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ABSTRACT 

We develop 2D max-min difference equations that  model 
the space dynamics of 2D morphological systems and some 
nonlinear signal transforms, called slope transforms, that  
can analyze these systems in a transform domain in a way 
conceptually analogous to  the application of Fourier trans- 
forms t o  linear systems. Further, we discuss some nonlinear 
partial differential equations (PDEs) that  model the evolu- 
tion of multiscale morphological filters of the max-min type. 
These PDEs are related to the eikonal equation. Solutions 
of the eikonal P D E  are proposed based on 2D min difference 
equations that  can compute distance transforms. We view 
the analysis of the multiscale morphological PDEs and of 
the eikonal P D E  solved via max-min equations as a unified 
area in nonlinear image processing which we call difleren- 
tial morphology. I ts  potential applications include distance- 
path finding, segmentation, gridless halftoning, and shape 
from shading. 

1. INTRODUCTION 

Morphological image processing is based on set- or lattice- 
theoretic concepts and a broad class of nonlinear signal op- 
erators, called morphological systems or filters. These are 
parallel and/or serial interconnections of morphological di- 
lations (z@g)(w) = VuEE .(U) + g(" - u )  or morphological 
erosions ( x e s ) ( " )  = AYEE z(u) -g (u-v ) ,  where v and A 
denote supremum and infimum, and E = Rd or Zd .  Compo- 
sitions of erosions and dilations yield two other useful mor- 
phological smoothing filters: the opening z o g  = ( z e g ) @ g  
and closing 2.9 = ( z@g)eg .  

Despite the wide applicabdity of morphological systems 
to image processing and computer vision, so far their analy- 
sis has lacked a transform domain. In this paper we present 
various analytic methods to  determine the output and p r o p  
erties of these nonlinear systems in the spatial domain based 
on their impulse responseor on 2D mas-min difference equa- 
tions that  describe the space dynamics of these systems. 
Further, t o  understand their behavior in a transform domain- 
the slope domain-we develop signal transforms, called slope 
transforms, whose properties and application t o  morpholog- 
ical systems has some striking conceptual similarities with 
Fourier transforms and their application to  linear systems. 
We focus on multidimensional signal and systems; a similar 
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work for 1D signals and systems can be found in Maragos 

In computer vision, several image analysis tasks related 
to  physical phenomena have been successfully modeled via 
PDEs. Examples include shape from shading, optical flow, 
and modeling multiscale analysis via the heat equation. 
Multiscale signal analysis is a useful and often required 
framework for many tasks such as feature/object detec- 
tion, motion detection, and multi-band frequency analysis. 
While the majority of such approaches used so far have been 
linear, a general understanding arises for the limitations or 
inability of linear systems t o  successfully model several im- 
age processing problems, and the  need grows for developing 
nonlinear approaches. Brockett and Maragos [2] have devel- 
oped some nonlinear PDEs t o  model the evolution of mor- 
phological image operators of the max-min type in scale- 
space. From a different viewpoint, multiscale filtered ver- 
sions of binary images can be obtained via morphological 
distance transforms and can be modeled via similar ideas 
as in optic wave propagation governed by the eikonal PDE. 
The eikonal equation can be solved using distance trans- 
forms, which in turn can be implemented via 2D recursive 
max-min equations. 

Thus, there is a close relationship between the morpho- 
logical multiscale and eikonal PDEs, and the space-and- 
slope-domain analysis of morphological systems. The  uni- 
fying theme is a collection of max-min differential/difference 
equations modeling the scale or space dynamics of morpho- 
logical systems, and the slope transforms that  can analyze 
these systems in a transform domain. We call the area of 
the multiscale morphological PDEs and the max-min differ- 
ence equations used to  solve the eikonal equation as differ- 
ential morphology. Whereas classical morphological image 
processing is based on set and lattice theory, differential 
morphology offers calculus-based tools and some exciting 
connections t o  the physics of wave propagation. 
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2. MORPHOLOGICAL SYSTEMS 

Assume signals .(U) defined on a d-dimensional (d = 1 ,2 ,  ..) 
continuous (E = Rd) or discrete domain (E = Z d )  and 
whose range is any subset of R = R U { -00, m}. In convex 
analysis [8]  the nonlinear operation @ is called 'maximal 
(or max-plus) convolution' and an operation closely related 
to e is the 'infimal (or min-plus) convolution' ( z o g ) ( u )  = 
A, .(U) + g ( v  - U ) .  

