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ABSTRACT 
An experimental system that uses an energy-tracking op- 

erator and a related energy separation algorithm to auto- 
matically find speech formants and amplitude/frequency 
modulations in voiced speech segments is presented. Ini- 
tial estimates of formant center frequencies are provided by 
either LPC or morphological spectral peak picking. These 
estimates are improved by a combination of bandpass fil- 
tering and iterative application of energy separation. The 
system is shown to  be effective. Its application to an AM- 
FM vocoder is also discussed. 

1. INTRODUCTION 
The ability to  automatically find and track resonant fre- 
quencies of the speech production system, called ‘formants’, 
is an important part of speech processing, because for- 
mants play a major role in most speech applications. Tradi- 
tional methods for formant finding are peak picking of the 
cepstrally-smoothed or LPC spectrum, or finding the roots 
of the LPC polynomial. These methods assume that the 
formants are constant within an analysis frame. However, 
in a recently proposed modulation model [l, 21, resonances 
are modeled as damped AM-FM signals 

4 4  = 4 t )  cos[d(t)l 

= a(t) cos[2x(fct + q ( T ) d r )  + 4(0)3 (1) i’ 
with a time-varying instantaneous frequency (in Hz) 

being the sum of several resonances. Thus, there is a need 
to  isolate resonances by bandpass filtering. In our work 
this is done with a Gabor filter whose impulse response is 
g(t) = exp(-a2t2)cos(Wct), wc = 2xfc. There is a question 
as to  the best method of choosing the center frequency fc 
and bandwidth parameter (Y of the filter. The carrier fre- 
quency fc of the AM-FM signal may be a logical choice, but 
determining that frequency from an arbitrary signal may 
not be straightforward. Furthermore, the choice of filter 
bandwidth is complicated by conflicting requirements: the 
filter must be as wide as is possible to include the desired 
formant modulations, but narrow enough to exclude those 
of neighboring formants. 

We would like to  automatically determine the center fre- 
quencies of the bandpass filters used to  extract the compo- 
nent AM-FM signals of the speech segment and then de- 
termine the modulations around these center frequencies, 
assuming we have a reasonable estimate of the filter band- 
widths. The system presented in this paper is aimed at  
achieving this goal. The outline of the paper is as follows. 
We first review the energy operator and ESA in discrete 
time. Then, an iterative energy separation algorithm is de- 
scribed which eliminates the need for precise values of for- 
mant center frequencies, because the ESA is used to  con- 
verge to those center values. Next, we describe the system 
and present experimental results that demonstrate its ef- 
fectiveness. Application of the system to a vocoder is then 
discussed. Finally, we conclude and discuss some extensions 
of our work. 

2. B A C K G R O U N D  
We define a discrete-time AM-FM signal by 

and a time-varying (generally non-exponential) amplitude 
a t . To estimate the amplitude and frequency signals 
.It{, f ( t ) ,  Maragos, Kaiser, and Quatieri [2] have developed 
an energy separation algorithm [ESA) that uses a nonlin- 
ear energy operator to track the instantaneous energy of 
the source generating the AM-FM signal and separate it 
into its amplitude and frequency components. This energy 
operator, defined as 

* c  [ z ( t ) ]  = (.(t))’ - .(t)?(t) (3) 

was introduced by Teager and Kaiser [3]. 
The ESA, however, is applied to single speech reso- 

nances, while the speech signal itself is multi-component, 
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where I.(.)[ is the discrete-time amplitude envelope, f(n) 
is the instantaneous frequency (in Hz) ,  a sampled version of 
(2),  and T is the sampling period. By applying the discrete- 
time Teager-Kaiser energy operator [4] 

\Ed  [.(.)I = .“n) - z(n - l ) z ( n  + 1) (5) 

to the signal z(n and its backward difference y(n) = z ( n ) -  
z ( n  - I), it has b een shown in [l, 21 that 
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Eqns. (7)-(8) are referred to as the discrete-time ESA. At 
each sample it provides an estimate of the envelope and in- 
staneous frequency using only a 5-sample moving window 
and at a very small computational complexity. The approxi- 
mations involved are valid as long as the amplitude envelope 
and instantaneous frequency do not change too much or too 
quickly in time compared with the carrier frequency. In im- 
plementing the ESA, we also pre-smooth the energy signals 
Qd[%(n)] and @d[y(n)] with a 7-point binomial smoothing 
filter, because this can reduce the approximation errors by 
about 50%; for details see [5]. 

3. ITERATIVE ESA 
From the results of our early experiments with the ESA, 
we noticed that when the center frequency of the filter was 
off by even several hundred Hz, the average value of the 
instantaneous frequency was often close to the formant peak 
frequency. 

Based on this observation and a suggestion by Kaiser [6], 
we reasoned that we might be able to use f ( n )  to iteratively 
estimate the center frequency of the formant, adjusting the 
center frequency of the filter on each iteration. Assuming 
in the AM-FM model (1) for a speech resonance that the 
frequency modulating signal p(t) has a zero mean within 
the short-time speech analysis frame, an estimate for the 
formant center frequency fc can be the average of the in- 
stantaneous frequency f(t) .  Thus, we have implemented 
the idea of iterative estimation by using the following rule: 

N-1 

(9) 
n=O 

That is, the center frequency of the Gabor bandpass filter 
on the ( j  + 1)-th iteration is set equal to the average value 
of f (n)  on the j-th iteration. We start the algorithm by set- 
ting !:') to be some initial estimate of the formant, and we 
consider the algorithm to have converged when the center 
frequency does not change by more than 5 Hz. This itera- 
tive application of the Gabor bandpass filter, the ESA, and 
the updating of the filter center frequency, while keeping its 
bandwidth fixed, is henceforth called the iterative ESA. 

