PICHENY

The optimal value of δ can be found simply by performing a search so as to maximize
the implied likelihood on a set of held-out data. This scheme, while having the virtue
of simplicity, tends to perform badly in practice [12].

4.2.1.2 Low-Order Backoff. One of the problems of additive smoothing
is that it will assign the same probability to all unseen words that follow a partic-
ular history. Thus for example, it will assign the same probability to the sequence
“spaghetti western” as to “spaghetti hypanthium,” assuming that neither has been
seen in the training data. This violates our prior knowledge that more frequently
occurring words are more likely to occur, even in previously unseen contexts.

One way of dealing with this problem is to use a backoff model in which one
“backs off” to a low order language model estimate to model unseen events. These
models are of the form:

P
(
wi |wi−1

i−n+1

) =
{

α(wi |wi−1
i−n+1) if c(wi

i−n+1) > 0,

γ (wi−1
i−n+1)P (wi |wi−1

i−n+2) if c(wi
i−n+1) = 0.

One example of this is Katz smoothing [45], which is used, e.g., in the SRI language-
modeling toolkit [83]. However, empirical studies have shown that better smoothing
techniques exist, so we will not present it in detail.

4.2.1.3 Low-Order Interpolation. The weakness of a backoff language
model is that it ignores the low-order language model estimate whenever a high-order
N -gram has been seen. This can lead to anomalies when some high-order N -grams
are seen, and others with equal (true) probability are not. The most effective type
of N -gram model uses an interpolation between high and low-order estimates under
all conditions. Empirically, the most effective of these is the modified Kneser–Ney
language model [12], which is based on [47].

This model makes use of the concept of the number of unique words that have
been observed to follow a given language model history at least k times. Define

Nk

(
wi−1

i−n+1•
) = ∣∣{wi : c

(
wi−1

i−n+1wi

) = k
}∣∣

and

Nk+
(
wi−1

i−n+1•
) = ∣∣{wi : c

(
wi−1

i−n+1wi

)
� k

}∣∣.
The modified Kneser Ney estimate is then given as

P
(
wi |wi−1

i−n+1

) = c(wi
i−n+1) − D(c(wi

i−n+1))

c(wi−1
i−n+1)

+ γ
(
wi−1

i−n+1

)
P

(
wi |wi−1

i−n+2

)
.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 267

Defining

Y = n1

n1 + 2n2

where nr is the number of n-grams that occur exactly r times, the discounting factors
are given by

D(c) =


0 if c = 0,

1 − 2Y n2
n1

if c = 1,

2 − 3Y
n3
n2

if c = 2,

3 − 4Y n4
n3

if c � 3.

The backoff weights are determined by

γ
(
wi−1

i−n+1

) = D1N1(w
i−1
i−n+1•) + D2N2(w

i−1
i−n+1•) + D3+N3+(wi−1

i−n+1•)

c(wi−1
i−n+1)

.

This model has been found to slightly outperform most other models and is in use
in state-of-the-art systems [78]. Because D(0) = 0, this can also be expressed in a
backoff form.

4.2.2 Cross-LM Interpolation
In many cases, several disparate sources of language model training data are avail-

able, and the question arises: what is the best method of combining these sources?
The obvious answer is simply to concatenate all the sources of training data together,
and to build a model. This, however, has some serious drawbacks when the sources
are quite different in size. For example, in many systems used to transcribe telephone
conversations [78,76,93,27], data from television broadcasts is combined with a set
of transcribed phone conversations. However, due to its easy availability, there is
much more broadcast data than conversational data: about 150 million words com-
pared to 3 million. This can have quite negative effects. For example, in the news
broadcast data, the number of times “news” follows the bigram “in the” may be
quite high, whereas in conversations, trigrams like “in the car” or “in the office” are
much likelier. Because of the smaller amount of data, though, these counts will be
completely dwarfed by the broadcast news counts, with the result that the final lan-
guage model will be essentially identical to the broadcast news model. Put another
way, it is often the case that training data for several styles of speaking is available,
and that the relative amounts of data in each category bears no relationship to how
frequently the different styles are expected to be used in real life.

In order to deal with this, it is common to interpolate multiple distinct language
models. For each data source k, a separate language model is built that predicts word

268 G. ZWEIG AND M. PICHENY

probabilities: Pk(wi |wi−1
i−n+1). These models are then combined with weighting fac-

tors λk :

P
(
wi |wi−1

i−n+1

) =
∑

k

Pk

(
wi |wi−1

i−n+1

)
,

∑
k

λk = 1.

For example, in a recent conversational telephony system [78] an interpolation of
data gathered from the web, broadcast news data, and two sources of conversational
data (with weighting factors 0.4, 0.2, 0.2, and 0.2 respectively) resulted in about
a 10% relative improvement over using the largest single source of conversational
training data.

4.2.3 N -gram Models as Finite State Graphs

While N -gram models have traditionally been treated as distinct from recognition
grammars, in fact they are identical, and this fact has been increasingly exploited.
One simple way of seeing this is to consider a concrete algorithm for constructing a
finite state graph at the HMM state level from an N -gram language model expressed
as a backoff language model. This will make use of two functions that act on a word
sequence wk

j :

(1) head(wk
j) returns the suffix wk

j+1.

(2) tail(wk
j) returns the prefix wk−1

j .

For a state-of-the-art backoff model, one proceeds as follows:

(1) for each N -gram with history q and successor word r make a unique state for
q, head(qr), and tail(q),

(2) for each N -gram add an arc from q to head(qr) labeled with r and weighted
by the α probability of the backoff model,

(3) for each unique N -gram history q add an arc from q to tail(q) with the backoff
γ associated with q.

To accommodate multiple pronunciations of a given word, one then replaces each
word arc with a set of arcs, one labeled with each distinct pronunciation, and mul-
tiplies the associated probability with the probability of that pronunciation. For
acoustic models in which there is no cross word context, each pronunciation can
then be replaced with the actual sequence of HMM states associated with the word;
accommodating cross word context is more complex, but see, e.g., [99]. Figure 6
illustrates a portion of an HMM n-gram graph.

We have described the process of expanding a language model into a finite-state
graph as a sequence of “search and replace” operations acting on a basic represen-
tation at the word level. However, [59,60] have recently argued that the process is

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 269

FIG. 6. HMM state graph illustrating the structure of a backoff language model.

best viewed in terms of a sequence of finite state transductions. In this model, one
begins with a finite state encoding of the language model, but represents the expan-
sion at each level—from word to pronunciation, pronunciation to phone, and phone
to state—as the composition of the previous representation with a finite state trans-
ducer. The potential advantage of this approach is a consistent representation of each
form of expansion, with the actual operations being performed by a single compo-
sition function. In practice, care must be taken to ensure that the composition oper-
ations do not use large amounts of memory, and in some cases, it is inconvenient to
express the acoustic context model in the form of a transducer (e.g., when long span
context models are used).

In some ways, the most important advantage of finite-state representations is that
operations of determinization and minimization were recently developed by [59,60].
Classical algorithms were developed in the 1970s [1] for unweighted graphs as found
in compilers, but the extension to weighted graphs (the weights being the language
model and transition probabilities) has made these techniques relevant to speech
recognition. While it is beyond the scope of this paper to present the algorithms
for determinization and minimization, we briefly describe the properties.