We call a signal operator 2, : x H y = D ( 2 )  a dila- 
tion system if i t  obeys the supremum-of-sums superposi- 
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tion V [ v ,  c, +zt(w)] = v, ct +D[zI(v)]. Two signals useful 
for analyzing morphological systems are the zero impulse p 
and zero step A ,  defined in the 1D case v = 1 as 

and in the d 2 2 case as p ( v )  = E:=, p(v.) and A(v )  = 
E:=, A ( w l ) .  For example, a signal can be represented as 
a sup of weighted impulses: x(v) = v, .(U) + ~ ( w  - U ) .  

If g(v) = V[p(v)] is the system's impulse response, we 
find [5] that  a dilation shift-invariant (DSI) system is 
equivalent to  a max-plus convolution of the input with its 
impulse response: 

A D is DSI D ( z )  = z@g, g = D ( p )  

Thus, a DSI system is uniquely determined in the spatial do- 
main by its impulse response, which also controls its causal- 
ity and stability [4, 51. 

Operators € : z H y = €(z) that  are shift-invariant and 
obey an infimum-of-sums superposition are called herein 
erosion shift-invariant (ESI)  systems. These are equivalent 
to  a min-plus convolution, because € is ESI iff €(s) = xnf, 
where f = € ( - p )  is their impulse response. 

To describe the space dynamics of discrete ESI systems 
we consider the 2D min-plus difference equations 

The masks M O ,  M ,  are pixel coordinate sets that  determine 
which output and input samples will be added with con- 
stants t o  form the current output sample. Similarly, the 
dynamics of DSI systems can be described by max-plus dif- 
ference equations as in (1) but with A replaced by v. For 
erosion (resp. dilation) systems the useful information in a 
signal 3: exists only a t  points U where z(v) < +CO (resp. 
z(w) > -col. T h e  vast majority of discrete max/min- 
plus convolutions @,e used in applications employs a finite 
structuring element, and they can be modeled by the above 
max/min difference equations by ignoring the recursive part 
(i.e., if all Q., = 4x0).  The  only exception has been recur- 
sive erosions which can generate the distance transform of 
binary images [l] .  

To create a transform domain for morphological sys- 
tems, we first note that  the hyperplanes .(U) = a w + b 
are eigenfunctions of any DSI system 2) or ESI system € 
because 

D[a . U +  b] = a .  v + b +  G(a)  , G(a)  v g ( v )  - a  . I I  

€[a . v + b] = CY . U + b + F ( a )  F( a) e A f ( v )  - a . v 

where a = (al, ..., a d )  E Rd and a . v = E:=, a,vI .  w e  call 
the corresponding eigenvalues G ( a )  and F ( a )  the slope 
response of the DSI and ESI system. It measures the 
amount of shift in the intercept of the input hyperplanes 
with slope vector a.  I t  is also conceptually similar t o  the 
frequency response of linear systems. 

" 

, 
" 

3. SLOPE TRANSFORMS 

Viewing the slope response as a signal transform with vari- 
able the slope vector 0, we define for any signal x ( ~ )  its 
upper slope transform as the function X v  : Rd + 

and as lower slope transform' the function XA: 

A A 
xV((Y) = v x ( V ) - a ' v  , X A ( ( Y )  = A s (v ) -aQ. .w  

W E E  v E E  

In general, z(v) is covered from above by all the hyperplanes 
X v ( a ) + a  v whose infimum creates an upper envelope ? ( U )  

and is covered from below by planes X A ( a )  + a . v whose 
supremum creates the lower envelope i ( v ) :  

A A 
i ( v )  = A X v ( a ) + a . v  , 5(v)= v x A ( a ) + a ' v  

cy E Rd cy E Rd 

We view the signals i(w) and Z(v)  as the 'inverse' upper 
and lower slope transform of z(v), respectively. 

(a) X v ( a )  and 5(v) are convez, whereas X A ( a )  and i:(v) 
are concave. ( b )  For all o ,  * ( U )  5 x(v) 5 i:(v). (c) At any 

- 
Theorem 1. For any signal x : Rd + R, 

point 21, i(v) = .(U) iff 

(2) 
At any w, z(w) = i(v) iff the 2 sign in ( 2 )  is replaced by 5. 
(d) i:(w) = z(w) for all v if x i s  concave, and i: = s i f .  i s  
convex. (e) i: is the smallest concave upper envelope of x ,  
and i is the grtatest convex lower envelope of z. 

