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ABSTRACT - ?Ms paper presents a summary of a uni-
fied theory, based upon mathematical morphology, of
all translation-invariant and increasing systems.

Examples of such systems are morphological trans-
formations of signals, order—statistics filters and
some linear shift-invariant filters. Oar theoreti-
cal research showed that every such system can be

vniquely represented by the minimal elements of its
kernel and realized as a minimal combination of
morphological erosions.

INTRD1XJC ION

Mathematical Morphology was introduced by
Matheron and Serra [1,21 as a set-theoretical
method for image analysis whose purpose is the
quantitative description of geometrical structures.
Using mathematical morphology as a tool, our theo-
retical research aims at studying the geometrical
structure of signals and systems. A n-dimensional
signal can be mathematically represented by a func-
tion of n independent variables. The function rep-

resenting a n-dimensional signal may assume only
binary values, e.g. binary images, in which case we
can represent the signal as a mathematical set in a
n-dimensional Euclidean space. Henceforth, func-
tions and sets will be viewed as special cases of
mathematical representations for signals with the
distinction that, function implies a multi-valued
signal whereas set refers to a binary-valued sig-
nal. We adopt a similar classification for systems

by considering function-processing and set-proces-
sing systems. A n-dimensional system is called set-
processing if it can accept n-dimensional binary-
valued signals as inputs and produce n-dimensional

binary-valued signals as outputs, e.g. a system
processing binary images. Mathematical morphology
represents image objects as sets in a Euclidean
space. Thus, in our analysis, the set is the prima-
ry notion and function is a particular case; e.g. a
n-dimensional multi-valued function is viewed as a (1)
set in a (n+l)-dimensional space. In this light
then, any function- or set-processing system is
viewed as a set mapping (transformation) from one (2)
class of sets into another class of sets. However,
the concept of a set is more general than needed to

represent an image object. A good compromise (Ma- (3)
theron[l]) is to select the class of all closed
subsets of a Euclidean space E, denoted by F(E), to (4)

represent image objects. The generalized space
(5)
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F(E), topologized by the Hit-or-Miss[l,2] topolo-
gy, becomes a compact, Hausdorf, topological space
with a countable base, which enables us to study
convergence and continuity inside it.

Mathematical morphology extracts information
from image objects by first choosing a structuring
element, which is another object of rather simpler
shape and size than the original object. The struc-
turing element interacts with the image object and
transforms it into another more expressive form.
These morphological transformations of image ob-
jects by structuring elements, in order to be quan-
titative, must satisfy four principles[2], two of
which are invariance under vector translation and
upper-semicontinuity of the set mappings inside the
class F(E). Before we present our new results, we
briefly define and coimient on morphological trans-
formations of sets and functions, order-statistics
filters and the kernel representation of transla-
tion-invariant systems. But first we introduce some
notation:

NYAT ION

R = set of real numbers; Z = set of integers;n n nE = Euclidean spaces i , Z , Z X R,..;n n . .
D = ic or Z : domain of definition of functions f,g

F(E) class of all closed subsets of E;
XáA,B=subsets of E or D; f,g=functions defined on D
X = complement of X; jxl = cardinality of X;

x: P = set of points x satisfying a property P
U(fl) = set intersection (union)
AcB = set A is a subset of set B

[fAg}(x) INF[f(x),g(x)], xeD
[fVg}(x) = SIJP[f(x),g(x)], xD
f < g = f(x) < g(x) , all xeD
B = z+b: beB = translate of B by the vector zeE

srs
EROSION: X®B = z: BCX = flxb

beB

DILATION: X()B = z: BnXØ = Uxb
beB

OPENING: X:(XeB)®B ; CLOSING: XB=(X®B)®B

CROSS-SECTION: X(f) = xeD: f(x)>t

UMBRA: U(f) = (x,t)eDXR: f(x)>t

K-TH ORDER-STATISTIC: (X : B)k=z: IXflBI>k
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FUNCT IONS

[f®B](x) INFf(z): z€B,

[f®B](x) = SUPf(z): zeB,

BACKGJN]J

A. Morphological Transformations: Let the
closed set X represent an image object and the
compact set B a structuring element. The basic
morphological transformations of X by B are the
erosion, dilation, opening and closing. The erosion
of X by B (see Eq.1 and Fig.l) is the set of all
points z such that the translate B is included in
X. The dilation of X by B (see Eq.2) is the set of
all points z such that the translate B of B inter-
sects X. Figure 1 shows that erosion shrinks the
object whereas dilation expands it. Erosion and
dilation are dual operations with respect to corn-

plementation, meaning that dilating an image object
is equivalent to eroding its background. Another
pair of dual morphological transformations is the
opening and the closing: If we dilate the erosion
xeB by B, we do not recover X generally; we obtain

the opening XB of X by B. By duality, the closing
of X by B results from dilating first and then
eroding (see Eqs.3). As Fig.1 shows, both opening
and closing are nonlinear filters which smooth he
contours of X in a way such that always X.JcXcX'.