A graph is said to be deterministic if each outgoing arc from a given state has a
unique label. In the context of speech recognition graphs, the arcs are labeled with
either HMM states, or word, pronunciation, or phone labels. While the process of
taking a graph and finding an equivalent deterministic one is well defined, the de-
terministic representation can in pathological cases grow exponentially in the num-
ber of states of the input graph. In practice, this rarely happens, but the graph does

270 G. ZWEIG AND M. PICHENY

grow. The benefit actually derives from the specific procedures used to implement
the Viterbi search described in Section 5.1. Suppose one has identified a fixed num-
ber w of states that are reasonably likely at a given time t . Only a small number k

of HMM states are likely to have good acoustic matches, and thus to lead to likely
states at time t + 1. Thus, if on average z outgoing arcs per state are labeled with a
given HMM state, the number of likely states at t + 1 will be on the order of zkw.
By using a deterministic graph, z is limited to 1, and thus tends to decrease the num-
ber of states that will ever be deemed likely. In practice, this property can lead to an
order-of-magnitude speedup in search time, and makes determinization critical.

One can also ask, given a deterministic graph, what is the smallest equivalent
deterministic graph. The process of minimization [59] produces such a graph, and in
practice often reduces graph sizes by a factor of two or three.

4.2.4 Pruning

Modern corpus collections [33] often contain an extremely large amount of data—
between 100 million and a billion words. Given that N -gram language models can
backoff to lower-order statistics when high-order statistics are unavailable, and that
representing extremely large language models can be disadvantageous from the
point-of-view of speed and efficiency, it is natural to ask how one can trade off lan-
guage model size and fidelity. Probably the simplest way of doing this is to impose
a count threshold, and then to use a lower-order backoff estimate for the probability
of the nth word in such N -grams.

A somewhat more sophisticated approach [80] looks at the loss in likelihood
caused by using the backoff estimate to select N -grams to prune. Using P and P ′
to denote the original and backed-off estimates, and N(·) to represent the (possibly
discounted) number of times an N -gram occurs, the loss in log likelihood caused by
the omission of an N -gram wi

i−n+1 is given by:

N
(
wi

i−n+1

)(
logP

(
wi |wi−1

i−n+1

) − logP
(
wi |wi−1

i−n+2

))
.

In the “Weighted Difference Method” [80], one computes all these differences, and
removes the N -grams whose difference falls below a threshold. A related approach
[82] uses the Kullback–Leibler distance between the original and pruned language
models to decide which N -grams to prune. The contribution of an N -gram in the
original model to this KL distance is given by:

P
(
wi

i−n+1

)(
logP

(
wi |wi−1

i−n+1

) − logP
(
wi |wi−1

i−n+2

))
and the total KL distance is found by summing over all N -grams in the original
model. The algorithm of [82] works in batch mode, first computing the change in
relative entropy that would result from removing each N -gram, and then removing

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 271

all those below a threshold, and recomputing backoff weights. A comparison of the
weighted-difference and relative-entropy approaches shows that the two criteria are
the same in form, and the difference between the two approaches is primarily in the
recomputation of backoff weights that is done in [82]. In practice, LM pruning can
be extremely useful in limiting the size of a language model in compute-intensive
tasks.

4.2.5 Class Language Models

While n-gram language models often work well, they have some obvious draw-
backs, specifically their inability to capture linguistic generalizations. For example,
if one knows that the sentence “I went home to feed my dog” has a certain proba-
bility, then one might also surmise that the sentence “I went home to feed my cat”
is also well-formed, and should have roughly the same probability. There are at least
two forms of knowledge that are brought to bear to make this sort of generalization:
syntactic and semantic. Syntactically, both “dog” and “cat” are nouns, and can there-
fore be expected to be used in the same ways in the same sentence patterns. Further,
we have the semantic information that both are pets, and this further strengthens their
similarity. The importance of the semantic component can be further highlighted by
considering the two sentences, “I went home to walk my dog,” and “I went home to
walk my cat.” Here, although the syntactic structure is the same, the second sentence
seems odd because cats are not walked.

Class-based language models are an attempt to capture the syntactic generaliza-
tions that are inherent in language. The basic idea is to first express a probability
distribution over parts-of-speech (nouns, verbs, pronouns, etc.), and then to specify
the probabilities of specific instances of the parts of speech. In its simplest form [8]
a class based language model postulates that each word maps to a single class, so
that the word stream wk

i induces a sequence of class labels ck
i . The n-gram word

probability is then given by:

P
(
wi |wi−1

i−n+1

) = P(wi |ci)P
(
ci |ci−1

i−n+1

)
.

Operationally, one builds an n-gram model on word classes, and then combines this
with a unigram model that specifies the probability of a specific word given a class.
This form of model makes the critical assumption that each word maps into a unique
class, which of course is not true for standard parts of speech. (For example, “fly”
has a meaning both in the verb sense of what a bird does, and in the noun sense of
an insect.) However, [8] present an automatic procedure for learning word-classes
of this form. This method greedily assigns words to classes so as to minimize the
perplexity of induced N -gram model over class sequences. This has the advantage
both of relieving the user from specifying grammatical relationships, and of being

272 G. ZWEIG AND M. PICHENY

able to combine syntactic and semantic information. For example, [8] presents a class
composed of feet miles pounds degrees inches barrels tons acres meters bytes and
many similar classes whose members are similar both syntactically and semantically.

Later work [66] extends the class-based model to the case where a word may
map into multiple classes, and a general mapping function S(·) is used to map a
word history wi−1

i−n+1 into a specific equivalence class s. Under these more general
assumptions, we have

P
(
wi |wi−1

i−n+1

) =
∑
ci

P (wi |ci)

[∑
s

P (ci |s)P
(
s|wi−1

i−n+1

)]
.

Due to the complexity of identifying reasonable word-to-class mappings, however,
the class induction procedure presented assumes an unambiguous mapping for each
word.

This general approach has been further studied in [67], and experimental results
are presented suggesting that automatically derived class labels are superior to the
use of linguistic part-of-speech labels. The process can also be simplified [91] to
using

P
(
wi |c

(
wi−1

i−n+1

))
.

Class language models are now commonly used in state-of-the-art systems, where
their probabilities are interpolated with word-based N -gram probabilities, e.g., [93].

5. Search

Recall that the objective of a decoder is to find the best word sequence w∗ given
the acoustics:

w∗ = arg max
w

P(w|a) = arg max
w

P(w)P (a|w)

P (a)
.

The crux of this problem is that with a vocabulary size V and utterance length N ,
the number of possible word-sequences is O(V N), i.e., it grows exponentially in the
utterance length. Over the years, the process of finding this word sequence has been
one of the most studied aspects of speech recognition with numerous techniques and
variations developed, [29,69,2]. Interestingly, in recent years, there has been a renais-
sance of interest in the simplest of these decoding algorithms: the Viterbi procedure.
The development of better HMM compilation techniques along with faster comput-
ers has made Viterbi applicable to both large vocabulary recognition and constrained
tasks, and therefore this section will focus on Viterbi alone.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 273

5.1 The Viterbi Algorithm

The Viterbi algorithm operates on an HMM graph in order to find the best align-
ment of a sequence of acoustic frames to the states in the graph. For the purposes of
this discussion, we will define an HMM in the classical sense as consisting of states
with associated acoustic models, and arcs with associated transition costs. A special
non-emitting “start state” α and “final state” ω are specified such that all paths start
at t = 0 in α and end at t = N + 1 in ω. Finally, we will associate a string label
(possibly “epsilon” or null) with each arc. The semantics of Viterbi decoding can
then be very simply stated: the single best alignment of the frames to the states is
identified, and the word labels encountered on the arcs of this path are output. Note
that in the “straight” HMM framework there is no longer any distinction between
acoustic model costs, language model costs, or any other costs. All costs associated
with all sources of information must be incorporated in the transition and emission
costs that define the network: bj (ot) and Aij .

