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ABSTRACT 

Locally narrowband images can be modeled as 2D spa- 
tial AM-FM signals with several applications in image tex- 
ture analysis and computer vision. In this paper we for- 
mulate such an image demodulation problem, and present 
a solution based on the multidimensional energy operator 
@(f) = llVf112 - fV2 f .  We discuss some interesting prop- 
erties of this multidimensional operator and develop multi- 
dimensional energy separation algorithms to estimate the 
amplitude envelope and instantaneous frequencies of 2D 
spatially-varying AM-FM signals. Experiments are also 
presented on applying this 2D energy demodulation algo- 
rithm to estimate the instantaneous amplitude contrast and 
spatial frequencies of image textures bandpass filtered via 
Gabor filters. The attractive features of the multidimen- 
sional energy operator and the 2D energy separation algo- 
rithm are their simplicity, efficiency, and ability to track 
instantaneously-varying spatial modulation patterns. 

1. INTRODUCTION 

Image textures of the locally-narrowband type can be mod- 
eled as 2D spatial AM-FM signals 

that are 2D sines containing both amplitude modulation 
(AM) and frequency modulation (FM). Namely, they have 
a spatially varying amplitude a(z,  y) and a spatially-varying 
instantaneous frequency vector G(z, y) = V ~ ( Z ,  y). In par- 
ticular, the amplitude a ( ~ ,  y) is used to model local image 
constrast and the frequency vector contains rich informa- 
tion about the locally emergent spatial frequencies. Such 
modulation models have been proposed by Bovik et al. [l] 
and have been applied to a variety of image processing and 
vision problems. In Bovik et  al. [l] and Havlicek et al. [2] 
these models are not applied directly to the whole (possibly 
wideband) image. Instead they are used on its bandpass fil- 
tered versions that are outputs from a filterbank consisting 
of 2D Gabor filters. The motivation in using Gabor fil- 
ters is due to their attaining the lower limit of joint space- 
frequency resolution uncertainty and their ability to model 
early filtering stages of human vision [4]. 
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An important problem in modeling image modulations 
with spatial AM-FM signals is to estimate the 2D ampli- 
tude and frequency signals using computational vision al- 
gorithms that have low complexity and small estimation 
error. In this paper we develop such an efficient approach 
for demodulation of 2D AM-FM signals based on a multi- 
dimensional energy operator introduced by Maragos, Bovik 
and Quatieri [7] and a related 2D energy separation algo- 
rithm. Our work has been inspired by a similar work for 1D 
signal and speech processing, where a 1D energy tracking 
operator [6] was used to develop a 1D energy separation al- 
gorithm [9] with applications to AM-FM signal and speech 
demodulation [8, 91. In the 2D discrete case, the discretized 
energy operator we use is identical to the one developed in 
Yu, Mitra and Kaiser [ I l l  for digital image edge detection, 
and also used in [lo] for image enhancement. 

2. 1D ENERGY OPERATOR AND ENERGY 
SEPARATION 

In his work on nonlinear modeling of speech production, 
Teager developed a nonlinear differential operator 9, for 
ID  continuous-time signals f ( t ) ,  defined as 

@ c ( f ) ( t )  [f’(4l2 - f(t>f’‘(t) (2) 

where f’ = df/& and f ”  = d2 f / d t 2 .  The discrete-time 
counterpart of 3, is the operator 

for discrete-time signals f(n). Both operators were first in- 
troduced systematically by Kaiser [5, 61. 9, is an ‘energy- 
tracking’ operator because it can track the energy of simple 
harmonic oscillators that produce sinusoidal oscillatory sig- 
nals; this energy is proportional to the product of the am- 
plitude squared and frequency squared of the oscillation. 
Hence we shall refer to e, and @ d  as the 1D energy operu- 
tors. 

The energy operators are very efficient in instantaneously 
estimating the modulating signals of 1D AM-FM signals. 
Specifically, Maragos, Kaiser, and Quatieri [8,9] have shown 
that the energy operators can approximately estimate the 
envelope of AM signals and the instantaneous frequency of 
FM signals. For 1D AM-FM signals 
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they have also found that the energy operator tracks the 
energy product 

Q[a(t)cos($(t))] z a2( t )w’ ( t )  (5) 

where w ( t )  = d d ( t ) / d t  is the instantaneous (angular) fre- 
quency. This approximate result is valid (i.e., the approx- 
imation error is negligible) if the time-varying amplitude 
a ( t )  and frequency w ( t )  do not vary too fast in time or too 
greatly compared with the carrier. Sufficient conditions for 
this are a small amount of modulation and the amplitude 
and frequency modulating signals to  be bandlimited with 
bandwidths much smaller than the carrier frequency. Fur- 
ther, they also developed an energy separation algorithm 
(ESA) [9] that, by separating the energy product (5), fully 
demodulates the AM-FM signal and estimates both its am- 
plitude envelope la(t)l and instantaneous frequency w ( t ) .  
The 1D energy operator and the ESA have found many a p  
plications in speech processing and communications [8,9, 31. 

