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Abstract

The morphological operations of a hit-miss transform, opening and closing are generalized in a
number of ways. The new operations have been applied to a variety of binary image analysis problems
that involve pattern detection and reconstruction. Generalized openings are developed by replacing
erosions with hit-miss transforms. These new openings are shown to be anti-extensive, idempotent, and
center-independent. Similarly generalized closings are developed and related to openings by duality.
Additionally, the hit-miss transform is further generalized by replacing the erosions with blur and
rank order transforms, in order to improve the robustness of pattern matches. The set of invariance
properties of these new transforms can be widened by forming generalized openings from them.

1 Introduction
The morphological opening and closing operations satisfy several elegant and useful properties, such as
center-independence, idempotence, and anti-extensivity or extensivity, in addition to the general mor-
phological properties of translation invariance and increasing. However, because they are restricted to
only "hits" and "don't-cares" in the structuring element (abbreviated as SE), they are severely limited in
generality. The hit-miss transform (HMT), on the other hand, is an extremely general pattern-matching
operation. It is a generalization of the erosion to SEs that specify "misses" as well as "hits" , but it lacks

even the increasing property of the erosion.
The opening operation is an erosion followed by a dilation with the same SE. It is center-independent

because the image translations for the erosion and dilation, specified by the SE, are in opposite directions
(see definitions in (1) and (2)). The opening is idempotent because each pixel remaining after the erosion
represents a pattern match of the SE element to the original image, and is subsequently dilated by the

SE to reproduce exactly those pixels in the original image that were responsible for the initial pattern
match. When the opening is repeated, the erosion re-converts each dilated set of pixels to the same set
that was obtained after the first erosion. The opening is also anti-extensive since the opened image is
always contained within the original image.

The initial motivation for this work was to construct generalizations of the opening and closing
operations that include SEs with both hits and misses, and that share most of the special properties
of the standard opening and closing operations. From the foregoing, one might guess that an HMT
followed by a dilation by only the hits in the SE would be one such generalization for the opening. This
generalized opening would reproduce all the hits in the original image for which the HMT gives an exact
pattern match. Thus, it would extract shape features, in their entirety, from the image, and the result

would be a fixed point of simple operations related to the specified shapes. Use of such generalized
openings, with SEs composed of both hits and misses, implicitly broadens our view of the patternsthat
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are being matched. When SEs are composed of hits only, they are naturally viewed in terms of shapes
to be matched in the image. But when misses are introduced into the SE, we can alternatively consider
that the patterns being matched are short-range textures. The generalized opening then extracts textural
components, again in their entirety. The dividing line between shape and textural properties is not well
defined, but short-range texture can be intuitively understood as the local geometric relations between
hits and misses in the image. This is exactly what is specified by the SE.

In the standard opening and closing operations, the foreground and background pixels are implicitly
treated differently by using SEs that specify only foreground pixels. However, when generalizing from
the HMT, where both foreground and background pixels are specified, one may also wish to consider the
case where the subsequent dilation involves the background pixels.

Corresponding to any generalized opening operation, there is a dual generalized closing that must
satisfy the same general set of properties as the generalized opening, and in fact is equivalent to a
generalized opening on the background with an appropriately transformed SE.

Similar generalizations can also be made by using rank order operations. A rank order operation on a
binary image is equivalent to a thresholded convolution by a binary SE. When the SE consists only of hits,
as in the usual definition, the rank order operation is shift-invariant and increasing, and the morphological
erosion and dilation are special cases. Rank order operations are useful for pattern matching because they
have greater immunity than erosion to shape distortion, but they are more complicated computationally.
When a rank order operation is followed by a dilation by the SE, a type of opening results where shapes,
specified by the SE that are only partially matched by the rank order, are reproduced in their entirety
on the resulting image. In analogy with the generalized openings derived from the HMT, the HMT can
first be generalized to a rank order operation that uses a SE with both hits and misses. This rank order
operation can subsequently be generalized to an opening by dilating the result of the rank order by only
the hits in the SE. As with the simpler morphological operations, the motivation for using such operation
sequences is the expanded set of invariance properties.