A more precise statement of Viterbi decoding is to find the optimal state sequence
S∗ = s1, s2, . . . , sN :

S∗ = arg max
S

∏
t=1,...,n

bst (ot)ast st−1 .

Remarkably, due to the limited-history property of HMMs, this can be done with an
extremely simple algorithm [54,73]. We define

(1) δt (j): the cost of the best path ending in state j at time t ,
(2) Ψt (j): the state preceding state j on the best path ending in state t at time t ,
(3) pred(s): the set of states that are s’s immediate predecessors in the HMM

graph.

These quantities can then be computed for all states and all times according to the
recursions

(1) Initialize

• δ0(α) = 1,

• Ψ0(s) = undefined ∀s,

• δ0(s) = 0 ∀s �= α;

(2) Recursion

• δt (s) = maxj∈pred(s) δt−1(j)Ajsbt (s),

• Ψt (s) = arg maxj∈pred(s) δt−1(j)Ajsbt (s).

274 G. ZWEIG AND M. PICHENY

Thus, to perform decoding, one computes the δs and their backpointers Ψ , and
then follows the backpointers backwards from the final state ω at time N + 1. This
produces the best path, from which the arc labels can be read off.

In practice, there are a several issues that must be addressed. The simplest of these
is that the products of probabilities that define the δs will quickly underflow arith-
metic precision. This can be easily dealt with by representing numbers with their log-
arithms instead. A more difficult issue occurs when non-emitting states are present
throughout the graph. The semantics of null states in this case are that spontaneous
transitions are allowed without consuming any acoustic frames. The update for a
given time frame must then proceed in two stages:

(1) The δs for emitting states are computed in any order by looking at their pre-
decessors.

(2) The δs for null states are computed by iterating over them in topological order
and looking at their predecessors.

The final practical issue is that in large systems, it may be advantageous to use prun-
ing to limit the number of states that are examined at each time frame. In this case,
one can maintain a fixed number of “live” states at each time frame. The decoding
must then be modified to “push” the δs of the live states at time t to the successor
states at time t + 1.

An examination of the Viterbi recursions reveals that for an HMM with A arcs and
an utterance of N frames, the runtime is O(NA) and the space required is O(NS).
However, it is interesting to note that through the use of a divide-and-conquer recur-
sion, the space used can be reduced to O(Sk logk N) at the expense of a runtime of
O(NA logk N) [98]. This is often useful for processing long conversations, messages
or broadcasts. The Viterbi algorithm can be applied to any HMM, and the primary
distinction is whether the HMM is explicitly represented and stored in advance, or
whether it is constructed “on-the-fly.” The following two sections address these ap-
proaches.

5.1.1 Statically Compiled Decoding Graphs (HMMs)

Section 4.2.3 illustrated the conversion of an N -gram based language model into
a statically compiled HMM, and in terms of decoding efficiency, this is probably
the best possible strategy [60,78]. In this case, a large number of optimizations can
be applied to the decoding graph [60] at “compile time” so that a highly efficient
representation is available at decoding time without further processing. Further, it
provides a unified way of treating both large and small vocabulary recognition tasks.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 275

5.1.2 Dynamically Compiled Decoding Graphs (HMMs)

Unfortunately, under some circumstances it is difficult or impossible to statically
represent the search space. For example, in a cache-LM [48,49] one increases the
probability of recently spoken words. Since it is impossible to know what will be said
at compile-time, this is poorly suited to static compilation. Another example is the
use of trigger-LMs [75] in which the co-occurrences of words appearing throughout
a sentence are used to determine its probability; in this case, the use of a long-range
word-history makes graph compilation difficult. Or in a dialog application, one may
want to create a grammar that is specialized to information that a user has just pro-
vided; obviously, this cannot be anticipated at compile time. Therefore, despite its
renaissance, the use of static decoding graphs is unlikely to become ubiquitous.

In the cases where dynamic graph compilation is necessary, however, the princi-
ples of Viterbi decoding can still be used. Recall that when pruning is used, the δ

quantities are pushed forward to their successors in the graph. Essentially what is
required for dynamic expansion is to associate enough information with each δ that
its set of successor states can be computed on demand. This can be done in many
ways, a good example being the strategy presented in [69].

5.2 Multipass Lattice Decoding

Under some circumstances, it is desirable to generate not just a single word hy-
pothesis, but a set of hypotheses, all of which have some reasonable likelihood. There
are a number of ways of doing this [69,90,65,71,98], and all result in a compact rep-
resentation of a set of hypotheses as illustrated in Fig. 7. The states in a word lattice
are annotated with time information, and the arcs with word labels. Additionally, the
arcs may have the acoustic and language model scores associated with the word oc-
currence (note that with an n-gram LM, this implies that all paths of length n − 1

FIG. 7. A word lattice. Any path from the leftmost start state to the rightmost final state represents a
possible word sequence.

276 G. ZWEIG AND M. PICHENY

leading into a state must be labeled with the same word sequence). We note also,
that the posterior probability of a word occurrence in a lattice can be computed as
the ratio of the sum likelihood of all the paths through the lattice that use the lattice
link, to the sum likelihood of all paths entirely. These quantities can be computed
with recursions analogous to the HMM αβ recursions, e.g., as in [98].

Once generated, lattices can be used in a variety of ways. Generally, these involve
recomputing the acoustic and language model scores in the lattice with more sophis-
ticated models, and then finding the best path with respect to these updated scores.
Some specific examples are:

• Lattices are generated with an acoustic model in which there is no cross-word
acoustic context, and then rescored with a model using cross-word acoustic
context, e.g., [58,46].

• Lattices are generated with a speaker-independent system, and then rescored
using speaker-adapted acoustic models, e.g., [93].

• Lattices are generated with a bigram LM and then rescored with a trigram or
4-gram LM, e.g., [93,55].

The main potential advantage of using lattices is that the rescoring operations can be
faster than decoding from scratch with sophisticated models. With efficient Viterbi
implementations on static decoding graphs, however, it is not clear that this is the
case [78].

5.3 Consensus Decoding

Recall that the decoding procedures that we have discussed so far have aimed at
recovering the MAP word hypothesis:

w∗ = arg max
w

P(w|a) = arg max
w

P(w)P (a|w)

P (a)
.

Unfortunately, this is not identical to minimizing the WER metric by which speech
recognizers are scored. The MAP hypothesis will asymptotically minimize sentence
error rate, but not necessarily word error rate. Recent work [81,57] has proposed
that the correct objective function is really the expected word-error rate under the
posterior probability distribution. Denoting the reference or true word sequence by r
and the string edit distance between w and r by E(w, r), the expected error is:

EP(r|a)

[
E(w, r)

] =
∑

r

P(r|a)E(w, r).

