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ABSTRACT: This paper presents a class of random sig- 
nals as a new excitation codebook for stochastic predictive speech 
coders. These signals, known as fractional noises, depend on a 
single parameter 0 < H < 1 that controls the low- or high- 
pass trend of their power spectrum 1/wZH*'. Preliminary exper- 
iments have shown that their performance improves by limiting 
H to a subinterval of (0 , l )  and becomes better than that of the 
standard Gaussian codebook as the codebook bit rate decreases 
from 0.25 down to 0.1 bits per excitation sample. Their para- 
metric nature allows efficient coding by quantizing H. Further, 
with no search of the codebook but a t  a certain loss of speech 
quality, a suboptimum excitation can be estimated with an H 
that matches the fractal characteristics of the speech residual. 

1 Introduction 

Stochastic code-ezcited linear predictive (CELP) coders [1,2] and 
their generalization [3] are an important class of predictive speech 
coders that can produce high-quality speech at low bit rates 
about 4.8 Kbits/sec. In CELP analysis, the pre-emphasized 
speech signal S[n] is filtered by the spectral envelop prediction 
error filter 1 - A(%) = 1 - E:='=, (Ykz-k  to produce the prediction 
error signal 

P 

U[fl] = s[fl] - (YkS[n - k] (1) 
k=l 

Then, U[n]  is filtered by the pitch prediction error filter 1 - 
B ( r )  = 1 - pz-7 to produce the excitation signal 

E[n] = U[n] - pU[n - 71 (2) 

The synthesized speech is produced by exciting the synthesis fil- 
ter 1/[1- A(z)][l- B(z)]  with E[n] as input. The parameters of 
the predictors A(%), B(r)  are found in some open-loop or closed- 
loop optimization procedure using weighted mean squared error 
criteria. During each short-time frame, the optimum excitation 
sequence is found by searching among all K possible sequences 
(the 'codewords") of a codebook, where the optimization crite- 
rion is the closeness between synthesized and original speech. 
The standard approach has been so far to use a codebook of 
K = 1024 white Gaussian sequences; henceforth, we refer to 
them as the "Gaussian" codebook. 
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Two important research problems in stochastic CELP coders 
are: i) to find useful classes of stochastic excitation signals, and 
ii) to develop efficient procedures that reduce the search for find- 
ing the optimum excitation sequence. In this paper we present 
our research results from using two new classes of parametric 
stochastic signals for exciting CELP-type speech coders. These 
two classes are finite-length sequences from random realizations 
of fractional Brownian motion (FBM) and fractional Gaussian 
noise (FGN). (See [4] for their properties and application in mod- 
eling random phenomena.) In continuous time, FBMs are fractal 
signals because their fractal dimension exceeds their topological 
dimension; the FGNs are time-derivatives of FBMs. Our motiva- 
tions for introducing FBMs and FGNs as excitation signals are 
twofold: 1) To model the random roughness (fragmentation) of 
speech residuals based on their fractal characteristics. (Note that 
the measurement of fractal characteristics can be also applied to  
the speech signal itself with applications to  speech analysis [6].) 
2) To find a more structured (e.g., parametric) class of signals 
for stochastic codebooks exciting speech coders. For example, by 
tuning the parameter of these fractal signals to the fractal char- 
acteristics of the speech residual signals we developed a method 
that produces a suboptimum excitation sequence without search- 
ing the codebook. 

We tested our ideas by exciting the implemented CELP coders 
with 3 classes of random signals: a) The standard Gaussian code- 
words as in [1,2]. b) The FBMs, and c) the FGNs. Preliminary 
experiments are reported on comparing these 3 classes of excita- 
tion signals with respect to several viewpoints. 