In the following sections, we first define and then derive properties of the generalized openings and
generalized closings. There are two types of each, that we call foreground and background openings and
closings, and that are simply related to each other. The foreground operations are idempotent, whereas
the background operations are only fixed points of opening by the hits. We then discuss two general-
izations of the HMT that improve the robustness of the pattern match. The first is a computationally
efficient method we call a blur match, that gives immunity to noise near shape boundaries. Amore flexible
method is the thresholded convolution (or rank order filter), that gives an optimum decision for detecting
shapes corrupted by salt and pepper noise. Finally, the hit-miss rank order operation is extended to a
generalized rank order opening that allows reconstruction of partially occluded shapes and textures.

2 Generalized Opening

Let the planar set X represent a binary image and let the compact set A be a structuring element. The
erosion e and dilation of X by A are defined as

XeA = {z:A+zcX}=flX_z (1)
zEA

XEBA = {z:A+zcX}=UX+z (2)
zEA
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where A — {—a : a E A} is the reflection of A with respect to the origin and X z = {x z : x E X} is
the translation of X along the pixel vector

The HMT of X by a disjoint pair (A, B) of SEs is defined in [11] as the set transformation

x ® (A, B) = (X e A) n (XC e B) (3)

where A is the "hit" SE and B is the "miss' SE. By "hits" we will mean in this paper intersection with
the foreground of X, whereas the "misses" will refer to intersection with the background of X, i.e., the
set complement Xc. Thus the HMT is the intersection of a foreground erosion and a background erosion.
For brevity, we will often refer to the disjoint pair (A, B) of SEs as a single SE with both hits and misses.
It should be noted that they are both defined with respect to the same center position.

The ordinary opening XOA = (XeA)EfA ofX by A is an erosion followed by a dilation. Replacing the
erosion by an HMT leads to what we call a "generalized opening". Specifically, we define the generalized
foreground opening of X by (A, B) as the set transformation

W(X; A, B) = [X ® (A, B)] A. (4)

Whenever (A, B) are implied, we shall use the simpler notation (X). Thus the generalized foreground
opening is an HMT followed by a dilation with the hit SE A. It is a set consisting of the union of hits
for all matches of the HMT.

As an example of the use of the generalized foreground opening, suppose we wish to extract from the
image all lower edges of horizontal lines that have a given minimum length of 20 pixels. This can be
accomplished with a generalized foreground opening using the SE in Figure la. The filled circles are hits
and the empty circle is a miss, and the reference point for the SE is indicated by a cross in one of the hits.
When P is applied to the image in Figure 2, the extracted edges are shown in Figure 3a. Because we are
using only one miss near the center of the SE, these edges extend into the regions where the horizontal
and vertical lines intersect. If such extension is not desired, it can be prevented by placing two misses

fi!E•+••+• !E• •+•Ei!E!1!J!¶1!
•!1!

(a)

0
••••••••••0•••••••••

0

(b)

Figure 1. (a) SE for lower edges of horizontal lines. (b) SE for thin horizontal lines.

118 / SPIE Vol. 1350 Image Algebra and Morphological Image Processing (1990)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/20/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



at the ends of the SE. If we wish to sieve the horizontal lines, finding all horizontal lines of width equal
to or less than 3 pixels (for example), the SE in Figure lb can be used with the generalized foreground
opening. The result when applied to the image in Figure 2 is shown in Figure 3b. As expected, the thin
lines, in their entirety, have been extracted.

We now derive several properties of the generalized foreground opening.

PROPERTY 1 . The generalized foreground opening is anti-extensive; i.e.,

W(X;A,B)cXOAcX. (5)

Proof. Since X®(A, B)c xe A and since dilation is a monotone increasing operator (i.e., X Y =
XEBAcYd3 A), we have

(X)c(XeA)EDA = XQAcX.

PROPERTY 2 . The generalized foreground opening by (A, B) is a fixed point of the opening by A; i.e.,

[lIr(X; A, B)]OA = I'(X; A, B). (6)

Proof. Since (S A)OA = 5 A of any set 5, the above property follows by setting S = X ® (A, B).
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Figure 2. Image composed of small features and horizontal lines. The thin horizontal lines are one
pixel wide. Resolution: 135 pixels/inch.

