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Abstract This paper provides a comparative study, 
through simulation, of the effectiveness of the 
local (decoupled) PD control, the computed torque 
control, and the sliding mode robust control when 
applied t o  a 5-link biped robot model. The 
superiority of the sliding mode control in case of 
existence of large parametric uncertainty is 
verified. It is  argued that sliding mode control 
appropriately smoothed can be used successfully 
in actual (experimental or not) bipeds to increase 
their performance capabilities. 

I. INTRODUCTION 

The mechanical complexity of legged locomotion 
systems is one of the caracteristics that make their study and 
design very difficult. In particular, the existence of a non 
(directly) controllable degree of freedom in biped systems 
plays a dominant role in the determination and improvement 
of their stabilitiy properties. On the other hand, during the 
motion of any walking robot, a number of sudden geometric 
constraints are imposed, e.g. stepping on the ground, knee 
locking, etc. These constraints, which are inherent in all 
walking machines, give rise to impulse-like disturbances 
that make the control by standard PD or PID controllers an 
extremely difficult problem. 

The analysis, design and construction of 
anthropomorphic bipeds has received in recent years a 
particular attention and currently many biped robot 
prototypes exist in academic and other institu ions [l-71. In 
the present paper the effectiveness of robust isliding mode 
control applied to a 5-link biped robot is: studied and 
compared to that of the usual computed torque and decoupled 
PD control. The theoretical expectation that sliding mode 
control is much superior than local PD control p d  computed 
torque control in the presence of strong parametric 
uncertainty is fully verified. The fact that this superiority is 
strengthened as the uncertainty level of the biped model 
increases is also established. Through the selection of 
appropriate reference signals a stable walk of the biped, both 
on an horizontal plane surface and on a staircase, is achieved. 
It is observed that if the uncertainty level is very high (higher 
than 80%) it may not be possible to maintain a stable gait 
with usual PID 
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control. The computational complexity of both the computed 
torque and the sliding mode control allow their realization 
with standard microprocessor hardware and software. In 
particular, if the algorithms are programmed in assembly. thc 
computation time is of the order of 3-4 msec. Further, by 
using suitable fast inverse dynamics algorithms (such as thc 
Luh-Walker-Paul algorithm, [8]) or by parallelizing thc 
computations, this figure can go down to less than 1-2 mscc. 
Another improvement can be obtained if all the trigonomclric 
functions ate prestored and called from a ROM mcmory. 
Thus, since a sampling frequency of at least 60 Hz 
(TS116msec) leads to a very good trajectory tracking 
performance, it can be argued that the sliding mode control is 
suitable for use in experimental and practical bipcd robotic 
systems. 

11. THE BIPED DYNAMIC ROBOTIC MODEL 

The biped robot model of the present study has five links 
(torso and two links in each leg) and has thc form of Fig.1. 

---* 

Fig. 1. 5-link planar bipcd robot modcl 



These links are connected via four rotating joints (two hip 
and two knee joints) which are assumed to be friction free, 
and each one of them is driven by an independent dc motor. 
The locomotion takes place on the sagittal plane as shown in 
Fig.1. Since this biped does not have ankle joints and feet, 
variation of its speed through torques at these joints is not 
possible. The biped, however, can walk indirectly using the 
effect of gravity. 

From Fig.1 it follows that 

x e = x + 1 lsinO + 1 2sine + 1 4sine + 1 5sin€l (la) b 

b 2 y e  = + 1 p s e  + 1 case - 1 ,case - 1 p e  (ib) 

