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ABSTRACT 

Automatic speech recognition (ASR) systems can benefit 
from including into their acoustic processing part new fea­
tures that account for various nonlinear and time-varying 
phenomena during speech production. In this paper, we 
develop robust methods to extract novel acoustic features 
from speech signals of the modulation type based on time­
varying models for speech analysis. Further, we integrate 
the new speech features with the standard linear ones (mel­
frequency cesptrum) to develop a augmented set of acous­
tic features and demonstrate its efficacy by showing signif­
icant improvements in HMM-based word recognition over 
the TIMIT database. 

1. INTRODUCTION 

The traditional approach to speech modelling has been the 
linear model where the true nonlinear physics of speech pr0-
duction have not been taken under consideration. Therefore, 
the most common speech features used in ASR are based 
on short-time smoothed cepstra stemming from the linear 

model. This representation ignores the nonlinear aspects of 
speech and is sensitive to small signal durations. In this pa­
per, we focus on improving the acoustic processing part of 
ASR systems by developing robust instantaneous features 
based on modulation models for speech production and by 
using these features to increase the recognition performance 
of ASR systems whose pattern classification part is based on 
Hidden Markov Models (HMM). 

Our motivations for this research work include the fol­
lowing: (i) Adding new information to the feature set such 
as instantaneous information can model better the dynam­
ics and time evolution of speech features. (ii) Robustness 
to large speaker population or large vocabularies with con­
fusable words can be achieved by using speech processing 
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models motivated by the physics of speech production and 
auditory perception. 

In Section 2 of this paper, the use of modulation models 

for speech resonances is reviewed and a robust demodula­
tion algorithm for extracting the parameters of such models 
is developed. In Section 3, we describe how to extract novel 
short-time feature vectors from speech signals that contain 
modulation information and use them as additional (to the 
cepstrum) features to develop a generalized set of acoustic 

features for improving HMM-based recognition. 

2. SPEECH MODULATION MODEL AND 
DEMODULATION ALGORITHM 

There is much experimental and theoretical evidence for the 
existence of amplitude and frequency modulation (AM-FM) 
in speech resonance signals, which make the amplitude and 
frequency of the resonance (formant) vary instantaneously 
within a pitch period. 

Motivated by this evidence, Maragos, Quatieri and Kaiser 
[4] model each speech resonance with an AM-FM signal, 

3:(t) = a(t)cos[2'11' lot J(1')d1'] (I) 

and the total speech signal as a superposition of such AM­
FM signals, one for each formant. Here aCt) and J(t) are 

the instantaneous amplitude and frequency which represent 
the time-varying formant signal. The short-time formant 
frequency average Je = (lIT) JOT J(t)dt, where T is in the 
order of a pitch period, is said to be the carrier frequency 
of the AM-FM signal. The classical linear model of speech 
views a formant frequency as constant, i.e., equal to J e, over 

a short time (10-30 ms) frame. However, the AM-FM model 
can both yield the average fe and provide additional infor­
mation about the formant's instantaneous frequency devia­
tion I(t) - Ie and its amplitude intensity la(t)l. To isolate 
a single resonance from the original speech signal, band­
pass filtering is first applied around estimates of formant 
center frequencies. Then for demodulating a resonance sig­
nal, Maragos et a1. [4] used the nonlinear Teager-Kaiser 
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energy-tracking operator 

�[z(t)J == [dz�t)] 2 _ Z(t) tfl��t) (2) 

to develop the following nonlinear algorithm 

1 �[:i;(t)J �[z(t)] 
RI la(t)1 (3 211" �[z(t)J RI J(t) , v'�[:i;(t)] ) 

This is the energy separation algorithm (ESA) and provides 
AM-FM demodulation by tracking the physical energy im­
plicit in the source, producing the observed acoustic reso­
nance signal and separating it into its amplitude and fre­
quency components. It yields very good estimates of the 
instantaneous frequency signal J(t) � 0 and of the ampli­
tude envelope la(t)! of an AM-PM signal, assuming that 
aCt), J(t) do not vary too fast (small bandwidths) or too 
greatly compared with the carrier frequency Ie. A very ef­
ficient and computationally simple discrete version of the 
ESA also ellists, called DESA [41, which is obtained by us­
ing a discrete energy operator on discrete-time nonstation­
ary sinusoids. Extensive experiments on speech demodu­
lation using the DESA in [4, 51 indicate that these ampli­
tude/frequency modulations exist in real speech resonances 
and are necessary for its naturalness. 