(a) (b)

Figure 3. (a) Gen. foreground opening with SE of Figure la.
(b) Gen. foreground opening with SE of Figure lb.
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PROPERTY 3 . The generalizedforeground opening is centerindependent, i.e., independent ofthe location
of the SE pair; thus, for all vectors z,

W(X;A+z,B+z)=W(X;A,B). (7)

Proof. Intuitively, a shift of the center of (A, B) by z causes an equivalent shift in the location of the
HMT, and an opposite shift in the location of a dilation. Hence the sequence of HMT and dilation is
center-independent . Formally,

Xe(A+z)=(XeA)-z ; xce(B+z)=(xceB)_z.
Hence, S = X®(A + z, B + z) = {X®(A, B)] — z. Since S (A + z) = (S A) + z, the proof of (7) is
complete.

By a similar argument as in the previous property, all generalized operations defined in this paper are
independent of the location of the SE pair.

PROPERTY 4 . The generalizedforeground opening is idempotent; i.e.,

[(X)] = (X) . (8)

Proof. First note that, since is anti-extensive, we have

{(X)]c(X) (9)

To prove (8) we need only to show that [P(X)] 2(X). Let Y = X®(A, B). Then

W(X) e A = (V A) e A = Y.A DY (10)

where • is the ordinary closing. Since W(X)ç X it follows that {4r(X)]C DXC and hence [(X)]ceB Xe
B. Then, since YC X' e B, we have

.

[Ii(X)]ceBY (11)

From (10) and (11) it follows that iJt(X)®(A, B) JY, which in turn yields

1'[i1(X)] Y A = (X) (12)

Hence, from (9) and (12) it follows that [W(X)] = 'T!(X), and the proof is complete.
We can also define a generalized background opening as the following set transformation /'(.):

b(X; A, B) = [X®(A, B)] B . (13)

Thus the generalized background opening is an HMT followed by a dilation with the miss SE. As we do
for 1J1, whenever (A, B) are implied, we will use the simpler notation b(X).

In Figures 4a and 4b, we show the generalized background opening of the image in Figure 2, using the
SEs in Figure la and ib, respectively. These sets are contained within the background of Figure 2. The
generalized background opening is a set consisting of the union of misses for all matches of the HMT.
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PROPERTY 5 . The generalized background opening ofX is a subset ofXc; i.e.,

(X; A, B)c XcoBc Xc . (14)

Proof. Since X®(A, B)c X e B and since dilation is monotone increasing, we have

b(x)c (XCe B) B = XoB X.

PROPERTY 6 . The generalized background opening by (A, B) is a fixed-point of the opening by B; i.e.,

[(X;A,B)]oB = 'b(X;A,B) . (15)

Proof. Same as the proof for (6).
Thus, by performing both operations 1I(X) and '(X), i.e., by dilating the HMT with the hit SE and

separately with the miss SE, we obtain two new binary images, which are subsets of the original image
foreground and background, respectively. Thus the original image plane is partitioned now into 3 sets of
pixels: (1) the pixels of l(X), which are contained in X; (2) the pixels of ''(X), which are contained in
Xc; and (3) the rest, which are the pixels of {(X) U i/'(X)Jc. This information cannot be cast simply as a
binary image. We need three different gray levels, one for each of the three classes of pixels. Clearly, the
pixel class (3) is the least important and can be treated as the new "background".

The following property reveals that there is a close relationship between W and L'.

PROPERTY 7 . The generalized background opening of X by (A, B) is equal to the generalized foreground
opening of X' by (B, A); i.e.,

'i5(X;A,B) = J!(Xc;B,A) . (16)

Proof. From the definitions of P and b we have

b(X; A, B) = {(X e A) n (XC e B)] B

= [(XC e B) n (X e A)] B

=

The center independence of /' follows from (16) and the center independence of W.