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 277

FIG. 8. A word lattice.

Thus, the objective becomes finding

w∗ = arg max
w

∑
r

P(r|a)E(w, r).

There is no known dynamic programming procedure for finding this optimum when
the potential word sequences are represented with a general lattice. Therefore, [57]
proposes instead work with a segmental or sausage-like structure as illustrated in
Fig. 8. To obtain this structure, the links in a lattice are clustered so that temporally
overlapping and phonetically similar word occurrences are grouped together. Often,
multiple occurrences of the same word (differing in time-alignment or linguistic his-
tory) end up together in the same bin, where their posterior probabilities are added
together. Under the assumption of a sausage structure, the expected error can then
be minimized simply by selecting the link with highest posterior probability in each
bin [57]. This procedure has been widely adopted and generally provides a 5 to 10%
relative improvement in large vocabulary recognition performance.

5.4 System Combination

In recent DARPA-sponsored speech recognition competitions, it has become com-
mon practice to improve the word error rate by combining the outputs of multiple
systems. This technique was first developed in [21] where the outputs of multiple
systems are aligned to one another, and a voting process is used to select the final
output. This process bears a strong similarity to the consensus decoding technique, in
that a segmental structure is imposed on the outputs, but differs in its use of multiple
systems.

Although the problem of producing an optimal multiple alignment is NP complete
[34,21] presents a practical algorithm for computing a reasonable approximation.
The algorithm works by iteratively merging a sausage structure that represents the
current multiple alignment with a linear word hypothesis. In this algorithm, the sys-
tem outputs are ordered, and then sequentially merged into a sausage structure.

In a typical use [46], multiple systems are built differing in the front-end analy-
sis, type of training (ML vs. MMI) and/or speaker adaptation techniques that are

278 G. ZWEIG AND M. PICHENY

used. The combination of 3 to 5 systems may produce on the order of 10% relative
improvement over the best single system.

6. Adaptation

The goal of speaker adaptation is to modify the acoustic and language models
in light of the data obtained from a specific speaker, so that the models are more
closely tuned to the individual. This field has increased in importance since the early
1990s, has been intensively studied, and is still the focus of a significant amount of
research. However, since no consensus has emerged on the use of language model
adaptation, and many state-of-the-art systems do not use it, this section will focus
solely on acoustic model adaptation. In this area, there are three main techniques:

• Maximum A Posteriori (MAP) adaptation, which is the simplest form of
acoustic adaptation;

• Vocal Tract Length Normalization (VTLN), which warps the frequency scale to
compensate for vocal tract differences;

• Maximum Likelihood Linear Regression, which adjusts the Gaussians and/or
feature vectors so as to increase the data likelihood according to an initial tran-
scription.

These methods will be discussed in the following sections.

6.1 MAP Adaptation

MAP adaptation is a Bayesian technique applicable when one has some reasonable
expectation as to what appropriate parameter values should be. This prior g(θ) on
the parameters θ is then combined with the likelihood function f (x|θ) to obtain the
MAP parameter estimates:

θ∗ = arg max
θ

g(θ)f (x|θ).

The principled use of MAP estimation has been thoroughly investigated in [28],
which presents the formulation that appears here.

The most convenient representation of the prior parameters for p-dimensional
Gaussian mixture models is given by Dirichlet priors for the mixture weights
w1, . . . ,wK , and normal-Wishart densities for the Gaussians (parameterized by
means mi and inverse covariance matrices ri). These priors are expressed in terms of
the following parameters:

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 279

• νk ; a count νk > 0,

• τk ; a count τk > 0,

• αk ; a count αk > p − 1,

• µk ; a p dimensional vector,

• uk ; a p × p positive definite matrix.

Other necessary notation is:

• ckt : the posterior probability of Gaussian k at time t ,

• K: the number of Gaussians,

• n: the number of frames.

With this notation, the MAP estimate of the Gaussian mixture parameters are:

w′
k = νk − 1 + ∑n

t=1 ckt

n − K + ∑K
k=1 νk

, m′
k = τkµk + ∑n

t=1 cktxt

τk + ∑n
t=1 ckt

,

r
′−1
k = uk + τk(µk − m′

k)(µk = m′
k)

T

αk − p + ∑n
t=1 ckt

+
∑n

t=1 ckt (xt − m′
k)(xt = m′

k)
T

αk − p + ∑n
t=1 ckt

.

Unfortunately, there are a large number of free parameters in the representation of
the prior, making this formulation somewhat cumbersome in practice. [28] discusses
setting these, but in practice it is often easier to work in terms of fictitious counts.
Recall that in EM, the Gaussian parameters are estimated from first and second-order
sufficient statistics accumulated over the data. One way of obtaining reasonable pri-
ors is simply to compute these over the entire training set without regard to phonetic
state, and then to weight them according to the amount of emphasis that is desired
for the prior. Similarly, statistics computed for one corpus can be downweighted and
added to the statistics from another.

6.2 Vocal Tract Length Normalization

The method of VTLN is motivated by the fact that formants and spectral power
distributions vary in a systematic way from speaker to speaker. In part, this can be
viewed as a side-effect of a speech generation model in which the vocal tract can
be viewed as a simple resonance tube, closed at one end. In this case the first res-
onant frequency is given by 1/L, where L is the vocal tract length. While such a
model is too crude to be of practical use, it does indicate a qualitative relationship
between vocal tract length and formant frequencies. The idea of adjusting for this on
a speaker-by-speaker basis is old, dating at least to the 1970s [85,7], but was revital-
ized by a CAIP workshop [44], and improved to a fairly standard form in [87]. The

280 G. ZWEIG AND M. PICHENY

basic idea is to warp the frequency scale so that the acoustic vectors of a speaker are
made more similar to a canonical speaker-independent model. (This idea of “canon-
icalizing” the feature vectors will recur in another form in Section 6.3.2.) Figure 9
illustrates the form of one common warping function.

There are a very large number of variations on VTLN, and for illustration we
choose the implementation presented in [87]. In this procedure, the FFT vector as-
sociated with each frame is warped according a warping function like that in Fig. 9.
Ten possible warping scales are considered, ranging in the slope of the initial seg-
ment from 0.88 to 1.2. The key to this technique is to build a simple model of voiced
speech, consisting of a single mixture of Gaussians trained on frames that are iden-
tified as being voiced. (This identification is made on the basis of a cepstral analysis
described in [40].) To train the voicing model, each speaker is assigned an initial
warp scale of 1, and then the following iterative procedure is used:

(1) Using the current warp scales for each speaker, train a GMM for the voiced
frames.

(2) Assign to each speaker the warp scale that maximizes the likelihood of his or
her warped features according to the current voicing model.

(3) Go to 1.

After several iterations, the outcome of this procedure is a voicing scale for each
speaker, and a voicing model. Histograms of the voicing scales are generally bi-
modal, with one peak for men, and one for women. Training of the standard HMM
parameters can then proceed as usual, using the warped or canonicalized features.

The decoding process in similar. For the data associated with a single speaker, the
following procedure is used:

FIG. 9. Two VTLN warping functions. f0 is mapped into f ′
0.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 281

(1) Select the warp scale that maximizes the likelihood of the warped features
according to the voicing model.

(2) Warp the features and decode as usual.