The above set transformations are generalized
to functions by establishing first a link between
sets and functions using two different concepts:
the cross-sections and the umbra of a function (see
Fig.2). The cross-section X(f) of a function f(x),
x€D, at level t is a subset of D consisting of
those points x such that f(x)>t (see Eq.4). The
cross-sections of a function form a family of de-
creasing sets. The umbra U(f) of the function f
(see Eq.5) is a subset of E=DXR, and it occupies
all the space in E which extends below the graph of
f down to -co Recall that our working space is the
class of all closed subsets of E. Hence, the e-
quivalent class of functions, whose cross-sections
are closed sets in D, or, equivalently, whose urn-
bras are closed sets in E, is the class of upper-
semicontinuous functions on D, abbreviated as
u.s.c. The mapping between u.s.c. functions and
their umbras is a topological mapping; i.e. it is

one-to-one and onto and continuous in both direc-
tions. As a result, the set intersection and union,
by which erosion and dilation of sets are also

X(fGB) = [x(f)]®B (10)

Similar results are valid for the opening f and
closing of f by B. Thus, morphological transYorma-
tions of a function by a set are function-proces-
sing systems which can be analyzed and realized as
set-processing systems. The erosion of a function
enlarges its minima, the dilation enlarges its
maxima, the opening cuts down its peaks, and the
closing fills up its valleys (see Fig.3). Finally,
the last step of generalization is to morpholo-
gically transform a function by another structuring
function: The erosion of a function f by another
function g is defined in Eq.(9) using the infimum
and an additive convolution between f and g. Using
suprernum and "+" in Eq.(9), instead of infimum and

gives us the dilation of f by g.

For all the above morphological operations we
assumed that both the structuring set B and the
structuring function g are syninetric with respect
to the origin; otherwise, the definitions of the
operations are slightly more complicated. In addi-
tion, B must be a compact set and g must have a
compact region of support so that all the above
morphological transformations are upper-semicon-
tinuous mappings. This last simplification allows
the erosion and dilation of discrete sets to be
realized by finite intersections and unions respec-
tively, and the erosion and dilation of sampled
functions as local MIN and MAX operations. The
openings and closings of functions have been called

"M-FILTERS'[3]. We call all the morphological
transformations of sets and functions morphotogtcat

systems or filters.

B. Order-Statistics: Order-statistics filters
for functions have been defined as a generalization

n
of median filters[4,5]. Let f(x), x€Z , be a n-
dimensional sampled function and B is a bounded
subset of Zn with JBI=N. Then, the k-th order-
statist1c of I with respect to B, denoted by
(f : B) , is another function whose value at x is
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Figure 1 - Erosion, dilation, opening and closing of X by B (the dark solid curve
refers to the transformed object and the dashed curve to the original object).
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[f®g](x) INFf(z)—g(x—z): zeD, all x€D

defined in Eqs,(1),(2), correspond to the infirnum
all xeD (7) "A' and supremum "V" respectively between func-

tions. Also, the set inclusion (ACB) corresponds
all XED (8) to the ordering of functions (f<g). Then, the ero-

sion and dilation of a function f by a set B are
(9) defined in Eqs.(7).(8) as the infimuni and supremurn

respectively of the function f(x) inside the trans-
lated set B . Erosion and dilation of functions by
sets conisufe with threshholding (taking cross-
sections). For example,



obtained by sorting in descending order the N val-
ues of f inside the window B shifted to location x
and picking the k-th number from the sorted list,
k1,2, .. ,N. For k(N+l)/2 and N odd, we have the
case of the median of a function. In Eq.(6) we
define the k-th order-statistic of a set X with
respect to B, which is obtained by counting points
instead of sorting. These definitions allow us to
identify the first and N-th order-statistics of
both functions and sets with their erosion and
dilation respectively by the set B. Moreover, the
order-statistics filters for functions coninute with

threshholding; i.e.

Xt[(f : B)k] = [Xt(f) : B]k

C. Kernels of v-systems: Consider the set-
processing system (mapping) T: X-+T(X). It is
called translation-invariant, or a v-system by
Matheron, if it comsutes with vector translation;
i.e. T(X)'.[T(X)]5. Such systems are uniquely re-
presented and realized by their kernel K(T):

K(T) = X T(X) contains the origin 0 (12)

The kernel is a collection of sets. If the v-system
T is increasing, i.e. if AB implies T(A)c(B),
then the kernel has a special structure, and the
following theorem results:
Theorem 1 (Matheron): All set-processing increasing
v-systems can be realized as ci union of erosions by
all the elements of its kernel.