(a) (b)

Figure 4. (a) Gen. background opening with SE of Figure la.
(b) Gen. background opening with SE of Figure lb.
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3 Generalized Closing
The duality principle between erosion and dilation, as well as between opening and closing, states that

(XCeA)c=XeA (17)
X•A = (XC0A)c (18)

where X•A = (X A) e A is the ordinary closing of X by A. Next we introduce a generalized closing
based on the duality principle. That is, we define the generalized foreground closing of X by (A, B),
denoted by (X; A, B) or simply by 4(X) if (A, B) are understood, as follows:

4(X;A,B) = [T(Xc;A,i3)Jc (19)

PROPERTY 8 . The generalized foreground closing is a "dual HMT" followed by an erosion; i.e,

(X; A, B) = [(X A) U (XC B)] e A (20)

dual HMT
Proof. From the definitions of 1 and we have

4(X;A,B) =
= {{(XceA)n(Xe.)]A]
= [(XCeA)n(XeE)IceA
= [(XCeA)cu(XeE)d}eA
= [(XEA)u(XB)}eA.

The "dual HMT" is the union of two dilations: of X by the hit SE (A), and of X' by the miss SE (B).
It consists of all points in an image X where either the translated hit SE A intersects at least one ON
pixel or the translated miss SE Ii intersects at least one OFF pixel. Thus, the "dual HMT" is the set of

Figure 5. (a) Gen. foreground closing with SE of Figure la.
(b) Gen. background closing with SE of Figure la.
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pixels where there is at least a partial match to the SE, and the generalized foregronnd closing is a "dual
HMT" followed by erosion by the hit SE. The generalized foreground closing, defined in (20), can also be
visualized as the set complement of a generalized foreground opening on the background. In this view,
it is the set complement of the union of hits for all matches to the set complement image (where the SE
must also be spatially inverted). Figure 5a shows the action of 4 on the image in Figure 2, using the SE
in Figure la as before. The lines of OFF pixels in Figure 5a are produced by first finding those points
in the image where the line of hits intersects OFF pixels and the single miss intersects an ON pixel (this
occurs on the top edges of the lines and on the top pixels of the text), and then eroding the result by the
line of hits. Note that the resulting lines of connected OFF pixels are continuous in the text section. We
next give several properties of the generalized foreground closing.

PROPERTY 9 . The generalizedforeground closing is extensive; i.e.,

(X;A,B)X•ADX . (21)

Proof. Since (X A) U (XC B) DX A, and since erosion is a monotone increasing operator (i.e.,.
xçy ==XeAYeA),wehave

4(X) (X A) e A = XSA X.
PROPERTY 10 . The generalized foreground closing by (A, B) is a fixed point of the closing by A; i.e.,

(X; A, B).A = (X; A, B) (22)

Proof. Since (S e A).A = S e A for any set 5, the above property immediately follows.

PROPERTY 11 . The generalizedforeground closing is idernpotent; i.e.,

(23)

Proof. This follows from (19) and the idempotence of the generalized foreground opening:

[(X; A, B)] = {W([(X; A, B)Jc; A, ])}C

= [W({W(Xc; A, .)]; A, E)IC

= [l'(X;A, )]C
=

As for the generalized openings, we define the generalized background closing of X by (A, B), denoted
by çb(X; A, B) or simply by ç5(X) if (A, B) are implied, as follows:

/(X;A,B) = {(Xc;A,E)]c (24)

By working in a similar way as for the foreground closing it can be shown that the generalized background
closing is a "dual HMT" followed by an erosion by the miss SE; i.e,

q5(X; A, B) = [(Xe A) u(Xc e B)] e B (25)
dual HMT
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Figure 5b shows the action of the generalized background closing on the image in Figure 2, using the
SE in Figure la. The background in Figure 2 is contained within this set.

PROPERTY 12 . The generalized background closing ofX contains XC; i.e.,

q5(X; A, B) X.B . (26)

Proof. Since (X A) U (XC B) DXC B, and since erosion is increasing, we have

çb(X) 2(XC B) e B = X.B

PROPERTY 13 . The generalized background closing by (A, B) is a fixed point of the closing by B; i.e.,

cb(X;A,B)•B = çb(X;A,B) (27)

Proof. Same as the proof of (22).

PROPERTY 14 . The generalized background closing ofX by (A, B) is equal to the generalized foreground
closing ofXc by (B,A); i.e.,

4(X; A, B) = (Xc; B, A) . (28)

Proof. This follows from the definitions (19) and (24).
So far we have seen that the two generalized openings W and b yield two sets whose union is a subset

of the original information; i.e., (X)C X and /'(X)ç X. By contrast, the two generalized closings
and çb yield two sets whose union is larger than the original information; i.e., 4(X) X and q(X) DXc.