The results reported in [87] indicate a 12% relative improvement in performance
over unnormalized models, and improvements of this scale are typical [89,96].

As mentioned, a large number of VTLN variants have been explored. [37,61,89]
choose warp scales by maximizing the data likelihood with respect to a full-blown
HMM model, rather than a single GMM for voiced frames, and experiment with
the size of this model. The precise nature of the warping has also been subject to
scrutiny; [37] uses a piecewise linear warp with two discontinuities rather than one;
[61] experiments with a power law warping function of the form

f ′ =
(

f

fN

)β

fN

where fN is the bandwidth and [96] experiments with bilinear warping functions of
the form

f ′ = f + 2 arctan

(
(1 − α) sin(f)

1 − (1 − α) cos(f)

)
.

Generally, the findings are that piecewise linear models work as well as the more
complex models, and that simple acoustic models can be used to estimate the warp
factors.

The techniques described so far operate by finding a warp scale using the princi-
ples of maximum likelihood estimation. An interesting alternative presented in [20,
32] is based on normalizing formant positions. In [20], a warping function of the
form

f ′ = k
3f/8000
s

is used, where ks is the ratio of the speaker’s third formant to the average frequency
of the third formant. In [32], the speaker’s first, second, and third formants are plotted
against their average values, and the slope of the line fitting these points is used as the
warping scale. These approaches, while nicely motivated, have the drawback that it
is not easy to identify formant positions, and they have not been extensively adopted.

6.3 MLLR

A seminal paper [52] sparked intensive interest in the mid 1990s in techniques for
adapting the means and/or variances of the Gaussians in an HMM model. Whereas
VTLN can be thought of as a method for standardizing acoustics across speakers,

282 G. ZWEIG AND M. PICHENY

Maximum Likelihood Linear Regression was first developed as a mechanism for
adapting the acoustic models to the peculiarities of individual speakers. This form
of MLLR is known as “model-space” MLLR, and is discussed in the following sec-
tion. It was soon realized [18,25], however, that one particular form of MLLR has an
equivalent interpretation as on operation on the features, or “feature-space” MLLR.
This technique is described in Section 6.3.2, and can be thought of as another canon-
icalizing operation.

6.3.1 Model Space MLLR
A well defined question first posed in [52] is, suppose the means of the Gaussians

are transformed according to

µ̂ = Aµ + b.

Under the assumption of this form of transform, what matrix A and offset vector b
will maximize the data probability given an initial transcription of the data? To solve
this, one defines an extended mean vector

ξ = [1µ1µ2 . . .µp]T

and a p × p + 1 matrix W . The likelihood assigned by a Gaussian g is then given by

N(x;Wξg,Σg).

In general, with a limited amount of training data, it may be advantageous to tie the
transforms of many Gaussians, for example all those belonging to a single phone
or phone-group such as vowels. If we define γg(t) to be the posterior probability
of Gaussian g having generated the observation ot at time t , and G to be the set
of Gaussians whose transforms are to be tied, then the matrix W is given by the
following equation [52]

t=N∑
t=1

∑
g∈G

γg(t)Σ
−1
g o(t)ξT

g =
t=N∑
t=1

∑
g∈G

γg(t)Σ
−1
g Wξ gξ

T
g .

Thus, estimating the transforms simply requires accumulating the sufficient statistics
used in ML reestimation, and solving a simple matrix equation. Choosing the sets
of Gaussians to tie can be done simply by clustering the Gaussians according to
pre-defined phonetic criteria, or according to KL divergence [53]. Depending on the
amount of adaptation data available, anywhere from 1 to several hundred transforms
may be used.

A natural extension of mean-adaptation is to apply a linear transformation to the
Gaussian variances as well [25,23]. The form of this transformation is given by

µ̂ = Aµ + b = Wξ

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 283

and

Σ̂ = HΣH T

where W and H are the matrices to be estimated. A procedure for doing this is
presented in [23].

6.3.2 Feature Space MLLR
Although it is a constrained version of the mean and variance transform described

in the previous section, in some ways the most important form of MLLR applies the
same transform to the means as to the variances:

µ̂ = A′µ − b′, Σ̂ = A′ΣA′T.

Under this constraint, straightforward estimation formulae can be derived, but more
importantly, the transformation can be applied in to the feature vectors rather than
the models, according to:

ô(t) = A′−1o(t) + A′−1b′ = Ao(t) + b.

The likelihoods computed with this feature transformation differ from those com-
puted with the model transform by log(|A|). When, as is often done, a single fMLLR
transform is used, this can be ignored in Viterbi decoding and EM training. This has
two important ramifications. Once the transforms have been estimated,

(1) Transformed features can be written out and the models can be retrained with
the standard EM procedures (speaker-adaptive or SAT training) and

(2) MMI or other discriminative training can be performed with the transformed
features.

Curiously, although multiple MLLR transforms are commonly used, the use of multi-
ple fMLLR transforms has not yet been thoroughly explored. Due to the convenience
of working with transformed or canonicalized features, feature space MLLR has be-
come a common part of modern systems [78,93]. It is often used in conjunction with
VTLN in the following speaker-adaptive or SAT training procedure:

(1) Train a speaker-independent (SI) system.
(2) Estimate VTLN warp scales using the frames that align to voiced phones with

the SI system.
(3) Write out warped features for each speaker.
(4) Train a VTLN-adapted system.
(5) Estimate fMLLR transforms with the VTLN models.
(6) Write out fMLLR-VTLN features.
(7) Train ML and/or MMI systems from the canonical features.

284 G. ZWEIG AND M. PICHENY

7. Performance Levels

In order to illustrate the error rates attainable with today’s technology—and the
relative contribution of the techniques discussed in earlier sections—the following
paragraphs describe the state-of-the-art as embodied by an advanced IBM system
in 2002 [46]. This system was designed to work well across a wide variety of speak-
ers and topics, and is tested on five separate datasets:

(1) Telephone conversations (Swb98).
(2) Meeting recordings (mtg).
(3) Two sets of call center recordings of customers discussing account informa-

tion (cc1 and cc2).
(4) Voicemail recordings (vm).

In this system, the recognition steps are as follows:

P1 Speaker-independent decoding. The system uses mean-normalized MFCC fea-
tures and an acoustic model with 4078 left context-dependent states and 171K
mixture components.

P2 VTLN decoding. VTLN warp factors are estimated for each speaker using
forced alignments of the data to the recognition hypotheses from P1, then
recognition is performed with a VTLN system that uses mean-normalized
PLP features and an acoustic model with 4440 left context-dependent states
and 163K mixture components.

P3 Lattice generation. Initial word lattices are generated with a SAT system that
uses mean-normalized PLP features and an acoustic model with 3688 word-
internal context-dependent states and 151K mixture components. FMLLR
transforms are computed with the recognition hypotheses from P2.

P4 Acoustic rescoring with large SAT models. The lattices from P3 are rescored
with five different SAT acoustic models and pruned. The acoustic models are
as follows:
A An MMI trained PLP system with 10437 left context-dependent states and

623K mixture components. The maximum value of c0 is subtracted from
each feature vector, and mean-normalization is performed for the other cep-
stral coefficients.

B An MLE PLP system identical to the system of P4A, except for the use of
MLE training of the acoustic model.