Now, if (cgx, cgy) arc the coordinates of the biped’s center of 
mass, and (xci, yci) thc coordinatcs of the ccntcr of mass of 
link i thcn 

x = d l s i n e l  , y,, = d l c o s e l  
cl 

= I l s i n 8 1 + d 2 s i n 8 2 ,  yc2 = I l c o s € l l + d  c o s 8  
c2 2 2  

x 

x c3  = 1 1 s i n 8 1 + 1 2 s i n 8 2 + d 3 s i n 8 3  

y c 3 =  I case + I  cose + d  cose 

yc4 = I cose  + I  cose - ( i 4 - d 4 ) C o s e  

yes= I case + I  cose - I  c o s e 4 - ( ~ 5 - d 5 ) C O S e ,  

1 2  2 3  3 

x = 1 s i n e  + I  s i n e  + (  I 4 - d 4 ) s i n e 4  
c 4 1  1 2  2 

I 1 2  2 

5 
x = l , s i n e l + l  s i n e  + I  s i n e 4 + ( 1  - d  ) s i n e  

C S  2 2 4  5 5  

1 1 2  2 4  

( n i l  xc l  + m  x + m 3 x d + m  
2 c2 cgx = ( m  + m  + m  + m  + m 5 )  
1 2 3 4  

( “I1 Y cl + m 2 Y c2 + m 3 Y c 3  + m 4Y c4 + m5 Y d l  
cgy = 

( m  + m  + m  + m  + m  ) 
1 2 3 4 5  

(3) 

’ (4) 

This situation is schcmatically shown in Fig.2. It is 
assumcd that thc friction of thc ground is sufficiently large to 
cnsurc no slipping of thc supporting end. Since the motion 
of thc bipcd is pcrforincd on thc planc of Fig.1 the angles 8i 
(i=l,2, ..., 5) arc sufficicnt for fully describing its 
configuration. 

Thc Lagrangc dynamic modcl dcscribing thc motion of the 
bipcd in this phasc is found to bc : _ _  - 

i +  
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Fig. 2. Biped with one leg in the air 

h ( 8 , 6 ) =  col  [ j= I( ; J# I) . ( h i j j q 2 ) ]  

G(8) = col [Gi(8)] , D(8) = [Dij(8)] , (ij=1,2, ... 5 )  

Hcre T a  is the generalized torque that corresponds to q, 
~ l [ t 4 ]  is a column vector with elements 4, and D(0) 
is the inertia matrix of the biped 

Now, lct ~=[r~.t~,r~.t~]~ be the vector of the driving 
torques of thc four joints of the bipcd, where (Fig.2): 

r l  : driving torque of the knee of the supporting leg 
t2 : driving torque of thc hip of the supporting leg 
t 3  : driving torque of the hip of the free leg 
t4 : driving torque of the knee of the free leg 

If ql, q2, q3 and 44 are the relative angle deflections of the 
corresponding joints, then (see Fig.2): 

ql=e,-% , q2=e2-e3 , q3=e3+e4 , %=e4-e5 
ind so the relation 



- 
1 0 0 0  

- 1  1 0 0  

0 0 1  1 
0 0 0 - 1  - 

E=[ 0 - 1  1 0 

D(e) .  e +  h(8,8)+ G ( 8 ) = E -  z (7) 

D q ( i , l ) =  A i l + A i 2 + A i 3 - A i 4 - A i 5  ’ 

D q ( i , 2 ) =  - A i 2 -  A i 3 + A i 4 + A i 5  

D q ( i , 4 )  = Ai,+ Ai, 

Dq( i ,5 )  = -Ai ,  

D , ( i , 3 ) =  - A i 3 + A i 4 + A i s  

One observes that only four of the five degrees of freedom 
81,82,...,85 can be controlled directly by the four driving 
torques T ~ , % , T ~  and r4. The angle 8, at the contact point 
with the ground (hypothetical joint 0) is controlled only 
indirectly using the gravitational effect- 

To facilitate the control procedure, to be described in 
Section In, the model (7) is transformed to : 

(s b) 

D , ( q ) -  q + h , + G , =  T ,  

where ( here Tqo=O ) q = col [qj] , hq = col [ h ~ ]  , 

Gq = col [G41 , Tq = col [Ti l  ( j = 0 ... 4 ) 
and 

This model uses the variables qi ( i = 0, 1, ..., 4 ) instead of 
Oi ( i=l, 2, ..., 5 ), where qo corresponds to the hypothetical 
joint 0 at the contact point (Xb,Yd with %=e1. Due to space 
limitations, the expressions for the &j’s are omitted here (see 
[I21 1. 