We next show the ability of the generalized openings and closings to extract textural patterns. Con-
sider the hit-miss SE, given in Figure 6, which has a short-range periodic texture. Figure 7 shows the
application of the HMT and the generalized openings and closings, using this SE, to an image. The
strength of the HMT signal (b) should be contrasted with that of the generalized foreground opening in
(c), which shows all the foreground pixels in (a) that participate in the HMT match. The generalized
background opening in (d) shows background pixels in (a) that participate in the HMT match. The
OFF pixels in the generalized foreground closing (e) are background pixels in (a) that are not selected
by the dual HMT followed by an erosion of thel hit part of the SE. In this example, the number of such
pixels is large and comparable to that of the foreground pixels in (c). Finally, the OFF pixels in the
generalized background closing (f) are foreground pixels in (a) that are not selected by the dual HMT
followed by an erosion of the miss part of the SE. From this example, it is apparent that these operations
can extract signals corresponding to textural patterns within images that are of greater strength than
may be expected from visual observation.

1•1 101 1 101 O1 1 1•1

Figure 6. Hit-miss SE for short period texture.
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4 HMT with Rank Order Filters
The HMT of X by (A, B) detects the set of pixel locations at which A occurs in X and B occurs in Xc.
Thus the HMT is a binary matched filter that acts simultaneously both on the image foreground and its
background. Because it attempts to perform an exact matching, it is sensitive to noise, occlusions of image
parts, or uncertainties about the exact shape of the hit or miss SE. To make it more robust one could
perform a union of HMTs, each with slightly different SEs. This is the shape recognition approach followed
in [1]; however, it could be computationally very intense due to the potentially large number of SEs.

II
II

i1

II
''

II

(d)

Figure 7. (a) Starting image. The thin vertical lines are one pixel wide. Resolution: 48 pix-
els/inch. (b) HMT. (c) Generalized foreground opening. (d) Generalized background opening. (e)
Generalized foreground closing. (f) Generalized background closing.
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Blur Matching: A more efficient method for improving the robustness of the match is tocompute a
blur match. In distinction with the exact match of an HMT, we define a blur-match HMT (BHMT) to
require that (1) there is an ON pixel within a radius r1 of each hit, and (2) there is an OFF pixel within
a radius r2 of each miss. For SEs that describe shapes to be matched in the image, the blur match gives
immunity to pixel noise that occurs near the shape boundaries. Fortunately, this blur match is computed
efficiently by first dilating the image by a disk SE R1 of radius r1 and dilating the set complement image
by a disk SE R2 of radius r2, before computing the intersection of erosions in (3) for the HMT:

BHMT(X; A, B; R1, R2) = {(X R1) e A] n [(XC R2)e B] (29)

A generalized foreground blur opening is then generated by following the BHMT by a dilation by A:

Wblur(X A, B; R1, R2) = [((X R1) eA) fl ((X' R2) e B)] A . (30)

PROPERTY 15 . The generalized foreground blur opening by (A, B), with blurring disk SEs R1 and R2,
is a fixed point of the opening by A; i.e.,

{1'blur(X; A, B; R1, R2)JOA = Wblur(X; A, B; R1, R2) . (31)

Proof. Same as the proof for (6).

A more flexible approach for constructing a robust generalized opening is to replace the erosions in
the HMT with more general filters. There are two such generalizations, which, although different in their
definition and implementation, are theoretically equivalent. These are the threshold convolution and the
rank order filtering approach. In the remainder of this section, we will assume that we deal only with
liscrete signals.

Threshold Convolution: Let us represent the set X with a 2-D binary signal x(n), where n is a pixel
vector; i.e., x(n) = 1 if n E X and X(n) = 0 if n E Xc. Similarly, let w(n) be the the binary signal
representing a finite SE W, which is also viewed as a window of pixels. Consider the following thesholded

convolution of the input signal x(n), which yields a binary-to-binary signal operation:

H[x * w(n) — 9] (32)

where * denotes convolution, H is Heaviside's unit step function equal to H(s) = 1 if s � 0 and H(s) = 0
if s < 0, and 9 is a variable threshold. If 9 = WI where WI denotes the number of pixels in W, then
(32) is equivalent to the erosion of X by W. However, if 0 < W, then the threshold convolution imposes
looser conditions than erosion on detecting W in X, and hence it could potentially be more robust by

adjusting 0. These ideas have been applied to several template matching approaches for binary object
detection, as described in [3, 10, 8].