2 Modeling Speech Residuals with Frac- 
tional Noises 

The continuous-time FBMs with parameter 0 < H < 1 are time- 
varying random signals with stationary, Gaussian-distributed, 
and statistically self-similar increments. The FGNs also depend 
on the same single parameter H because they are defined as the 
(generalized) time-derivatives of FBMs, they are stationary ran- 
dom signals with Gaussian distributed amplitudes. The power 
spectral density of FBMs is PSFBM(W) 0: l/lw)2H+', while that 
of FGNs is P S ~ G N ( ~ )  a l/lw12H-1. Hence, an efficient algo- 
rithm [5] to synthesize an FBM is to create a random sampled 
spectrum whose average magnitude is l/(w(H+o.s and its random 
phase is uniformly distributed over [0,2s]. In our experiments we 
synthesized and then transformed sampled random spectra l /wA 
via a 1024-point inverse FFT to obtain FBM sequences (by set- 
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ting A = 2H+1) or FGN sequences (for A = 2H - 1) from which 
we retained the first N << 1024 samples, where N is the length 
of the codewords. FGNs could possess either a low-pass (for 
H > 0.5) or a high-pass (for H < 0.5) trend in their spectrum. 
FBMs can only have a low-pass trend in their spectrum; in the 
time domain the roughness of FBMs increases as H decreases. 
Figure 1 shows several FBMs and FGNs for different H's. For 
H = 0.5 FBMs and FGNs reduce to the standard Brownian mo- 
tion and white Gaussian noise, respectively. The fact that FGNs 
and FBMs have Gaussian-distributed amplitudes correlates well 
with the same property of the standard Gaussian codewords; the 
latter was motivated by the nearly Gaussian distribution of the 
prediction error samples [Z]. 

Let X [ n ]  be a finite-duration speech prediction residual se- 
quence; i.e., it could correspond to E[n] for voiced speech and 
either U[n] or E[n]  for unvoiced speech. One of our goals in this 
work is to model X [ n ]  by using a single realization from FBM 
or FGN so that searching the whole codebook could be avoided. 
Next we outline three possible approaches: 

I. Mean Squared Error Method: Given a collection of K FBM 
or FGN signals fH[n] of the same duration as X [ n ] ,  where H 
assumes any out of K distinct values in the interval ( 0 , l )  or 
some subinterval, the problem is to find an amplitude G and an 
H such that the error 

E (G ,  H) = C(XIn1 - GfHI.l)2 
n 

is minimized, where En = Erg:. Setting BE/BG = 0 yields 
that G = G ( H )  = (En X[n] f H [ f l ] ) / ( c n  f & [ f l ] ) .  Replacing this 
value of G in E yields an error 

Then, by exhaustive search we can find first which H minimizes 
E ' ,  and then find G .  However, such an approach is computation- 
ally expensive because we need to  search over all K codewords 

II. Power Spectrum Method: The power spectrum of FBMs 
f H .  

or FGNs obeys the law 

log PS(w) = -A lOg(w) + constant 

where A = 2H + 1 for FBMs and A = 2H - 1 for FGNs. Hence 
by fitting a straight line using linear regression to the plot of 
the data (log P S ( w ) ,  logw) and finding its slope, we can estimate 
H .  This approach, however, suffers from the problems of power 
spectrum estimation. Thus, the variance of the spectral values 
varies a great deal and so does the slope A, which makes it very 
unrobust. In addition, as Fig. 2 shows, the estimated H using 
this spectrum method can even be outside its correct range ( 0 , l ) .  

III. Fractal Dimension Method: The fractal dimension 141 of a 
signal quantifies the geometrical roughness of its graph. The frac- 
tal dimension of an FBM signal with parameter H is D = 2 - H .  
Thus, if we are to model X[n]  with an FBM, we can estimate the 
fractal dimension D ( X )  of X and set H = 2 - D ( X ) .  To model 
X [ n ]  with an FGN, we can integrate X to produce a signal Y [ n ] ,  
which is an FBM-like version of X ,  compute the fractal dimen- 
sion D(Y) of Y and set H = 2 - D ( Y ) .  We have found this 
method t o  be much more robust than the spectrum method for 
modeling either speech residuals or FGN signals. Fig. 2 shows a 
speech residual X from voiced speech, and two FGNs to model 