C An MLE PLP system with 10450 left context-dependent states and 589K
mixture components. This system uses mean normalization of all raw fea-
tures including c0.

D A SPAM MFCC system with 10133 left context-dependent states and 217K
mixture components.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 285

E An MLE MFCC system with 10441 left context-dependent states and 600K
mixture components. This system uses max.-normalization of c0 and mean
normalization of all other raw features.

The FMLLR transforms for each of the five acoustic models are computed
from the one-best hypotheses in the lattices from P3.

P5 Acoustic model adaptation. Each of the five acoustic models are adapted
with MLLR using one-best hypotheses from their respective lattices generated
in P4.

P6 4-gram rescoring. Each of the five sets of lattices from P5 are rescored and
pruned using a 4-gram language model.

P7 Confusion network combination. Each of the five sets of lattices from P6 are
processed to generate confusion networks [57], then a final recognition hy-
pothesis is generated by combining the confusion networks for each utterance.

The performance of the various recognition passes on the test set is summarized in
Table I.

TABLE I
WORD ERROR RATES (%) FOR EACH TEST SET AT EACH PROCESSING STAGE AND THE OVERALL,
AVERAGE ERROR RATE. FOR PASSES WHERE MULTIPLE SYSTEMS ARE USED (P4–6), THE BEST

ERROR RATE FOR A TEST COMPONENT IS HIGHLIGHTED

Pass swb98 mtg cc1 cc2 vm All

P1 42.5 62.2 67.8 47.6 35.4 51.1

P2 38.7 53.7 56.9 44.1 31.7 45.0

P3 36.0 44.6 46.6 40.1 28.0 39.1

P4A 31.5 39.4 41.7 38.2 26.7 35.5
P4B 32.3 40.0 41.3 39.0 26.7 35.9
P4C 32.5 40.2 42.1 39.9 27.0 36.3
P4D 31.7 40.3 42.6 37.6 25.8 35.6
P4E 33.0 40.5 43.4 38.8 26.9 36.5

P5A 30.9 38.3 39.4 36.9 26.1 34.3
P5B 31.5 38.5 39.4 37.0 26.5 34.6
P5C 31.6 38.7 41.0 39.4 26.8 35.5
P5D 30.8 39.0 41.1 36.7 25.6 34.6
P5E 32.1 38.9 41.8 36.8 26.4 35.2

P6A 30.4 38.0 38.9 36.5 25.7 33.9
P6B 31.0 38.3 38.9 36.4 25.8 34.1
P6C 31.2 38.4 40.1 38.9 26.3 35.0
P6D 30.4 38.6 40.8 36.3 25.5 34.3
P6E 31.5 38.5 41.6 35.9 25.7 34.6

P7 29.0 35.0 37.9 33.6 24.5 32.0

286 G. ZWEIG AND M. PICHENY

8. Conclusion

Over the past decade, incremental advances in HMM technology have advanced
the state of the art to the point where commercial use is possible. These advances
have occurred in all areas of speech recognition, and include

• LDA and HLDA analysis in feature extraction,

• discriminative training,

• VTLN, MLLR and FMLLR for speaker adaptation,

• the use of determinization and minimization in decoding graph compilation,

• consensus decoding,

• voting and system combination.

Collectively applied, these advances produce impressive results for many speakers
under many conditions. However, under some conditions, such as when background
noise is present or speech is transmitted over a low-quality cell phone or a speaker has
an unusual accent, today’s systems can fail. As the error-rates of Section 7 illustrate,
this happens enough that the average error-rate for numerous tasks across a variety of
conditions is around 30%—far from human levels. Thus, the most critical problem
over the coming decade is develop truly robust techniques that reduce the error rate
by another factor of five.

REFERENCES

[1] Aho A.V., Sethi R., Ullman J.D., Compilers: Principles, Techniques, and Tools,
Addison–Wesley, Reading, MA, 1986.

[2] Aubert X., “A brief overview of decoding techniques for large vocabulary continuous
speech recognition”, in: Automatic Speech Recognition: Challenges for the New Mil-
lennium, 2000.

[3] Axelrod S., Gopinath R., Olsen P., “Modeling with a subspace constraint on inverse
covariance matrices”, in: ICSLP, 2002.

[4] Bahl L.R., Brown P.F., de Souza P.V., Mercer R.L., “Maximum mutual information
estimation of hidden Markov model parameters for speech recognition”, in: ICASSP,
1986, pp. 49–52.

[5] Bahl L.R., et al., “Context dependent modeling of phones in continuous speech using
decision trees”, in: Proceedings of DARPA Speech and Natural Language Processing
Workshop, 1991.

[6] Baker J., “The Dragon system—an overview”, IEEE Transactions on Acoustics,
Speech, and Signal Processing 23 (1975) 24–29.

[7] Bamberg P., “Vocal tract normalization”, Technical report, Verbex, 1981.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 287

[8] Brown P.F., et al., “Class-based n-gram models of natural language”, Comput. Lin-
guist. 18 (1992).

[9] Chen S., Eide E., Gales M., Gopinath R., Olsen P., “Recent improvements in IBM’s
speech recognition system for automatic transcription of broadcast speech”, in: Pro-
ceedings of the DARPA Broadcast News Workshop, 1999.

[10] Chen S.S., Gopalakrishnan P.S., “Clustering via the Bayesian information criterion with
applications in speech recognition”, in: ICASSP, 1995, pp. 645–648.

[11] Chen S., et al., “Speech recognition for DARPA communicator”, in: ICASSP, 2001.
[12] Chen S.F., Goodman J., “An empirical study of smoothing techniques for language

modeling”, Technical Report TR-10-98, Harvard University, 1998.
[13] Chomsky N., Aspects of the Theory of Syntax, MIT Press, Cambridge, MA, 1965.
[14] CMU, The CMU Pronouncing Dictionary, 2003.
[15] Linguistic Data Consortium, Callhome American English lexicon (pronlex), 2003.
[16] Davies K., et al., “The IBM conversational telephony system for financial applications”,

in: Eurospeech, 1999.
[17] Davis S., Mermelstein P., “Comparison of parametric representations for monosyllabic

word recognition in continuously spoken sentences”, IEEE Transactions on Acoustics,
Speech, and Signal Processing 28 (1980) 357–366.

[18] Digalakis V.V., Rtischev D., Neumeyer L.G., “Speaker adaptation using constrained
estimation of Gaussian mixtures”, IEEE Transactions on Speech and Audio Processing
(1995) 357–366.

[19] Duda R.O., Hart P.B., Pattern Classification and Scene Analysis, Wiley, New York,
1973.

[20] Eide E., Gish H., “A parametric approach to vocal tract length normalization”, in:
ICASSP, 1996, pp. 346–348.

[21] Fiscus J.G., “A post-processing system to yield reduced word error rates: Recognizer
output voting error reduction (rover)”, in: IEEE Workshop on Automatic Speech Recog-
nition and Understanding, 1997.

[22] Furui S., “Speaker independent isolated word recognition using dynamic features of
speech spectrum”, IEEE Transactions on Acoustics Speech and Signal Processing 34
(1986) 52–59.

[23] Gales M.J.F., “Maximum likelihood linear transformations for HMM-based speech
recognition”, Technical Report CUED-TR-291, Cambridge University, 1997.