NiW JSTS

We extended the kernel representation to func-
tion-processing systems: A vector translation of
the umbra of a function corresponds uniquely to a
shift of both the argument and the amplitude of the
function. Thus, function-processing v-systems are
those which coinnute with vector translation of
functions. Linear shift-invariant filters 'with dc-
gain=1 are v-systems. The kernel K(T) of a func-
tion-processing v-system T: f—4'T(f) is the fol-
lowing collection of functions:

K(T) f : [T(f)](O)>O

The function-processing system T is increasing if
f<g implies T(f)<T(g). Linear shift-invariant sys-
tems possessing a nonnegative impulse response are
increasing.
Theorem 2: Any functiori.-processirig increasing 'r-

syst era can be realized as a suprenuan of erosions by

all the fv.nctions of its kernel.
A similar result, as above, is mentioned

without proof in [3].

Theorems 1,2 are of no practical use because
they require the spanning of all the kernel ele-
ments, which are infinite in number. However, if we
can find some minimal kernel elements, then we can
significantly reduce the number of erosions re-
quired to realize the system. The kernel of a set-
or function-processing v-system is partially or-
dered with respect to set inclusion "C or or-
dering of functions '<", and a kernel element is
minimal if it is not preceded by any other kernel

(11) element. Thus, we define the basis to be the set of
minimal elements of the kernel . By its definition,
the basis is a subcollection of the kernel, and it
may sometimes be finite. The existence of such a
basis is proved by the following two theorems[6].
Let A be a subclass of F(E) closed under transla-
tion and infinite intersection. Then,
Theorem 3: If 7': A—*F(E) is an increasing u.s.c.
set-processing v-system, then, its kernel has a
minimal element; i.e. its basis is norierrcpty.

Theorem 4: The basis of any increasing u.s.c. v-
system processing u.s.c. functions is nonem-pty.

Now, for the realization of such systems we
proved the following two theorems{6]:
Theorem 5: Any increasing u.s.c. set- or function-
processing v-system is the union or suprennun respe-
ctively of erosions by all the elements of 'its
basis.
Theorem 6: Let T be an,,increasing u.s.c. set-proc-

essing v-system and T is its dual, system with
respect to complementation; i.e. 7' (X)[T(.X')]
Then the system 7' can be realized not only as union
of erosions by its own basis elements (Theorem ),
but also as an intersection of dil,ations by the
basis elements of its dual system 7'

We also have found[6,7J some interesting
relations between morphological and order-statis-
tics filters: 1) Any order-statistics filter for
sets (resp. functions) can be realized as a finite
union (resp. maximum) of erosions or as a finite

(13) intersection (resp. minimum) of di1ations. 2) Me-
dians of sets and functions are bounded between
morphological openings and closings. 3) A 1-0 sig-
nal is a median root[4] with respect to a convex
window of 2N+1 points if and only if it is both a
root of an opening and closing by a convex window
of N+1 points. Similar results have been found for
2-D sampled signals. 4) An opening followed by a

4:

Figure 1 (continued)

'C

Figure 2 - A function f, its cross-section at level t and its umbra.
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closing, or vice-versa, gives a median root in only
one iteration.

Individual parts of all the above theoretical
research with proofs are being prepared for more
detailed publications[6,7].

Example 1: 3-POINT 1-D MEDIAN FILTER
Referring to Eq.(6), B"-1,0,l and 1Bk3. Its ker-
nel, as a set-processing system, is the collection
of all subsets X of Z such that IXflBI>2. The
kernel has 3 minimal elements which are subsets of
B: M1'-1,0, l4r0.1 and M3=-l,1. Erosion of a
function f(n), neZ, by M is the minimum of
inside the window M1 shiftek to location a, and
similarly for M9 and Al3. Hence, see Theor.5, the
median of f with respect to B is:

( MIN[f(n-1),f(n)}
med(f : B) = MAX j MIN[f(n),f(n+1)]

t. MIN[f(n-1) ,f(n+1)]

Because the median coninutes with set complementa-
tion, we can interchange MIN and MAX in (14).

Example 2: 1-D FIR DISCRETE LINEAR FILTER
Let the impulse response h(n) of the linear filter
have the value of 0.5 at n=0,1 and zero everywhere
else. Then this filter is an increasing u.s.c. T-

system. Its kernel consists of all the functions f
such that hf(0)>O, where "" denotes discrete
convolution. The minimal elements are the functions
g such that g(0)=a, g(-1)=-a, aeR, and g(n)=0 or -
for convolution or SUP-operation respectively
wherever h(-n)'0. Then, see Theor.5, if f(n) is an
input function, the output hf(n) is equal to:

0.5[f(n)+f(n-1)] = SUP MIN[f(n)-a,f(n-1)+a]: aeR

Thus, a linear convolution was expressed in terms
of minimum and supremum.
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Figure 3 - Erosion, dilation, opening and closing
of a function f by a set B (the dashed
curve refers to the original function).