The main disadvantage of the DESA is a moderate sen­
sitivity to noise. Thus, we describe next an alternative ap­
proach [2] where we first interpolate the discrete-time signal 
using smoothing splines [7], and then apply the continuous­
time ESA (3). Splines are piecewise polynomial functions 
constructed as a linear combination of B-Splines. A spline 
function of order v has continuous derivatives up to order 
v - I, which is important when using the energy operator 
�. At first we used exact splines to improve the perfor­
mance of the ESA, tested on noisy AM-FM signals with 
different levels of SNR. The results were disappointing as 
the exact fitting of the signal representation curve, due to 
the presence of noise, was creating large estimation errors. 
The problem of noise led us to optimally interpolate signal 
samples with smoothing splines, whose main advantage is 

that the interpolating polynomial does not pass "precisely" 
through the signal samples but "close enough". The smooth 
spline interpolating fwlction is defined as the function s" 
that minimizes the mean square error criterion 

E= � (z[nJ-s.,(n»2+>. [:00 (8'";;r(t)rdt 
!I--oo .... , '" ¥ ' 

Ed. E. 

where Ed is the data fitting error and E" quantifies the non­

smoothness of the interpolant by the mean square value of 
its derivative. The positive design parameter >. controls the 
trade-off between how smooth the interpolating curve will 

be and how close to the data points the interpolant will pass. 
(For>. = 0 we obtain exact splines with no data smoothing.) 
Given the initial signal samples z[n] , n = 1, . . . , N, the 
interpolating spline function of order v = 2r - 1 is given 

by [7] 
+00 

S.,(t) = L e[nJp.,(t - n) (4) 
n=-oo 

where p.,(t) is the B-spline of order II, and the coefficients 
e[n] depend only on the data z[nJ, the parameter>. and 
the analytic expression of the B-spline. The coefficient se­
quence e[n] can be determined recursively by using the se­
quence z[n] as input to excite an IIR filter. This IIR filter has 
a symmetric impulse response, and all its poles are always 
inside the unit circle. Thus, the spline coefficients e[n] can 
be determined stably via a few recursive equations (2, 7]. 

The above spline interpolation leads us to a new ap­
proach for ESA-based Demodulation Algorithm whose ba­
sic steps are the following: (i) By using smoothing splines, 
the original discrete-time signal z[n] is interpolated to cre­
ate a continuous-time expansion S.,(t). (ii) The continuous­
time energy operator � and the continuous ESA are applied 
to the continuous-time signal S.,(t). This requires com­
puting �[S.,(t)] and �[8S.,(t)/Btl, which in tum require 
the derivatives 8'"s,,(t)/lW for r = 1,2,3. We can ob­
tain closed-form expressions for these derivatives that in­
volve only the coefficients ern] and the B-spline functions 
[2]. The continuous ESA (3) estimates the instantaneous 
amplitude aCt) and frequency wet) of the continuous sig­
nal sv(t). (iii) The information-bearing signals aCt), wet) 
are sampled to obtain estimates of the instantaneous ampli­
tude A[n] ::: a(nT) and frequency O[

n] = Tw(nT) of the 
original discrete signal z[n). This whole approach above is 
called the Spllne-ESA. 

By setting v = 5, the time-window (i.e., the number 
of input samples required to produce one output sample) 
of Spline-ESA becomes the same with that of the DESA. 
Extensive comparisons [2] between the Spline-ESA (with 
/I = 5 and .>. fixed to a constant value in the order of 0.5) 
versus the DESA have demonstrated that, while both algo­
rithms perform well in signal·pIus-noise environments with 
high SNRs, the Spline-ESA outperforms the DESA in low 
SNRB. This robustness in the presence of noise, is the main 
advantage of the Spline-ESA. 

The ESAs are efficient demodulation algorithms only 
when they are used on narrowband AM-FM signals [1]. 
This constraint makes the use ofjilterbanks (i.e., parallel ar­

rays of bandpass filters) inevitable for wideband signals like 
speech. Thus, each short-time segment (analysis frame) of a 
speech signal is simultaneously filtered by all the bandpass 
filters of the filterbank, and then each filter output is demod­
ulated using the ESA. In our on-going research on speech 
analysis and recognition [5, 6] we have been using �lter-

1-378 



banks with Gabor bandpass filters whose center frequencies 
are spaced on a mel-frequency scale. Figure 1 shows an 
example of demodulating three bands of a speech phoneme 
into their instantaneous amplitude and frequency s igna ls. 
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Fig. 1. Demodulating a speech phoneme using a Gabor fil­
terbank and the Spline-ESA. 