3. CONTINUOUS MULTIDIMENSIONAL 
ENERGY OPERATOR AND SEPARATION 

Let f(2’) be a vD real-valued signal with a continuous ar- 
gument 2’ = (XI, ..., xu) E R”, v = 2,3, ... Then we define 
the vD energy operator by 

@ c ( f ) ( 2 ’ )  2 llVf(2‘)1I2 - f(2’)V2f(.’) (6) 

where V f is the gradient of f, I ]  . ] I  is the Euclidean norm, 
and V2 f is the Laplacian o f f .  From its definition i t  follows 
directly that we can express @,(f) as 

Thus the output of the QC is a sum of ‘energy components’. 
Each energy component is the output of the 1D energy o p  
erator 9, applied along each one of the Y directions x k .  

Hence, in analogy with the 1D case, we shall refer to as 
the ‘multidimensional energy operator’. Next we derive a 
few of its properties. 

Applying a, 
to  their product yields a similar result as in the 1D case. 
Specifically, since in general 

Let f(2’) and g(Z) be two uD signals. 

v u g )  = g V f + f V g  (9) 
V’(fS) = sv’f + f V 2 g  + W f ) .  (Vg) (10) 

where ‘.’ denotes inner product, i t  follows that 

For a multidimensional exponential signal, the output 
of the energy operator is identically zero: 

where Ck are arbitary constants. 
Applying a, to  a YD cosine A cos(3, . 2’ + e )  with con- 

stant phase offset 0 ,  constant amplitude A, and constant 
frequency vector 3, = ( w C , l ,  ..., w , , ~ )  yields 

@,[Acos(~,. IC‘+ e ) ]  = A’ x W c , k  = A211L3c112 (13) 
( k 1 1  ) 

Consider the real-valued vD AM-FM signal 

f(2‘) = u(2’)cos[l$(.‘)] (14) 

where U(.’) is a spatially-varying amplitude, #(?) is the 
phase signal, 

(15) 
P 

J(2‘) = Vd(2‘) = ( W 1 ( 2 ’ ) ,  ..., W Y ( Z ) )  

is the spatially-varying vD instantaneous frequency vector, 
and W k ( 2 ’ )  is the k-th instantaneous angular frequency sig- 
nal. Assuming for each k that W k  is non-negative, we can 
always express i t  as 

W k ( 2 ‘ )  = W c , k  + W m . k q k ( 2 )  (16) 

where W c , k  is a constant center frequency, qk(.‘) E [-I, 11 
is the I;-th frequency modulating signal, and W m , k  is the 
maximum deviation of W k  from its center value. Henceforth 
we assume that 0 5 u m , k  5 W c , k .  

Applying a, to f yields 

1 
2 

~ . , [acos(d) l=  ~~11311~ - -a2 sin(26)v2d + c ~ s ~ ( + ) @ ~ ( a )  

For demodulation the desired term in (17) is a2113112. We 
view the rest of the terms as approximation error and show 
next that they are negligible under realistic assumptions. 

Assume that a(.‘) is bandlimited in a circular frequency 
sphere of radius wa. Namely, if A ( Z )  is its vD Fourier trans- 
form, then A(<)  = 0 for JJZll > w,. Then if we define the 
mean spectral absolute value of a as 

t 17) 

W a  

pa = . . . [ w e  IA(Z)ldul ... duu (18) 
(2%) - W O  

i t  can be shown that for each k 

where amoI = supl Iu(2’)I. Assume also that each frequency 
signal W k ( 2 ’ )  is bandlimited with bandwidth W q , k  < w , , k .  

Then we can consider the approximation 

@,[a cos(d)] Fz a2 11311’ 

E(2‘) = @,[acos(~)] - a2((3112 

(19) 

with an approximation error 

(20) 

that is bounded by 
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since 

Assuming that umaz x pa (which is true with equality if a is 
a cosine or has linear Fourier phase), the realistic conditions 

Wa < min W c , k  and Wm,kWq,k  < (Wc,k)’  V k  (23) 

make the maximum absolute value of the error E much 
smaller than the maximum absolute value of the desired 
term. Thus, under such conditions, the approximation (19) 
is valid in the sense that the relative error is g 1. Note that 
conditions (23) imply that the amplitude and frequency sig- 
nals do not vary too fast in space or too greatly compared 
with the carriers. 