[24] Gales M.J.F., “Maximum likelihood linear transformations for HMM-based speech
recognition”, Computer Speech and Language 12 (1998).

[25] Gales M.J.F., Woodland P.C., “Mean and variance adaptation within the MLLR frame-
work”, Computer Speech and Language 10 (1996) 249–264.

[26] Gao Y., Ramabhadran B., Chen J., Erdogan H., Picheny M., “Innovative approaches for
large vocabulary name recognition”, in: ICASSP, 2001.

[27] Gauvain J.-L., Lamel L., Adda G., “The LIMSI 1999 BN transcription system”, in:
Proceedings 2000 Speech Transcription Workshop, 2000, http://www.nist.gov/speech/
publications/tw00/html/abstract.htm.

http://www.nist.gov/speech/publications/tw00/html/abstract.htm
http://www.nist.gov/speech/publications/tw00/html/abstract.htm
http://www.nist.gov/speech/publications/tw00/html/abstract.htm

288 G. ZWEIG AND M. PICHENY

[28] Gauvain J.-L., Lee C.-H., “Maximum a posteriori estimation for multivariate Gaussian
mixture observations of Markov chains”, IEEE Transactions on Speech and Audio
Processing 2 (1994) 291–298.

[29] Gopalakrishnan P.S., Bahl L.R., Mercer R.L., “A tree-search strategy for large vocabu-
lary continuous speech recognition”, in: ICASSP, 1995.

[30] Gopalakrishnan P., Kanevsky D., Nadas A., Nahamoo D., “An inequality for rational
functions with applications to some statistical estimation problems”, IEEE Transactions
on Information Theory 37 (1991) 107–113.

[31] Gopinath R., “Maximum likelihood modeling with Gaussian distributions for classifi-
cation”, in: ICASSP, 1998.

[32] Gouvea E.B., Stern R.M., “Speaker normalization through formant-based warping of
the frequency scale”, in: Eurospeech, 1997.

[33] Graff D., The English Gigaword Corpus, 2003.
[34] Gusfield D., Algorithms on Strings, Trees and Sequences, Cambridge Univ. Press, Cam-

bridge, UK, 1997.
[35] Haeb-Umbach R., Ney H., “Linear discriminant analysis for improved large vocabulary

continuous speech recognition”, in: ICASSP, 1992.
[36] Hain T., Woodland P.C., Evermann G., Povey D., “The CU-HTK March 2000 HUB5E

transcription system”, in: Proc. Speech Transcription Workshop, 2000.
[37] Hain T., Woodland P.C., Niesler T.R., Whittaker E.W.D., “The 1998 HTK system for

transcription of conversational telephone speech”, in: Eurospeech, 1999.
[38] Hermansky H., “Perceptual linear predictive (PLP) analysis of speech”, J. Acoustical

Society of America 87 (1990) 1738–1752.
[39] Hopcroft J.E., Ullman J.D., Introduction to Automata Theory, Languages and Compu-

tation, Addison–Wesley, Reading, MA, 1979.
[40] Hunt M.J., “A robust method of detecting the presence of voiced speech”, in: ICASSP,

1995.
[41] Jan E., Maison B., Mangu L., Zweig G., “Automatic construction of unique signa-

tures and confusable sets for natural language directory assistance applications”, in:
Eurospeech, 2003.

[42] Jeffreys H., Theory of Probability, Clarendon, Oxford, 1948.
[43] Jelinek F., “Continuous speech recognition by statistical methods”, Proceedings of the

IEEE 64 (1976) 532–556.
[44] Kamm T., Andreou A., Cohen J., “Vocal tract normalization in speech recognition:

Compensating for systematic speaker variability”, in: Proceedings of the 15th Annual
Speech Recognition Symposium, Baltimore, MD, 1995, pp. 175–178.

[45] Katz S.M., “Estimation of probabilities from sparse data for the language model com-
ponent of a speech recognizer”, IEEE Transactions of Acoustics, Speech and Signal
Processing 35 (1987) 400–401.

[46] Kingsbury B., Mangu L., Saon G., Zweig G., Axelrod S., Visweswariah K., Picheny M.,
“Towards domain independent conversational speech recognition”, in: Eurospeech,
2003.

[47] Kneser N., Ney H., “Improved backing-off for m-gram language modeling”, in:
ICASSP, 1995.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 289

[48] Kuhn R., “Speech recognition and the frequency of recently used words: A modified
Markov model for natural language”, in: 12th International Conference on Computa-
tional Linguistics, Budapest, 1988, pp. 348–350.

[49] Kuhn R., De Mori R., “A cache based natural language model for speech recognition”,
IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 570–583.

[50] Kumar N., Andreou A.G., “Heteroscedastic discriminant analysis and reduced rank
HMMs for improved speech recognition”, Speech Communication (1998) 283–297.

[51] Leggetter C., Woodland P.C., “Flexible speaker adaptation using maximum likelihood
linear regression”, in: Eurospeech, 1995.

[52] Leggetter C., Woodland P.C., “Speaker adaptation of continuous density HMMs using
multivariate linear regression”, in: ICSLP, 1994.

[53] Leggetter C.J., Woodland P.C., “Flexible speaker adaptation using maximum likelihood
linear regression”, in: Eurospeech, 1995.

[54] Levinson S.E., Rabiner L.R., Sondhi M.M., “An introduction to the application of the
theory of probabilistic functions of a Markov process to automatic speech recognition”,
The Bell System Technical Journal 62 (1983) 1035–1074.

[55] Ljolje A., et al., “The AT&T 2000 LVSCR system”, in: Proceedings 2000 Speech
Transcription Workshop, 2000, http://www.nist.gov/speech/publications/tw00/html/
abstract.htm.

[56] Makhoul J., “Linear prediction: A tutorial review”, Proceedings of the IEEE 63 (1975)
561–580.

[57] Mangu L., Brill E., Stolcke A., “Finding consensus in speech recognition: Word error
minimization and other applications of confusion networks”, Computer Speech and
Language 14 (2000) 373–400.

[58] Matsoukas S., et al., “Speech to text research at BBN”, in: Proceedings of January 2003
EARS Midyear Meeting, 2003.

[59] Mohri M., “Finite-state transducers in language and speech processing”, Comput. Lin-
guist. 23 (1997).

[60] Mohri M., Riley M., Hindle D., Ljolje A., Pereira F., “Full expansion of context-
dependent networks in large vocabulary speech recognition”, in: ICASSP, 1998.

[61] Molau S., Kanthak S., Ney H., “Efficient vocal tract normalization in automatic speech
recognition”, in: ESSV , 2000, pp. 209–216.

[62] Nadas A., “A decision theoretic formulation of a training problem in speech recognition
and a comparison of training by unconditional versus unconditional maximum likeli-
hood”, IEEE Transactions on Acoustics, Speech, and Signal Processing 31 (1983).

[63] Nadas A., Nahamoo D., Picheny M., “On a model-robust training method for speech
recognition”, IEEE Transactions on Acoustics, Speech, and Signal Processing 36
(1988).

[64] Naur P., “Revised report on the algorithmic language Algol 60”, Communications of
the Association for Computing Machinery 6 (1963) 1–17.

[65] Neukirchen C., Klakow D., Aubert X., “Generation and expansion of word graphs using
long span context information”, in: ICASSP, 2001.