3. MODULATION FEATURE EXTRACTION AND 
PHONEME RECOGNITION 

The feature vectors used in speech recognition, are typi­
cally computed over a 20-30 ms window and are updated 
every 5-10 ms. The 'standard' feature set consists of the 

first twelve mel-frequency cepstrum coefficients (MFCC), 
the mean-square amplitude(i.e. energy) of the signal and 
their first and second time derivatives. 

We shall augment the 'standard' feature vector and thus 
create a hybrid feature vector by incorporating information 

from the nonlinear structure of speech of the modulation 
type as additional features. We use feature vectors that con­
tain information both from the smoothed cepstrum of the 
linear model, as well as from the speech modulations . 

We have used the hybrid feature vector as input to a 
hidden Markov model (HMM)-based speech recognizer. 
The HMM recognizer is the HTK system [8]. In the ex­
periments presented below, context-independent, 3-state, 
left-right HMMs and unweighted word-pair grammar were 
used. The input vectors are split into two different data 
streams, one for the standard features (MFCC) and the other 
for the modulation features. The modulation features are as­

sumed to be independent of the linear features and to belong 
to separate probability 'streams'. Each one of these streams 
has an independent probability distribution. These distribu­
tions are modelled by a certain number of Gaussian mixture 

probability densities, called mixture components [8]. 

We have experimented with a broad range for the: num­
ber of Gaussian mixture densities; but we are presenting the 
recognition results only for the cases of 8 and 16 mixtures, 
since these values are the most representative. Stream­
weights affect directly the recognition process. Our exper­
iments have shown that the best recognition results are ob­
tained when the data-stream weights are equal and sum up 
to one, so we set the weights each equal to 0.5. 

The experiments were made over the TIMIT database. 
This database consists of 6300 sentences, 10 sentences spo­
ken by each of 630 speakers from 8 major dialect regions 
of US. All speech signals in TIMIT are sampled at 16 kHz. 
The training set consists of 3696 sentences and the test set 
by 1344 sentences. Each one of these sentences was seg­
mented into 25-ms speech frames, whose update period was 

10 ms. The (linear and nonlinear) feature sets were ex­
tracted from each such frame. 

We have automated the extraction of modulation features 

from speech signals in the following way: First. we use 

a parallel filterbank of overlapping Gabor bandpass filters 
whose center frequencies are spaced on a mel-frequency 
scale. Second, the output signals from each Gabor bandpass 
filter are demodulated via the Spline-ESA into their instan­
taneous amplitude aCt) and frequency J(t) component sig­
nals. For each such short-time analysis frame and for each 
band, the weighted mean Fw and standard deviation Bw of 
the instantaneous frequency signal are estimated as in [5]: 

(5) 

(6) 

where to and T are the start and duration of the analysis 
frame, respectively. Next, we compute the frequency mod­
ulation (FM) percentage in each band, as the ratio K = 

Bw! Fw. For each analysis frame, the FM percentages Ki, 
i = I, ... , L, are computed, one for each narrowband speech 
component, where L is the number of filters in the filter­
bank. The modulation feature set consists of the sequence 
of the FM percentages Ki and their first and second time 

derivatives. This is a total of 3L numbers per frame. We 
have experimented with mel-spaced filterbanks consisting 
of L = 12 and L = 6 Gabor filters, spanning tbe whole 
frequency range and overlapping by 50%. We have used 

these modulation feature vectors to augment the standard 
feature vectors employed in speech recognition tasks. The 

augmented hybrid feature set consists of the standard and 
the modulation feature set. The two different feature sub­
sets are treated as separate streams by the HTK system with 
independent probability distributions. 
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Word Percent Correct I 
# Gaussian Mixtures MFCC MFCC+FM 

5 67.15 79.12 
8 73.95 84.31 
10 77.33 85.51 
12 77.95 85.76 
16 78.76 86.83 

Table 1. Recognition Results 

Table 1 reports the word recognition results over the 

TIMIT database using either only the standard features (col­
umn MFCC) or the augmented standard-plus-modulation 
features (column MFCC+FM). Clearly, our experiments on 
word-recognition by augmenting the standard feature set 
with modulation information show a significant improve­
ment over using only the standard features. This relative 
error rate reduction approaches 40% when using 8 Gaus­

sian mixtures. Thus, the FM modulation percentage fea­
tures provide an improvement to the recognition perfor­
mance with a moderate increase in the size of the feature 
vector. 