Tables I and I1 list several properties and examples of 
the 2D upper slope transform. T h e  most striking is that  (di- 
lation) max-plus convolution in the time/space domain cor- 
responds t o  addition in the slope domain. Note the analogy 
with linear systems where linearly convolving two signals in 
space corresponds to  multiplying their Fourier transforms. 

Whatever we discussed for upper slope transforms also 
applies to  the lower slope transform, the only differences 
being the interchange of suprema with infima, concave with 
convex, and dilation with erosion. 

For differentiable signals, the maximization or mini- 
mization of the intercept s(~) - 0. w involved in both slope 
transforms can also be done, for a fixed a, by finding its 
value a t  the stationary point U' such that  Vz(v*) = a. At 
the point, (ti', z(v*)) the hyperplane becomes tangent to the 
graph. This extreme value of the intercept (as a function 
of the slope a )  is the Legendre transform of the signal z: 

X, (a )  =" s ((Vz)-l(a)) - a  ' (Vz)-l(a) 

It is extensively used in mathematical physics. If the signal 
.(U) is concave or convex and has an invertible gradient, 
its Legendre transform is single-valued and equal (over the 
slope regions it is defined) to the upper or lower transform; 

'In convex analysis [SI, given a convex function h there 
uniquely corresponds another convex function h*(a)  = v, a .  w - h(w) called the conjugate of h. The lower slope trans- 
form of h and its conjugate function are closely related since 
h*(ol) = - f f A ( a ) .  
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e.g., see the last four examples in Table 11. If a differentiable 
signal is neither convex nor concave or if i t  does not have an 
invertible gradient, the Legendre transform is multi-valued; 
i.e., X , ( N )  is a set of real numbers for each a. This multi- 
valued Legendre transform is defined for the 1D case in [3] 
as a ‘slope transform’ and is expressed via stationary points; 
i.e., X , ( N )  = { z ( t ’ )  - at’ : z ( t ’ )  = N}. Its properties in 
[ 3 ]  are similar to  the properties of the upper/lower slope 
transform, but there are also some important differences 
(see [5, 61). 

4. MAX-MIN EQUATIONS, SLOPE FILTERS, 
AND DISTANCE TRANSFORMS 

We view (1) as a 2D discrete nonlinear system 3: H y, 
and we assume boundary conditions of value +cc and of 
a shape (dependent on MO and the scanning order) ap- 
propriate so that  the difference equation is an ESI system 
recursively computable. The  nonrecursive part of this equa- 
tion represents a min-plus convolution 0 of the input ar- 
ray z [ n ,  m] with the 2D finite-support structuring function 
b[n,m] = b,,,,,. Henceforth, we focus only on the recur- 
sive min version of (1) by setting b,, = +cc except from 
b ( 0 , O )  = 0. If f[n, m] = & ( - p [ n ,  m])  is the impulse re- 
sponse of the corresponding ESI system &, then y = znf. 
Finding a closed-formula expression for f is generally not 
possible. However, we can first find the slope response F 
and then, via inverse lower slope transform, find the im- 
pulse response f or its envelope f .  Applying lower slope 
transforms to  both sides of (1) and using the fact that 
Y,,(a) = F ( a )  + X , ( a )  yields 

( 3 )  
Thus the system acts as a 2D slope filter passing all input 
lower slopes a in the planar region R unchanged and re- 
jecting the rest. R is a convex region determined by the 
inequalities k a l  + ja2 5 U k j .  Th? inverse slope transform 
on F yields the lower envelope f of the impulse response 
f .  Over short-scale periods f has the shape induced by the 
sequence { u k J } .  But over scales much longer than the size 
of the coefficient mask M O ,  f behaves like its lower envelope 
f .  Together F and f can describe the long-scale dynamics 
of the system. In addition, if f is a plane, then the above 
analysis is also exact for the short-scale behavior. 

Examples: Let MO = ( (0 ,  l ) ,  (0, I ) ,  (1, l ) ,  ( - l , l ) }  and 

yl[n,m] = m i n ( y ~ [ n -  1 , m ] + a l o , y l [ n , m -  1]+ao1,  
y1[n - 1, m -‘1] + a l l ,  Yl[n + 1, m - 13 + U - 1 1 ,  z[n,m]) 