[66] Ney H., Essen U., Kneser R., “On structuring probabilistic dependences in stochastic
language modelling”, Computer Speech and Language (1994) 1–38.

http://www.nist.gov/speech/publications/tw00/html/abstract.htm
http://www.nist.gov/speech/publications/tw00/html/abstract.htm
http://www.nist.gov/speech/publications/tw00/html/abstract.htm

290 G. ZWEIG AND M. PICHENY

[67] Niesler T.R., Whittaker E.W.D., Woodland P.C., “Comparison of part-of-speech and
automatically derived category-based language models for speech recognition”, in:
ICASSP, 1998.

[68] Normandin Y., Regis C., De Mori R., “High-performance connected digit recogni-
tion using maximum mutual information”, IEEE Transactions on Speech and Audio
Processing 2 (1994) 299–311.

[69] Odell J.J., “The use of context in large vocabulary speech recognition”, Cambridge
University dissertation, 1995.

[70] Olsen P., Gopinath R., “Extended MLLT for Gaussian mixture models”, IEEE Trans-
actions on Speech and Audio Processing (2001).

[71] Ortmanns S., Ney H., “A word graph algorithm for large vocabulary continuous speech
recognition”, Computer Speech and Language (1997) 43–72.

[72] Pellom B., Ward W., Hansen J., Hacioglu K., Zhang J., Yu X., Pradhan S., “University
of Colorado dialog systems for travel and navigation”, in: Human Language Technolo-
gies, 2001.

[73] Rabiner L.R., Juang B.-H., “An introduction to hidden Markov models”, IEEE ASSP
Magazine (1986) 4–16.

[74] Rabiner L.R., Juang B.-H., Fundamentals of Speech Recognition, Prentice Hall, New
York, 1993.

[75] Rosenfeld R., “A maximum entropy approach to adaptive statistical language model-
ing”, Computer Speech and Language 10 (1996) 187–228.

[76] Sankar A., Gadde V.R.R., Stolcke A., Weng F., “Improved modeling and efficiency for
automatic transcription of broadcast news”, Speech Communication 37 (2002) 133–
158.

[77] Saon G., Padmanabhan M., Gopinath R., Chen S., “Maximum likelihood discriminant
feature spaces”, in: ICASSP, 2000.

[78] Saon G., Zweig G., Kingsbury B., Mangu L., Chaudhari U., “An architecture for rapid
decoding of large vocabulary conversational speech”, in: Eurospeech, 2003.

[79] Schroeder M.R., “Recognition of complex acoustic signals”, in: Bullock T.H. (Ed.),
Life Sciences Research Report 5, Abakon Verlag, 1977.

[80] Seymore K., Rosenfeld R., “Scalable backoff language models”, in: ICSLP, 1996.
[81] Stolcke A., Konig Y., Weintraub M., “Explicit word error minimization using n-best

list rescoring”, in: Eurospeech, 1997.
[82] Stolcke A., “Entropy-based pruning of backoff language models”, in: Proceedings of

DARPA Broadcast News Transcription and Understanding Workshop, 1998, pp. 270–
274.

[83] Stolcke A., “Srilm—an extensible language modeling toolkit”, in: ICSLP, 2002.
[84] Suontausta J., Hakkinen J., Olli V., “Fast decoding in large vocabulary name dialing”,

in: ICASSP, 2000, pp. 1535–1538.
[85] Waitika H., “Normalization of vowels by vocal-tract length and its application to vowel

identification”, IEEE Transactions on Audio Speech and Signal Processing (1977) 183–
192.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 291

[86] Wegmann S., Zhan P., Carp I., Newman M., Yamron J., Gillick L., “Dragon systems’
1998 broadcast news transcription system”, in: Proceedings of the DARPA Broadcast
News Workshop, NIST, 1999.

[87] Wegmann S., McAllaster D., Orloff J., Peskin B., “Speaker normalization on conversa-
tional telephone speech”, in: ICASSP, 1996.

[88] Welling L., Haberland N., Ney H., “Acoustic front-end optimization for large vocabu-
lary speech recognition”, in: Eurospeech, 1997.

[89] Welling R., Haeb-Umbach R., Aubert X., Haberland N., “A study on speaker normaliza-
tion using vocal tract normalization and speaker adaptive training”, in: ICASSP, 1998,
pp. 797–800.

[90] Weng F., Stolcke A., Sankar A., “Efficient lattice representation and generation”, in:
ICSLP, 1998.

[91] Whittaker E.W.D., Woodland P.C., “Efficient class-based language modelling for very
large vocabularies”, in: ICASSP, 2001.

[92] Woodland P.C., Povey D., “Large scale discriminative training for speech recognition”,
in: Automatic Speech Recognition: Challenges for the New Millennium, 2000.

[93] Woodland P., et al., “The CU-HTK April 2002 switchboard system”, in: EARS Rich
Transcription Workshop, 2002.

[94] Young S., Odell J., Ollason D., Valtchev V., Woodland P., The HTK Book, 2.1 edition,
Entropic Cambridge Research Laboratory, 1997.

[95] Young S.J., Odell J.J., Woodland P.C., “Tree-based tying for high accuracy acoustic
modelling”, in: ARPA Workshop on Human Language Technology, 1994.

[96] Zhan P., Waibel A., “Vocal tract length normalization for large vocabulary continuous
speech recognition”, Technical Report CMU-CS-97-148, School of Computer Science,
Carnegie Mellon University, 1997.

[97] Zue V., et al., “A telephone-based conversational interface for weather information”,
2000.

[98] Zweig G., Padmanabhan M., “Exact alpha–beta computation in logarithmic space with
application to map word graph construction”, in: ICSLP, 2000.

[99] Zweig G., Saon G., Yvon F., “Arc minimization in finite state decoding graphs with
cross-word acoustic context”, in: ICSLP, 2002.

[100] Zwicker E., “Subdivision of the audible frequency range into critical bands”, J. Acousti-
cal Society of America 33 (1961) 248.

[101] Zwicker E., “Masking and physiological excitation as consequences of ear’s frequency
analysis”, in: Plomp R., Smoorenburg G.F. (Eds.), Frequency Analysis and Periodicity
Detection in Hearing, 1970.

	Advances in Large Vocabulary Continuous Speech Recognition
	Introduction
	Front End Signal Processing
	Mel Frequency Cepstral Coefficients
	Perceptual Linear Predictive Coefficients
	Discriminative Feature Spaces

	The Acoustic Model
	Hidden Markov Model Framework
	Acoustic Context Models
	Gaussian Mixture State Models
	Maximum Likelihood Training
	Maximum Mutual Information Training

	Language Model
	Finite State Grammars
	N-gram Models
	Smoothing
	Additive Smoothing.
	Low-Order Backoff.
	Low-Order Interpolation.

	Cross-LM Interpolation
	N-gram Models as Finite State Graphs
	Pruning
	Class Language Models

	Search
	The Viterbi Algorithm
	Statically Compiled Decoding Graphs (HMMs)
	Dynamically Compiled Decoding Graphs (HMMs)

	Multipass Lattice Decoding
	Consensus Decoding
	System Combination

	Adaptation
	MAP Adaptation
	Vocal Tract Length Normalization
	MLLR
	Model Space MLLR
	Feature Space MLLR

	Performance Levels
	Conclusion
	References