The results in Table I refer to the case of a 6-channel 
filterbank (i.e. 1 8  modulation features); hence, the aug­
mented feature set has a size of 57. We have experimen­
tally found that measuring the modulations in the outputs 
of only 6 Gabor filters, yields better recognition results than 
using 12 filters. For example, the correct word recognition 
for the 12-channel filterbank was 80.96% (using 8 Gaus­
sian mixtures) compared to 84.3% for 6 channels. Note that 
the 12-channel case employs a larger feature vector of size 
75 despite its inferior recognition performance. This differ­
ence in the recognition rates, can be explained based on the 

modulation model for speech resonances. In the 12-channel 
case, the large number of filters causes each bandpass filter 

to have a narrower bandwidth and hence pass a smaller part 
of the AM-FM modulation structure of the neighbor speech 
resonances. In contrast, the filters in the 6-channel filter­
bank, have a wider bandwidth and hence keep a richer part 
of the modulation information. 

4. CONCLUSIONS 

In this paper, we have described how to apply an efficient 
nonlinear DSP algorithm to speech signals in order to ex­
tract novel acoustic features related to their nonstationary 
dynamics of the modulation type . Further we have de­

veloped a hybrid feature set for speech recognition that 
includes both the standard linear features as well as the 

I The perc:entage number of words correctly recognized is given by the 
ratio of the number of correct labels to the total number of words in the 
deflnin& lraIIIIcription files. 

new nonlinear features and applied this new feature set to 
HMM-based word recognition. Our experimental results 
have shown a significant improvement in recognition over 
the TIMIT database. 

Given the relation of the underlying nonstationary mod­
els to the physics and true dynamics of speech production 
and given the efficiency of the nonlinear DSP algorithm we 

developed to extract the corresponding nonlinear features, 
we believe that the modulation models and related nonlin­
ear algorithm have a strong potential in speech recognition. 

In the near future, we intend to apply the modulation fea­

tures for speech recognition in noisy environments and for 
large vocabulary speech recognition. Regarding these mod­
ulation features, the Spline-ESA can offer robustness in the 
speech demodulation problem. 

5. REFERENCES 

[I] A. C. Bovik, P. Maragos, and T.F. Quatieri, "AM­
FM Energy Detection and Separation in Noise Us­
ing Multiband Energy Operators", IEEE Trans. Signal 
Processing, vol. 41, Dec. 1993. 

[2] D. Dimitriadis and P. Maragos , "An Improved En­
ergy Demodulation Algorithm Using Splines", Proc. 

ICASSP-OJ, Salt Lake, Utah, May 2001. 

[3] D. Dimitriadis, P. Maragos, V. Pitsikalis and A. 
Potamianos, "Modulation and Chaotic Acoustic Fea­
tures for Speech Recognition", J. Control and Intelli­
gent Systems, Invited Paper, accepted for publication, 
2002. 

[4] P. Maragos, 1. F. Kaiser, and T. F. Quatieri, "Energy 
Separation in Signal Modulations with Application 
to Speech Analysis", IEEE Trans. Signal Processing, 
vol. 41, pp. 3024-3051, Oct. 1993. 

[5] A. Potamianos and P. Maragos, "Speech Formant Fre­

quency and Bandwidth Tracking Using Multiband En­
ergy Demodulation", J. Acoust. Soc. Amer., 99 (6), 
pp.3795-3806, June 1996. 

[6] A. Potamianos and P. Maragos, ''Time-Frequency Dis­
tributions for Automatic Speech Recognition", IEEE 
Trans. Speech and Audio Processing, vo1.9, pp.l96-
200, Mar. 200 1 . 

[7] M. Unser, A. Aldroubi and M. Eden, "B-Spline signal 
processing: Part I-Theory. Part II-Efficient design and 
applications" IEEE Trans. Signal Processing, vol. 41, 
pp. 821-848,Feb.1993. 

[8] S. Young, The HTK Book, Cambridge Research Lab: 

Entropics, Cambridge, England, 1995. 

1-380 


