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ABSTRACT 
Existing multicomponent AM-FM demodulation algo- 

rithms either assume spectrally distinct components or 
components separable via linear filtering and break down 
when the components overlap spectrally or if one of the 
components is stronger than the other. In this paper, we 
present a nonlinear algorithm for multicomponent AM-FM 
demodulation which avoids the above shortcomings and 
works well even for extremely small spectral separation 
of the components. The proposed algorithm separates 
the multicomponent demodulation problem into two tasks: 
periodicity-based algebraic separation of the components 
and then monocomponent demodulation via energy-based 
methods. 

1. INTRODUCTION 
Discrete-time (DT) multicomponent AM-FM signals are 
mathematically defined as signals of the form 

M 

i=l 

where the term “component” refers to a single term in the 
sum and Ai[.] and Ri[n] are the instantaneous amplitude 
(IA) and frequency (IF) signals corresponding to the ith 
component. These information signals are assumed to be 
slowly time-varying (lowpass) quantities. 

Demodulation of these signals can be accomplished via 
the LMS algorithm [l], the multiband-ESA [2], the HRR 
algorithm [3] or the EDM algorithm [4]. These techniques, 
however, develop singularity problems when the compo- 
nents overlap spectrally or when one of the components is 
stronger than the other. 

Algebraic separation of spectrally overlapping periodic 
signals has recently been studied in [5, 61. In this pa- 
per, we present a solution to the multicomponent AM-FM 
demodulation problem that extends the algebraic separa- 
tion approach in [5, 61 to multicomponent AM-FM signals 
with periodic information signals and combines it with the 
energy-based monocomponent demodulation method of [7]. 
Our new approach is called the periodic algebraic separation 
and energy demodulation (PASED) algorithm and can deal 
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with extremely small spectral separations, overlapping IF’S, 
and wide range of amplitude ratios. 

2. TWO-C0M:PONENT ALGORITHM 
The PASED, whose block diagram is shown in Fig. 1 can 
be divided into two secttions: 

Model each component as a quasiperiodic signal and 
separate the components using algebraic separation 
techniques described in [5, 61. 

0 Demodulate the separated components into IF and IA 
information signals for each component using the en- 
ergy separation algorithm (ESA) [7]. 

U 

x-4 ALGEBRAIC 1 

Figure 1. Block diagram of the PASED 

Consider a two-com,ponent periodic signal of the form 
4.1 = a [ n ]  +zz(n], where the components zl[n] and z2[n] 
are periodic with fundamental periods NI and Nz. Relat- 
ing the samples of the composite signal to the components 
yields 

S 

(2) 

I,vl is the identity matrix of order NI.  

The separation system outlined above is rank deficient 
with rank T- = N I  + N2 - R, where R = gcd(N1,Nz) 

Additional constraints need to be appended to this sepa- 
ration system to complete and solve the separation system 

[5, 61. 



for the ccimponents. If the periods of the components are 
mutually prime the extra constraint needed is obtained as a 
zero dc spectral value constraint on one of the narrowband 
components. If the periods of the components are not co- 
prime the additional R constraints are obtained as zero dc 
conditions of the subsampled components [5, 61. 

(%) -1  

x i [ R j + i ] = O  , i = 0 , 1 ,  . . . ,  R-1 .  (3) 
j = o  

The solution to the component separation problem is then 
reformulated as the solution to the augmented least-squares 
problem 

2 

(4)  

s 
where the dc-value constraints (homogeneous) at the scale 
of R form the constraint matrix C. 

The solution to this problem is of the form 

e = (ST$)-' (3'2) = (S'S + C'C)-l (s'x). (5) 

Each separated component is then modeled as mono- 
component AM-FM signal zi [n] = Ai [n] cos(lon Ri [kldk) 
and demodulated into IF and IA information signals us- 
ing the DT ESA algorithm [7], where the DT Teager- 
Kaiser energy operator @(z[n]) = z2[n] - z[n + I]z[n - 11 
is applied to the component x;[n] and its DT derivative 
yi[n] = zi[n] - z;[n - 11: 

Figure 2 shows an example of a two-component sinu- 
soidally modulated AM-FM signal and the IF and IA esti- 
mates of the PASED. The demodulation lengths of the two 
components were L1 = 200 and La = 201. 

3.2. Linear-FM Information Signals 
In general, we assume here that the IF signal can be ex- 
pressed as a finite Fourier series of the form [7] 

K 

n[n] = R c  + Rmk cos ( R f k n  + e k )  . ( 7 )  
k = l  

For aperiodic IF signals, this is accomplished by periodic 
extension of the IF signals [7]. The quantities R f i  = 8, 
where Li are the extension lengths, play the role of infor- 
mation bandwidths. 