Now let us apply QC to the partial derivatives 

Due to (23) the second term in a U / a X k  has a much larger 
order of magnitude of its maximum absolute value com- 
pared with the first term. Thus we approximate a f / a Z k  x 
- a w k  sin(q5) and apply (19) to obtain 

for each t .  Combining this equation and (19) yields 

This algorithm can estimate at  each location .’ the ampli- 
tude envelope and instantaneous frequencies of the spatially- 
varying AM-FM signal. We call it the multidimensional 
continuous energy separation algorithm (CESA). It is an 
extension of the 1D CESA developed in [9]. Note that, if 
f(2) = Acos(3, 3c‘ + 0) is a pure cosine, then the CESA 
exactly estimates the contant amplitude a(.’) = (AI and 
constant frequency vector 3 = 3,. 

4. 2DDESA 

In general, if we replace derivatives in 9, with one-sample 
differences we obtain a discrete-space energy operator. For 
notational simplicity, we restrict our discussion to 2D sig- 
nals, e.g., still images. 

The alternative interpretation (7) of 9, as a sum of 
energy components along different directions allows us to 
extend i t  t o  discrete-space signals f(m, n). Specifically, re- 
placing each of these energy components with outputs from 
ID discrete-time energy operators @d yields the 2D discrete- 
space energy operator 

@d(f ) (m,n)  = @d,l ( f ) (m,  n) + *d,Z(f)(m, n) 
P = 2fz(m,  n) - f (m - ~ , n ) f ( m  + 1, n) 

-f(? n - l ) f (m,  n + 1) 
( 2 6 )  

where the 1D energy operator 

@d,l(f)(m, n) = 6 . 2  f (m,  n) - f ( m  - 1, n)f(m + 1, n) 

applies horizontally on d l  rows of f, whereas *d,Z operates 
on the columns. The above operator @d is identical to the 
one developed in [ll, 101 for digital image edge detection 
for image enhancement. 

Applying @d to a 2D sinusoid with constant ampli- 
tude/frequencies yields 

@d[Acos(Qlm + &n +e)] = Az[sin2(R1) + sinz(Q2)] (27) 

Consider now a discrete AM-FM signal 

f ( m ,  = a(m,  cos[4(m, .)I (28) 

Its vertical instantaneous frequency (in radians/sample) 

Ri(m,n)  = A - 34 = %,I + %,1q1(m,n) (29) a m  

has center frequency RC,1 and maximum frequency devia- 
tion Qm,1 5 f l , , ~ .  The frequency modulating signal q1 (m, n) 
is assumed to be a mathematical function with a known 
computable integral. Likewise for the horizontal frequency 
fl, = ad/&. All discrete-space frequencies are assumed 
to be in [O,x]. We henceforth assume that a is bandlim- 
ited with bandwidth 52, and that both frequency signals 
are finite weighted sums of sinusoids and bandlimited with 
bandwidth R,. Then under the realistic assumptions 

na < min f L , k ,  f’& 1, o m , k  a f L , k  (30) 

and by working as in [8], we obtain 

(31) 
3 d [ a ( m ,  n) cos($(m, n)] X 
uz(m, n)(sinz[Rl(m, n)] + sin’[Rz(m, n)]) 

Now replacing the partial derivatives of the previous section 
with symmetric 3-sample differences in each direction yields 
the 2D signals 

91(m, U) 

d m ,  n) 

= [f(m + 1, n) - f ( m  - 1, n)1/2 
[f(m, 7I + 1) - f(m1 n - 1)1/2 = 

which are 2D AM-FM signals with amplitude and instan- 
taneous frequencies that do not vary too fast or too much 
compared with the carriers n c , k .  Hence (see also [9]) 

@d[gl] x a2 s i n Z [ ~ l ] ( s i n z [ ~ l ]  + sin’[02]) (32) 
@d[gZ] x a’ s in ’ [~z l ( s in ’ [~~]  + sin2[~21) (33) 

Combining (31),(32),(33) yields a discrete energy separation 
algorithm (DESA) 

arcsin 

arcsin 

x 

x 

N N 
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The DESA can estimate a t  each location the amplitude en- 
evelope and two instantaneous frequency signals of a spatial 
AM-FM signal. Its constraint is that 0 5 R1,Rz 5 x/2; 
i.e., i t  can estimate frequencies up to one fourth of the sam- 
pling frequency. The DESA in this paper is a 2D version of 
the 1D algorithm called ‘DESA-2’ in [9]. 