X with their H parameter estimated by the fractal dimension 
and spectrum method. The measurement of the fractal dimen- 
sion was done by using the method employed in IS] to measure 
the fractal dimension of speech signals. Namely, for each scale 
E = 1 , 2 , 3  ..., morphological dilations and erosions of the signal X 
by structuring elements of size E were used to create upper and 
lower envelops of X .  These envelops create a cover around the 
signal. Integrating the difference signal between these two en- 
velops yields the area COU(E) of this cover. Fitting a straight line 
(by using linear regression) on the data (log C O W ( E ) / E ~ ,  log I / & )  
yields the fractal dimension as the slope of this line. 

3 CELP Coder Operation 

Two types of coders were implemented in this research i) the 
standard CELP coder [1,2], where the parameters of both the 
short-delay predictor A(z)  and the long-delay predictor B ( z )  
are found in an open-loop optimization (i.e., during the anal- 
ysis phase), and ii) the more general CELP coder of [3], where 
the pitch predictor parameters P , 7  are found in a closed-loop 
optimization, i.e., in an analysis-by-synthesis procedure. In both 
coders the excitation is found via a closed-loop synthesis prc- 
cedure. The CELP coder of [3] yielded a significant gain in 
performance (since the parameters of B(z )  are optimized in a 
closed-loop) with an attendant increase in processing time. Due 
to its superior performance, for the rest of this paper we focus 
only on this more general CELP coder whose general operation 
is abstracted in Fig. 3. 

The original speech was sampled a t  8 KHz and pre-emphasized 
with the filter 1 - 0 . 4 ~ ~ ' .  Ten LPC parameters {ah} were cal- 
culated every 10 msec using the autocorrelation method in a 20 
msec Hamming window centered over the current frame. The 
coefficients thus derived constitute A(%). 

forward in an analysis-by-synthesis scheme. First, the ringing 
from the previous frames, calculated by running the inverse LPC 
predictor & on the previous frame of U [ n ]  with zero new 
input, is subtracted from the original signal S [ n ] .  This new sig- 
nal is called Rp[n] .  Rp[n]  is also run through a (perceptually- 
important) weighting filter 

The determination procedure for the pitch predictor is straight- 

1 - A ( z )  
1 - A(O.8-lZ) 

W ( % )  = 

to hide noise under the formants. The pitch predictor, then, 
assumes a filter of the form Pz-7. By testing all values 40 <= 
7 < 160, an inverse pitch predictor with gain P = 1 is run on zero 
excitation sequence input to arrive a t  a candidate for the current 
frame of U [ n ] .  This frame is run through & and W ( z )  to 
arrive at  a candidate Rp,7[n]. This signal can be correlated with 
Rp[n] to arrive at  the optimum p and the mean squared error. 
The optimum 7 with the lowest mean squared error is chosen, 
along with its corresponding optimum P. 

Adapting the codewords in the excitation sequence is needed 
to capture the time-varying characteristics of the speech resid- 
uals. The codewords are selected in a manner similar to that 
of the pitch predictor parameters. First, all ringing effects and 
the contributions of the pitch predictor are subtracted from S[n] ,  
leaving the yet-unmodeled portion of the speech. This signal is 
run through W ( z )  and called R, [n] .  

The signal R,[n] is compared to the signals created from a 
fixed codebook (FGN, FBM, or Gaussian) of K = 1024, 64, or 
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16 codewords. Each codeword represents 5 msec of the excitation 
sequence. For the FGN and FBM codewords, which were sorted 
by their H parameter, three different schemes were tried in the 
implementation of the codeword search. 1) Full search: In the 
first approach, all codewords were test-matched with R,(n] by 
filtering each through & and W ( z ) ,  then computing the op- 
timum scaling factor G and mean squared error. The codeword 
C[n] with the lowest mean squared error is chosen, along with its 
G. 