B. Biped-in-the-Air Phase 

Suppose now that at the moment when the free leg 
touches the ground, the supporting leg leaves the ground, so 
that the biped is actually in the air. This means that at the 
moment of collision of the free end with the ground the 
constraint xFyb=constant and = f b  = 0, which was 
valid in the single-leg- support phase, is removed (see Fig. 
2). This implies that the dynamic model (5) or (8a) of the 

single-leg-support phase cannot be applied to compute the 
instantaneous changes of the joint angular velocities at the 
moment when the free end of the biped collides with the 
ground. 
Our purpose here is to present the biped dynamic equations 

when both legs are in the air, In this case, for a full 
description of the configuration and the position of the biped, 
one needs, in addition to Oi (i=1,2, ..., 5 )  the coordinates Xb 

and yb of the left end of the biped. 
Applying the standard procedure through the Lagrange 

equations one finds the following dynamic model for the 
biped in the air : 

Ga(i)=G; , (i=l, .... 5) , Ga(6)=0 and 

For the 7x1 vectors T, and ha we have 
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Ta(i) = Tfj(i) , i=l, ... ,5 
Ta(6) = Txb = 0 , Ta(7)= Tyb = 0 . 

h a ( i ) =  h ( i )  , i =  1. ..., 5 

h a ( 9  = -pI6(el)  sine, - ~ ~ ( 8 , )  sin0, 

- ~ ~ ~ ( 6 ~ )  sine,- ~ ~ ~ ( 6 , )  sine, 

2 2 

2 2 

2 
- P ,6 (6 ,I sin 0, 

h.(? = -PI7@,) case, - P,@,) c q  

- P37(e3) cose3+ P47(e4) case, 
+ P57(e5) cos0, 

2 2 

2 2 

2 

C. Impact of the free end on the ground. 

As said before when the free end of the bipcd, at thc 
completion of each stcp, comes into contact with thc ground, 
then an instantaneous exchange of the support of the bipcd to 
this end is taking place, while the other end (i.e. h e  previous 
supporting leg) leaves immediately the ground. This proccss 
is assumed to take place in an infinitessimal timc intcrval, 
equal to the duration of thc impact of the free end with the 
ground. The instantaneous change A 8  of the angular 
velocities 6, , i=1,2,..,5 , of the links, at the moment of the 
collision of the free end with the ground, is givcn by 191 : 

~ 

! 



The new angular velocities of the links, after the exchange of 
the supporting leg, are used as initial conditions for the new 
step. In this way one can simulate and study the continuous 
locomotion of the biped. 

The 2x7 Jacobian matrix J, of the biped in the air is given 
by 

( matrix : 2 x  7 ) ax e 
J a = -  

a0 a 

where the position vector x,=[x,,Y,]~ is given by (1) and 8, 

is the vector defined in (10). 
Given that the velocity v, becomes zero immediately after 

the collision with the ground, we have 

A k e  = -k 
e .befor  e 

whcre x e,before is the velocity of the free end just before its 
contact with the ground. Therefore, the formula (i 1) gives 

(12) 

whcre 0 before and 6 after are the link velocities just before 
and just after the cxchange of the supporting leg 
respcctivcly. 