As an example, consider two-component AM-FM signals 
with linear FM modulation. The IF signals of the example 
are 

Rl[n] = T + - ( z - l )  , O I n i 3 9 9  
2 400 399 

R,[n] = - x - - 7r ("-1) , O < n < 4 0 0  2.005 400 400 

The IA signals of the example are sinusoidal with 6% AM, 
with a CR/IB of 50 and a MAR of 1. The demodulation 
lengths were L1 = 400 and L2 = 401. The composite signal 
of the example and the IF and IA estimates of the PASED 
are shown in Fig. 3. 

4. MULTICOMPONENT PASED 
The M-component PASED algorithm is based on the same 
philosophy as that of the two-component problem. The 
separation matrix S M  has M circulant blocks 

e 

3. EXAMPLES 
3.1. Sinusoidal Information Signals 
Consider two-component AM-FM signals described by 
Eq. 1 with M = 2, where the IF and IA signals are si- 
nusoidal and of the form 

R;[n] = Rei + a m i  cos + $i) 
Ai[n] = Aci(1 + hi COS (Rain + [ i ) )  , i = 1 , 2. 

The quantities Li = play the roles of the periods NI 
and N2. The carrier-to-information bandwidth (CR/IB), 
the normalized carrier separation NCS (measures spectral 
separation), and the mean amplitude ratio MAR (measures 
relative strength) parameters are defined by 

CBW = (Om* + Rfi + R,i) (Bandwidth) 
i = l , P  

Y 

S M  
X 

(8) 
The rank of the separation system in this case is 

M 

;=I 

M 

~ ( S M )  2 X N i  - gcd(Ni,Nj) , otherwise 
i = l  i j  3 i < j  

For the first case, ( M  - 1) extra equations are needed to 
solve the separation system and are obtained as dc value 
constraints on ( M  - 1) components at their original scale. 
For the second case, the extra constraints needed are ob- 
tained from the dc value constraints applied to the pairwise 
interactions using the information on the pairwise gcd's. 

The first case deals with pairwise coprime periods and 
the second case deals with the case where the periods are 
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Figure 2. Sinusoidal AM-FM : (a) composite signal, (b,c) angular frequency, carrier estimates (dashed- 
dotted) of the PASED (as fractions of T) and IA estimates of the PASED, where solid lines indicate estimates 
and dashed lines indicate actual quantities. The IF signals are sinusoidal with coprime periods and 2% FM 
modulation. The IA signals are also sinusoidal with 6% AM modulation. 

L1 I 100, L2 -401 ,MAR = 1 , NCS - 0 MI  FM I O S % ,  AM - 6 %  
,-... 

Figure 3. Chirp example (a) composite signal, (b) angular frequency estimates of the PASED (as fractions of 
T) and (c) IA estimates of the PASED. Solid lines indicate estimates, dashed lines indicate actual quantities 
and dashed-dotted lines are carrier frequency estimates. The component IA signals are sinusoidal with 6% 
AM modulation while the IF signals are linear with mutually prime periods rand 0.5% FM modulation. 
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Figure 4. (a) composite signal, (b) IF estimates of the components via the 
multicomponent PASED, (c) IA estimates via the multicomponent PASED. Solid lines are estimates (almost 
identical to the true quantities in dash), and dashed-dotted lines are carrier frequency estimates. The periods 
of the component IF signals N, E {199,200,201,202,203}, are coprime, but pairwise non-coprime with x 0.5% 
FM. The IA signals are sinusoidal with n, E {1,3,5,7,9}% AM 

Five-component example: 
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Figure 5.  Effect of normalized carrier separation (NCS) and mean ampli tude ratio (MAR)  parameters on 
the performance of the PASED, the SEDM, the SHRR and the SLMS algorithms, where  SX refers to the 
algorithm X wi th  post-smoothing using a 9-pt median filter to remove spikes in the estimates followed by 
a moving average filter to remove interference. 

pairwise non-coprime. Fig. 4 describes a multicomponent 
example (M = 5), where the periods are not pairwise co- 
prime. 

5. P E R F O R M A N C E  O F  THE PASED 

Existing techniques for multicomponent AM-FM demod- 
ulation either assume that the components are distinct or 
that the components are separable via linear filtering tech- 
niques. These techniques work over a narrow range of NCS 
or MAR parameters but do not provide a solution to the 
general multicomponent demodulation problem. These as- 
sumptions are in particular not valid in the co-channel 
range, where the signal components overlap significantly 
and these techniques develop singularity problems as NCS 
parameter decreases or if the MAR parameter increases [4]. 

The proposed PASED has the following advantages: 

0 It does not assume that the components are distinct 
and its performance is independent of spectral separa- 
tion as evident from Fig. 5(a). 

0 Performance of the PASED is independent of the rela- 
tive amplitude ratio of the components as evident from 
Fig. 5(b-e). 

0 It  provides separability between the component sepa- 
ration and demodulation tasks. 

0 The leastsquares system in the separation section of 
the PASED accomplishes simultaneous component sep- 
aration and noise suppression. 
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