2) Limited search: A second approach was to model R,[n] 
with an FGN or FBM by estimating its H and then greatly limit 
the amount of time spent in the search. Specifically, the H of 
the R,[n] signal was measured with the fractal dimension method, 
and only a window consisting of 10% of the codebook centered 
around the measured H was searched. This scheme offers the 
possibility of greatly decreased computation time with many of 
the advantages of a large codebook in quality performance. 

3) N o  search: The third approach did not implement a code- 
book search a t  all, using the single codeword corresponding to 
the estimated H value (modulo the quantization error in repre- 
senting the H range with K distinct values). 

Figure 4 shows 20 msec of typical speech waveforms generated 
during the operation of the CELP coder. 

4 Results and Discussion 

In the experiments, several FGN and FBM codebooks were tried, 
each with a different size K and range of H .  (All the predictor 
parameters were unquantized.) 

For K = 1024 codewords (0.25 bits per excitation sample), 
the Gaussian and the FGN codebooks with H in [0.1,0.9] per- 
formed similarly under full search. The performance was judged 
both via informal subjective listening tests and segmental SNRs 
on coded speech from male and female speakers. The speech 
synthesized by FBMs sounded “smoother” (more low-pass) than 
that synthesized by FGNs, which is expected since FBMs are 
moving averages of FGNs. 

Figure 5 shows the H of the FGN signal that best matches 
(using the fractal dimension method) the closed-loop excitation 
signal for a typical speech signal. As shown there, most of the 
time H does not use its full range (0,l). Hence, for a fixed K ,  
we can allocate the K FGN codewords in a smaller subinterval of 
the H range with an increase in the coder’s performance. Thus, 
for the same K ,  the FGNs with H limited in [0.3,0.7] performed 
better than the Gaussian codewords. This difference in perfor- 
mance was very small for K = 1024, increased for K = 64 (0.15 
bits per excitation sample), and became more pronounced for 
K = 16 (0.1 bits per excitation sample). 

For FGN and FBM codebooks, the limited search and no- 

search approaches performed worse than the full search. How- 
ever, the no-search approach shows some promise for future re- 
search, because it is fast, the chosen single H is suboptimum (as 
opposed to a random choice) since it matches the fractal char- 
acteristics of the speech residual, and the synthesized speech is 
more than intelligible. 

Overall, the performance of FGNs degrades more gracefully 
than that of the Gaussian codebook. Further, the FGNs and 
FBMs are more structured classes of excitation signals for vari- 
ous reasons: 1) Their total dependence on a single parameter H 
with bounded range allows their efficient coding by just quantiz- 
ing H .  2) While keeping the codebook bit rate fixed, we can limit 
H to a subinterval (chosen to match certain statistics of speech 
classes) of (0 , l ) .  Thus, the H parameter can be sampled more 
densely and increase the performance of the codebook. 3) At a 
certain loss of speech quality, we can estimate a single (subopti- 
mum) H that best matches the speech residual and thus avoid 
searching the codebook. 4) We can view both FBMs and FGNs 
as a combined class of parametric excitation signals with power 
spectrum 1/wA, with A E (-1,3). The standard Gaussian code- 
words correspond only to A = 0 since their spectrum is flat. 
Hence, by varying A we obtain an additional degree of freedom 
in coding the speech excitation. 5) By limiting A to subintervals 
of its full range, we can simulate various degress of smoothness 
(large A) or roughness (small A) in the synthesized speech. 
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Figure 1. (a) FBM, and (b) FGN signals. 
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Figure 4. (a) Original speech. (b) Synthesized speech 
( K  = 1024 FGNs, H E [0.1,0.9]). (c) Prediction error 
U[n] .  (d) Excitation E[n]. 
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Figure 2. Modeling a speech residual signal by an  FGN. 
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Figure 3. Analysis-by-synthesis procedure during encod- 
ing. (Solid line shows signal flow, whereas dotted line shows 
flow of parameters.) 
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Figure 5. Variation of estimated H .  
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