(4) 
Let alo = a01 = 1 and all  = a-11 = +CO. Assuming 
+cc boundary conditions and a bottom-left to top-right 
scanning order, the impulse response (found by induction) 
is fl [n, m] = a10 n + a01 m - A[n, m] and the slope response 
is F ~ ( a l ,  ~ 2 )  = A(a1o - N I ,  a01 - N Z ) .  Thus this system 
acts as a 2D lowpass slope filter passing all input lower 
slopes a1 5 a10 and ~2 5 uol, and rejecting the rest. This 
example demonstrates that  when ESI systems described by 
min difference equations have a recursive part, their impulse 
response has infinite support. The  min equation in this 

example is used to  compute the first pass y1 = of the 
distance transform for the c i ty-b lock  distance (using the 
5-pixel diamond as the unit disk) of a binary image z. T h e  
distance transform y is completed via a second pass y = 
y l n f i ,  where f i [ n , m ]  = f ~ [ - n , - m ] ,  or equivalently as 
y = y1 Ay2 where y2 = zof~. Thus the distance transform 
z H y is an ESI system with impulse response f = f1 A fi 
and slope response F = F1 A F z ,  where f[n, m] = In1 + lml, 
and F ( a )  = 0 if IIallm 5 1 and --03 else. Thus F is the 
indicator function of the unit square. 

Let now a10 = an1 = 3 and a11 = a-11 = 4. Then, 
running the min equation in a bottom-left t o  top-right scan 
yields the first pass y1 of the chamfer (3,4) distance 
algorithm [l]. T h e  slope response of the complete distance 
computation system is the indicator function of the octagon 
shown in Fig. l a .  Thus, in general, the 2D discrete distance 
transforms are ESI systems whose slope responses are indi- 
cator functions of symmetric polygonal approximations t o  
the disk in the slope plane and whose impulse responses are 
approximations t o  space cones. They are 2D ideal-cutoff 
bandpass slope filters. 

If their coefficients are spatially-invariant, the  min dif- 
ference equations can produce unweighted distance trans- 
forms whose gradient magnitude is fixed. In computer vi- 
sion, there are several applications of gray-weighted dis- 
tance transforms whose gradient magnitude varies locally. 
We examined 2D min equations with spatially-varying co- 
efficients that  can generate such gray-weighted distances. 
One approach (see Fig. l (c)  for a simulated example) is to  
vary the coefficients proportionally to  the local image inten- 
sities with proportionality constants equal to  the weights of 
the discrete 2D metric used. Such gray-weighted distance 
transforms are approximate solutions [lo] t o  the eikonal 
equation modeling optic wave propagation. Solving the 
eikonal equation has applications in recovering 3D shape 
from shading [lo] and in gridless image halftoning [i’]; see 
Fig. Id. 

5. MULTISCALE MORPHOLOGICAL PDES 

Most of the work in multiscale image analysis involves ob- 
taining the multiscale linear convolutions y(z,  a) = f ( z )  * 
G,(z) of the original image f ( z )  with a Gaussian G,(z) 
whose variance is proportional t o  scale a.  The  popularity 
of this approach is due to  its linearity and the fact that  the 
multiscale function y can be generated from the isotropic 
heat diffusion equation = b”y/azz. The  big dis- 
advantage of the Gaussian multiscale approach is the fact 
that linear smoothers blur and shift important image fea- 
tures, e.g. edges. In contrast, morphological smoothing fil- 
ters, such as openings and closings, can smooth while pre- 
serving important image features and correspond to  sim- 
ple filtering operations. See Fig. 2 for examples. So far 
the implementations of multiscale morphological filtering 
have been discrete. Motivated by the renewed interest in 
analog systems, Brockett & Maragos [2] developed non- 
l i n e a r  PDEs that  represent dynamical systems model- 
ing multiscale morphological erosions/dilations and open- 
ings/closings. We shall limit our discussion t o  the PDEs 
generating multiscale erosions and dilations. 

The  m u l t i s c a l e  d i l a t i o n  and e r o s i o n  o f f  by g a t  scale 
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s are defined as the space-scale functions 

A A 
U ( Z , S )  = f e g 6 ( x )  ; V(Z,S)  = f e g d ( z )  

where gd : sB -+ R is a multiscale version of the structuring 
function g defined by go(.) = sg(x/s),  s > 0, with SB = 
( 3 6  : 6 E B } .  The function gs has the same shape as g 
but both its domain and range are scaled by a factor s. 
Figure 3 shows examples of such scale-space functions o and 
a. Given a I D  signal f : R -+ R and a ‘flat’ g : [-1,1] 
{0}, the PDEs generating the multiscale flat dilations and 
erosion of f by g are [2]: 

dU dV 
Dilation PDE: as = 1g1 Erosion: - - as 
These simple but nonlinear PDEs are satisfied a t  points 
(z ,s)  where the da ta  are smooth, i.e., the partial deriva- 
tives du /ax  and d v / d x  exist. Starting from a continuous 
f, the multiscale functions U and v remain continuous at  
all z and s. However, even i f f  is differentiable, as the scale 
s increases the multiscale erosions/dilations can create dis- 
continuities in their derivatives a / a z ;  then these derivatives 
and the generator PDEs have to  be interpreted correctly a t  
such points according to  the specific case. To solve this 
problem we can replace the conventional derivatives with 
‘morphological derivatives’; see [2] for details. 