111. REVIEW OF THE THREE CONTROL TECHNIQUES 

Thc dynamic performance of the biped is described by the 
modcl (8a) in the single-lcg support phase, and by the model 
(9) whcn both lcgs are in thc air. These models have exactly 
thc samc form, which for convenience is rewritten here as 

whcrc 'F is thc vcctor of the driving forces and here the term 
h (q , q) involves all tcrms due to ccnuipctal, Coriolis and 
gravitational forccs. This tcrm is strongly nonlinear and its 
cTTcct increases drastically as thc velocities of the biped's 
joints incrcasc. Any lincar conLrol law ignores totally these 
nonlincaritics. The approach of linearizing the dynamic model 

(13) about somc (Tixed) opcrating point xo=[qo, q and 
applying linmr control laws is based on the assumption that 
thc systcm stak actually rcmains in the closed vicinity of xo. 
IT this is not true (which is the casc in most practical 
situations) thcn thc pcrformance of this approach may not be 
acccptablc. 

In addition to the existencc of the nonlinearities, the 
systcm involves unccrtaintics duc to several sources, the 
primary of which is thc unccrtainty in the biped robot 
paramctcrs. This paramctric uncertainty requires the 

introduction of suitable nonlinear terms in the control law 
that makes it robust. 

Our aim here is to study and compare the performance of 
the following three techniques through simulations : 

(i) Local (decoupled) PD control 
(ii) Computed torque control 
(iii) Sliding mode control 

A. Local PD Control I 

, 
The local PID control law has the form 

where Q. = qj(t)  - q .(t) , (j = 1,2, ..., n), is the tracking 
error and the feedback coefficients K ~ D ,  Kjp and Kj1 are 
positive. 

Omitting the integral term gives the PD control law 

1 dJ 

where Kp=diag [Kjpl and KD=diag [KjDI are symmetric 
positive definite matrices. It can be shown through 
Lyapunov's direct method that under the assumption that 
there does not exist friction and gravity, the position control 
obtained using the PD algorithm (15) is successful. 

To compensate for the effect of gravity one must add to 

(15) the feedforward tenn e (9)  where e (q) is the available 
estimate of g(q). 

B.  Computed Torque Control 

The computed torque control is actually based on the 
feedback linearization technique, i.e. on the use of a control 
law structure similar to that of the system's dynamic model. 
Thus, the computed torque control law for the model (13) has 
the structure : 

and eliminates the nonlinearities involved in the model (13). 
Indeed, using the control law (16) in (13), and assuming that 
D(q) is invertible (away from the singular configurations), 
yields: 

q =  U (17) 

The model (17) represents a set of n=5 decoupled double 
integration systems, each one of which can be controlled by a 
suitable linear control law. 

If the PD control law is used (with the extra feedforward 
term q the closed-loop equation obtained for the error Q is 

d 
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It is easy to verify that if the matrices KD and K p  are 
positive definite (i.e. if KD,>O and Kpj>O for all j ) then the 
tracking error tends to zero asymptotically . If I is the desired 
bandwidth (undamped cyclic natural frequency) then, U, obtain 
a critically damped closed-loop performance one must select 

Torso 
Thigh 
k g  

C.  Sliding mode control 

14.79 3.30X 10:; 0.486 0.282 
5.28 330X 10 0.302 0.236 
2.23 3.30X 0.332 0.189 

The basic drawback of the computed torque technique is 
that in practice D(q) and h( q, q ) are not known exactly but 

approximately as b(q)  and & (q, q) . This uncertainty may 
be the result of parametric uncertainty or restricted 
computational power. In practice therefore one can only use 
the control law : 

which leads to the system (instead of (17)): 

(21 1 
-1 A 

q = (D-l ;)U + D ( h - h )  

Thus the system is actually coupled and nonlinear, and the 
linear PD or PID control law may lead to unacceptable 
performance. To face this problem one has to robustify in 
some way the computed torque control law (20). Among the 
different robust control techniques the sliding mode technique 
[ 10- 1 13 was selected here for application to our biped model. 

If b and k are the available estimates of D and h, at 
each time instant t, then the sliding mode controller has the 
form (20) with ui (i=1,2, ..., n) being determined by 

where I; (9 ,  q) and ai ( i=1,2 ,..., n) are defined by the so- 
called balancing equations and the d i*s are chosen as : 

The sliding surfaces Si in (22) are selected as : 

2 
s i = ;  i + 2 h q i + h  I p , ( t ' ) d i  (24 1 

t 

where the indefinite integral (which contains a constant 
to be determined) is defined so as Si(t=0)=0. The gain 
coefficient Li(q) and the uncertainty bounds that are used for 
computing E ( 9 ,  q)  are appropriately selected. The details 
are not included here ([12]). 