If the AM-FM signal has constant amplitude A and con- 
stant frequencies Rc,l and RC,z, then the DESA equations 
provide an exact estimate of the amplitude la(m,  n)I = IAl 
and frequencies Rl (m,  n) = RC,1 and Rz(m, n )  = RC,z. 

Figure 1 shows the application of the 2D energy opera- 
tor and DESA on a synthetic 2D AM-FM signal. The rms 
estimation error for the amplitude signal estimation, nor- 
malized by the rms of the true amplitude, was 0.0216. The 
relative rms errors for the estimated frequency signals were 
0.0473 and 0.0429. We see that, as the theory predicts, the 
DESA can estimate the instantaneous amplitude and fre- 
quency signals of a spatial AM-FM signal (that had 50% 
AM and 20% FM) with very small estimation error, and 
with a very low computational complexity. 

5. IMAGE DEMODULATION 

The basic assumption behind the ability of the discrete or 
continuous ESA to demodulate 2D AM-FM signals, is that 
the signal is narrowband. This then prohibits its applica- 
tion to wideband images. A better strategy is to bandpass 
filter the image and apply the DESA to its narrowband 
components, assuming these are well modeled by spatial 
AM-FM signals. As bandpass filters we use 2D Gabor fil- 
ters of the wavelet type, designed in [l] as a 2D radially 
symmetric filterbank. Each Gabor filter has a one octave 
bandwidth measured radially between the half-peak points. 

Figure 2 shows the application of the 2D energy oper- 
ator and DESA on Gabor bandpass filtered texture image. 
From this and other similar real image experiments we have 
observed the following: The energy operator acting on the 
original image enhances its contrast. Note that the energy 
operator may yield several negative values when applied to 
a wideband image as in Fig. 2(a). However, when applied to 
the narrowband (Gabor filtered) image of Fig. 2(c) it rarely 
yields negative values. The  DESA can yield realistic esti- 
mates of the spatial instantaneous frequency signals, which 
can be more easily observed when shown as frequency vec- 
tors as in Fig. 2(h); there we see that the direction of the 
frequency vectors is most often perpendicular to the local 
waves in the image. However, there are also several outlier 
estimates, which are mostly caused by instantaneous nu- 
merical singularities of the DESA, e.g., when dividing by 
a very low energy value. These cause spikes in the DESA 
estimated amplitude and frequency signals which can be 
effectively filtered out by a 2D median filter. Finally, the 
amplitude signal seems to  convey similar information as the 
energy operator output, mainly of the contrast type. 

In conclusion, given that many locally narrowband im- 
age textures can be modeled by spatial AM-FM models and 
the ability of the DESA to efficiently estimate the slowly- 
varying amplitude and frequency signals, the 2D energy o p  
erator and 2D DESA become important tools for image 
analysis and computational vision. 
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Figure 1. ( a )  Intensity image oforiginal 2D AM-FM signal f ( m ,  n )  = a(m,  n )  cos[Rlm+Ran+”sin(R, , lm)+sin(R, ,an+~)] ,  
where n ( m , n )  = 0.5[1 + 0.5cos(Rq,im. + Rq,2n)] ,  Qi = ~ / 4 ,  n2 = ~ / 5 ,  and m , n  = 1, .., 100. (b) Original amplitude a .  
( c )  Original frequency R~/T. (d)  Original frequency ~ Z / X .  ( e )  Perspective plot of original image f .  (f) Estimated amplitude 
v i a  DESA. (g)  Estimated frequency O l / x  via DESA. ( h )  Estimated frequency Rz/x via DESA. 

\ I  

Figiire 2. (a) Intensity image of a 256 x 256-pixel texture. (b) Output of energy operator on original image. (c) Bandpass 
filte1r.d image via a Gabor filter whose horizontal and vertical center frequencies were (27,27) cycles per image. (d) Output 
of energy operator on bandpass image. (e)  Estimated amplitude via DESA. ( f )  Estimated frequency R1 via DESA. (g) Esti- 
mated frequency Rz via DESA. ( h )  Randpass image with decimated frequency vectors (R1,R,) superimposed (in black and 
amplified in magnitude hy 8)  All image plots are normalized so that intensitirs are in [O, 2551. 
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