Rank Order Filtering: Given a discrete-time signal f(n) and a finite window W, the r-th rank order
transformation of f by W yields the signal

fDrW(fl) = r —thlargestoff(n+k), k E W (33)

where r = 1,2, ..., WI. Applying rank order filters to the binary signal x(n) representing X yields a
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binary signal too.1 In [6] a set-theoretic definition of binary rank order filters was given that avoids
sorting and uses only pixel counting; thus the r-th rank order transformation of X by W is

XDrW {z : X n (W + z)I � r} (34)

Note that if r = then XDrW becomes the erosion X e W; for r = 1 we get a dilation. Obviously,
the threshold convolution (32) and the binary rank order filtering (34) yield identical signals if 0 = r.

In [5J it was shown that the convolution of a binary signal f with a binary template w (representing a
SE W) compared to a threshold, or its equivalent rank order operation, is the optimum (using a Bayesian
formulation ) decision for detecting w in f, when f contains a shifted version of w corrupted with binary
salt-and-pepper noise. In [9] a composition of rank order filter and a dilation was proposed for feature
detection as a robust replacement of the ordinary opening. This r-th rank-dilation operation of a (binary
or non-binary) signal f by a binary template (set) W consists of the r-th rank order transformation of
I by W followed by a dilation by W. Thus the rank order operation replaces the erosion in an ordinary
opening and (by varying r = 1, ..., WI) serves in detecting W more robustly than the erosion, whereas
the dilation redraws W at the detected locations. The same operation was called rank opening in [5] and
shape inference opening in [12]. In [9] the rank-dilation operation was further superimposed with the
original image using pointwise minimum, which makes it anti-extensive and idempotent.2

Motivated by the above ideas, where rank order operations can improve the performance of matched
filters when they replace erosions, we will use rank order filters in the HMT of the generalized opening.
Thus, for a given disjoint SE pair (A, B), we define the (p, q)-th rank hit-miss transform of X by (A, B)
as the set transformation

x ®p,q (A, B) = (XDA) fl (XCDqB) (35)

where p = 1, 2, ..., Al and q = 1, 2, ..., IBI. Then, the (p, q)-th generalized foreground rank opening of X
by (A, B) is the set transformation

'T!p,q(X; A, B) = [(XOA) fl (X'EJqB)1 A (36)

Thus ';lfp,q consists of a rank HMT followed by dilation with the hit SE. Similarly, we can define the rank
order versions of the other generalized openings and closings.

PROPERTY 16 . The generalized foreground rank opening by (A, B) is a fixed point of the opening by A;
i.e.,

['I'p,q(X; A, B)]OA = ''p,q(X; A, B) . (37)
Proof. Same as the proof for (6).

PROPERTY 17 . The generalized foreground rank opening by (A, B) is not in general idempotent, except
in the case where p — IAI and q = IBI, where it reduces to the previously defined generalized foreground
opening .

1Binary rank order filters were used in [2]. Rank order filters for non-binary signals were used in [4, 7]. For relationships
between rank order and morphological operations see [6].

21n general, note that if r(.) is any increasing set operation, then the operation X— XflI'(X) is increasing, anti-extensive,
and idempotent.
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Proof. Consider an image with m ON pixels in a horizontal line, and a SE A with n <m horizontal
hits. If p < n, the rank order operation will cause the image to shrink to m —p + 1 pixels, and the
subsequent dilation expands it to m + n — p pixels, which is larger than m pixels. Each subsequent
application of the generalized rank order opening will also increase the image by n — p pixels.

Finally, note that all the ideas presented in this section on rank HMTs and generalized rank openings
of a (binary image) set X can be extended easily to gray-level images f by replacing all rank order set
transformations with rank order filters acting on gray-level images; replacing fl with pointwise minimum;
and replacing XC with m — f where m is the maximum gray amplitude.
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