- 

498 

Clearly the main difference of the control law (22)-(23) 
from the simple compuk!d torque PD control law is the 
presence of the robustijicatwn term : 

Li(@ * k i ( q 7  4) a t (  S i / @ i )  which ensures stability and 
best performance in spite of the uncertainty in the biped 
model. 

IV. SIMULATION RESULTS 

The 5-link biped shown in Fig.1 was used throughout 
the simulation study. The results were obtained for two 
different bipeds a small one and a human-sized one. The 
values of the parameters mi, Ii, li and di for these two cases 
are shown in Tables 1 and 2. 

TABU 1 
PARAMETERS OF THE SMALL SIZE BIPED ROBOT 

TABLE 2 
PARAMEIERS OFTHEHUMAN-SIZED 

I I Momentof I 

____ ~ 

Torso 49.00 2.350 
Thigh 7.63 0.089 0.431 
Leg 4.55 0.105 0.502 

3IPED ROBOT 
Location of center 

~ ::z 1 
0.267 

Our basic goal is to realize a steady stable gait on an 
horizontal plane. Such a gait can be obtained by feeding to 
the control system repeatedly at every step the same 
reference signal [4]. The reference signals used here for the 
control of joints 1,3 and 4 are shown in Fig.3. These 
signals were applied in all but the fust (starting) step. At 
the starting step the slightly different reference signals of 
Fig.4 were used. 

A.  Computed torque versus local PD control 

The computed torque control law has the form (see (16) 
and (8a,b)): 

where U is the 5x1 state feedback vector with components 
9 

Tq = D (q)u + hq + G 
9 



( j= 1 .2 ,  3 , 4 )  (25b) 

The constants K and are selected as described in 
Section IIIB, i.e. KDj=W and Kpj=A2 (i=1,2,3,4) (see (19)). 
In this way a critically damped system is obtained with 
control bandwidth 1. Thus, the only parameter that remains 
for selection is the parameter 1. Here we assume a 
maximum control bandwidth of 300 rad/sec (1 I 300 
rad/sec) and a sampling period Ts=2msec (fs=500 Hz). 

Dj Kpj 

The results for 1 =loo, 1 = 150 and 1 = 200 are 
summarized in Table 3 where by vanishing period we 
indicate the time period in which the error vanishes. 

1 
f 

Fig.3. Kefcrcnce signals for steady walking on an horizontal 
surface 

b Q ds (ne 
Fig.4. Reference signals for the starting step (from the 

vertical position). 

499 

TABLE3 
coMpuTEDToRQUERESuLTs 

Average vanishing 
error (rad) period (=) 

0.0123 
0.0070 

200 0.0014 0.04 

The tracking error obtained by local PD control with 1 
= 200, has the form shown in Fig.5. One observes here the 
existence of a steady state error (although very small) in 
contrast with the computed torque control where the error is 
always returned to zero in a given finite time. The 
corresponding average tracking error is now 0.0107 rads. 
The superiority of computed torque PD control over local 
PD control is strengthened if we have the human-sized 
biped. The results of the local PD control are shown in 
Figs. 6 and 7 showing an average tracking error 0.0359 rads 
over a period of.3 sec. 

Fig.5. Tracking error of local PD control for k200. 

. -  I 
OJ I U 1 U 3 

-0 

Fig.6. Tracking error of the. human-sized biped for local PD 
control. 
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Fig.7. Driving torques of the human-sized biped with local PD 
control. 

The average tracking error of the computed torque again over 
a time period of 3 sec is 0.0033 rads (i.e. ten times smaller 
than that of the local control). However this is achieved 
through driving torques that are about 10 times larger from 
the ones corresponding to the small-sized biped of Table 1. 