There exist similar nonlinear PDEs for the multiscale 
dilation of 2D signals f (x ,y )  by concave functions g : B --. 
R. The  only difference now is that  the shapes of g and 
its support E affect the form of the PDE. For example, 
if B is the unit disk and g(z ,  y )  = d v .  is the 
upper surface of the unit sphere, then the multiscale dilation 
function u(x ,  y,  s)  = f(z,y)$g,(x,  y) satisfies the PDE 

These PDEs suggest new ways to  view and implement mor- 
phological multiscale filtering that  avoid the shape discretiza- 
tion effects inherent in all discrete implementations [9]. 

6 .  EIKONAL PDE AND APPLICATIONS 

In geometrical optics it is well-known that ,  the level sets of a 
2D eikonal function u(x ,  y), i.e., the solution to  the eikonal 
equation ((Vu11 = n(z ,y )  are the constant-phase wave- 
fronts of an electromagnetic wave propagating in medium 
of refractive index n. T h e  eikonal equation is closely related 
to the multiscale morphological PDEs where the infinites- 
imal changes along the scale direction were expressed as 
functions of the spatial gradient magnitude; see (5). In a ho- 
mogeneous medium, n is constant. If n 3 1, the wavefronts 
can be obtained from the multiscale dilations of the ini- 
tial front by disks whose radii are proportional to the time 
of propagation. Thus multiscale dilations by disks/spheres 
can implement Huygen’s envelope construction. See [9] for 
related discussion. Given this exciting connection between 
optical wave propagation and multiscale dilations in homo- 
geneous media, we conjecture that  i t  might also be possible 
in heterogeneous media to  find the wavefronts as multiscale 

dilations by spacially-varying structuring elements. This 
is related to computing gray-weighted distance transforms, 
which in turn leads t o  the following applications: 

One envisioned application is shape from shading where 
the height z (z ,y)  of a Lambertian image surface can be 
found [lo] as a solution of the P D E  llVzll = Jm, 
and I is the intensity image. Another interesting appli- 
cation is gridless image halftoning where, inspired by the 
paradigm in [”I, we at tempt  t o  solve the P D E  11Vu(z,y)lJ = 
const - I ( z ,  y) and create binary gridless halftone images 
that  are the union of the level sets of the eikonal func- 
tion u (z ,y ) .  The  goal here is to  solve the eikonal P D E  
with an index n (z ,y )  that  is pixelwise controlled by the 
original gray-level image I(z, y). An approximate solution 
[lo] is the gray-weighted distance transform, which can be 
implented via shift-varying 2D min-plus equations, as dis- 
cussed in Section 4. Fig. Id  shows that  the isolevel contours 
of the distance transform (which we simulated as a solution 
of the halftoning eikonal PDE)  provide a promising gridless 
halftoning approach. 
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TABLE I: Properties of 2 D  Slope Transform 

Signal: z (v )  
(Yo .v 

(Yo + X(v) 
p(v  - vo) 
X(V  - vn l  

Transform: X V ( a )  
- p  (Y - cy0 

-cr ' 210 

-cr. vn - X ( n l  

- X ( m  - (Yo) 
v. c, + & ( U )  

\ ,  \ I  ~, 

Figure 1. (a) Region of support of binary slope response of ESI system describing the chamfer (3,4) distance transform. 
(b) Original gray image 2. the (3,4) metric, displayed modulo 700. 
(d) Isolevel contour lines of the gray-weighted distance transform in (c) providing a gridless halftoning of the image z. 

(c) Gray-weighted distance transform of z w.r.t. 

v, Cl  + Xt((Y) 

(4 (b) (c) (4 (e) 
Figure 2.  (a) Original image. Smoothing at scale=2,4 via: (b,c) Gaussian convolution, (d,e) clos-opening by a square. 

Figure 3. (a) Original 1D signal f ( z ) .  Multiscale (b) erosion, (c) dilation, of f ( r )  by a structuring set B = [-I,  11 for 
scales s = [0,30]. 
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