B .  Sliding Mode Control 

Sliding mode control was applied for several values of 
the uncertainties em X 100%, q X 100%. q X 100% and ed X 
100% of the biped parameters mi, I;, li and di. Here we have 
used the values em= er = 0.45, el = 0.10 and ed = 0.20. The 
results for 1 = 150 and T, = 2msec are shown in Figs. 8a 
and 8b where the variation of the tracking error 

I e,(t) I + I e,(t) I + I e3(t) I + I e,(t) I is depicted in an 
interval of 3sec and around the time of completion of the 
first step respectively. The average tracking error for the 
first two steps is 0.0025 rads. One can observe that the error 
returns to zero despite the existence of parametric 
uncertainty. The evolution of the angular displacements of 
the four joints in a period of 3sec is shown in Fig. 9 where 

Fig.8. Tracking error of sliding mode control with 45% 
parametric uncertainty and 1=150. 

one can see a very good tracking performance despite the 
parametric uncertainty. 

C. Sliding Mode Versus Computed Torque Control 

Here, the results of the sliding mode control will be 
compared with those obtained via computed torque control. 
The results obtained using the computed torque control are 
depicted in Figs. 10 and 11. Comparing Figs. 8 and 10 one 
observes the considerably increased overshoot and the 
existence of nonzero steady-state error in the computed 
torque case. The average tracking error (0.0048 rads) of the 
computed torque for the first two steps is twice the 
corresponding error (0.0025 rads) of the sliding mode 
control. Thus in overall for the same control bandwidth 
1=150 the results obtained through sliding mode control are 
much better than those obtained via computed torque 
(smaller overshoot, zero final value of error, much smaller 
average tracking error). 



ai 

03 1 15 2 23  3 

-7 I 

3 
42- 

I 
440' 03 1 15 2 LJ 3 

-0 

OJ I 1.3 2 1J 3 

Fig.9. Joint angle trajectories of sliding mode control with 
k150. 

ais 

0. I4 I 

aid, . . . 1 

(B) 

Fig.10. Computed torque with k150 under 45Quncertainty. 

'1) 
4.2- 

4.2- 
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Fig.11. Joint angles during the steady walking on an 
horizontal plane under computed torque control wi& b150 and 

45% uncertainty. 



Fig.12. Comparison of the robustness (represented by the 
average tracking error) of the various control techniques. 

The above comparison was made for the parameter 
uncertainty values em = eI = 0.45, el = 0.10 and ed = 0.20. 
However for a full study, this comparison must be made for 
a sequence of increasing parametric uncertainty. Since the 
primary source of uncertainty is in the masses and moments 
of inertia, this study was made by increasing the values of 
em and from 0.10 (10%) to 2.0 (200%) monitoring in 
each case the average tracking error. The average tracking 
error obtained over the uncertainty region 10% to 200% is 
depicted in Fig.12 for the following cases (from top to 
bottom): computed torque control, sliding mode control 
with integral term active over the entire boundary layer 
region, sliding mode control with integral term active over 
50% of this region, and sliding mode control with integral 
term active over 20% of the boundary layer region. The 
results presented above (as well as others not included here) 
have fully verified the theoretically expected superiority of 
the sliding mode control over the computed torque control, 
especially for situations where there exist large parametric 
uncertainty. 

IV. DIRECTIONS FOR FURTHER WORK 

Work is in progrcss in the following directions: 
to explore biped models with more links (e.g. 9 links or 
11 links), 
to explore the performance of altcrnative robust control 
schemes [13-151, 
to explore the benefits obtained by using parallel 
scheduling computational algorithms [ 161, 
to explore the effcclivcness of robust control to handle 
the situation whcrc one or more robotic arms are 
attached on the body, considcring the effect of their 
motion as uncertainty to the biped locomotion model. 

- 

- 
- 

- 
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