We have been using the iterative ESA for some time now 
and, overall, the results are good. For well defined spec- 
tral peaks and fairly good initial estimates, the algorithm 
converges quickly. Fig. 1 shows an example where only one 
iteration was required for convergence. In this case the ini- 
tial estimate was off by 140 Hz. A poorer initial estimate 
or a poorly defined peak requires more iterations. 

In Fig. 2 we superimpose the results of the iterative ESA 
onto the LPC spectrum of a vowel. The LPC spectrum 
has some peaks that are difficult to distinguish, while the 
iteration results correspond well with the speech formants. 
In addition, the iterative ESA has the advantage over LPC 
that it also finds the modulations, i.e., the signals Iu(n)I and 
f ( n ) .  This algorithm seems to be most useful when used 
in conjunction with a more standard formant finder that 
provides initial estimates of the formant center frequencies. 
We will describe such an implementation in Section 4. 

We now briefly turn to the issue of how the iterative ESA 
may be converging. We experimentally observed that the 
resulting average value of the instantaneous frequency f(n) 
seemed to be drawn close to peaks or local maxima in the 
power spectrum. Since the output of *d 1: n)]  is propor- 
tional to the energy required to produce z\n\, we reasoned 
that the algorithm could be maximizing the average energy 

N-1 

where &)(n) is the bandpass filtered speech on the j - th  it- 
eration. This quantity was then computed on each iteration 
while finding the formants of speech segments. We have ex- 
perimentally found that for the majority of formants E ( j  

that the average energy E (as a function of the filter cen- 
ter frequency) does peak in the vicinity of formant peaks. 
This suggests that locally searching for the peaks of E may 
be useful as a convergence criterion. We are continuing to 
investigate this issue. 

increased as the algorithm converged. We have also foun d 

4. AUTOMATED SYSTEM 
We now describe an automated system that we have been 
developing to find the formant center frequencies and mod- 
ulations of a speech segment. In this system, the iterative 
ESA, described in the previous section, is employed to  de- 
termine the center frequencies of the resonances. Bandpass 
filtering is implemented using a truncated discretized Gabor 
filter with impulse response 

N is chosen so that the envelope of g ( n )  is nearly zero at 
n = N ;  we have found that a good choice is N such that 
exp(-crTN)2 loW6.  Through extensive experience, we 
have found that it is reasonable to use fixed bandwidths 
of cx = 800 Hz when f c  < 1000 Hz, and (Y = 1100 Hz for 
all other resonances. We discuss the possibility of varying 
bandwidth values in Section 6. 

An important issue for the system was getting good ini- 
tial estimates of the formant center frequencies. This is to 
ensure that the iterative ESA does not converge to false 
formants. We now briefly discuss the two methods that we 
have implemented: a standard method, LPC, and a new 
method that we call morphological peak picking. 

For LPC, the advantages are that is easy to implement 
and often does a good job of estimating the spectral peaks. 
However, it sometimes performs poorly, especially for fe- 
male speakers or children. 

The other formant finding method that we have imple- 
mented is to perform a morphological closing of the speech 
spectrum. A closing of a signal by a window of W con- 
secutive samples is a nonlinear filter that is a cascade of 
a dilation (local maximum within the moving window fol- 
lowed by an erosion (local moving minimum) [i']. d g .  3 
shows that in a closing, the narrow valleys of the spectrum 
get filled up, so to speak, and the peaks of the closing cor- 
respond to peaks of the spectral envelope. Then it only 
remains to pick the peaks from the closing and we have our 
initial formant estimates. 

A requirement of this method is that the width, W ,  of the 
filter be carefully chosen. It is important that the filter not 
be too narrow to avoid having too many extraneous peaks, 
but, at the same time, we must keep it from being too 
wide to avoid missing a formant that is close to another, 
stronger formant. Thus, the filter width is essentially a 
function of the fundamental frequency. We estimate the 
fundamental frequency by peak picking the spectrum over 
the first 1000 Hz, and averaging the distances between the 
resulting harmonic frequencies. 

Advantages of morphological filtering are that it is very 
cheap to implement and can be used rigorously to extract 
peak or valley features on arbitrary signals. In addition, 
it is non-parametric, i.e., it does not pre-suppose anything 
about the speech spectrum, while LPC assumes that the 
vocal tract transfer function can be modeled by an all-pole 
model. Finally, it formalizes what we most likely do when 
we visually identify formants from a speech spectrum using 
geometrical features. 
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An example of the output of the automated system is 
shown in Fig. 5 .  For this speech segment, the initial esti- 
mates of formant center frequency were found using mor- 
phological peak picking. Fig. 5(a) shows the speech wave- 
form, while Fig. 5(b) shows the speech spectrum, with the 
formant center frequencies found by the iterative ESA in- 
dicated by vertical dashed lines. Figs. 5(b)-(e show I.(.)/ 
and f ( 7 z )  for the third and fourth formants. t;. or this par- 
ticular example, there are more modulations present in the 
higher formants than at the lower formants. Median fil- 
tering has been applied to the extracted instantaneous fre- 
quency signals to suppress the narrow spikes that are due 
to pitch period effects or isolated numerical instabilities of 
the ESA. 

5. AM-FM MODULATION VOCODER 
The iterative ESA is a powerful tool for speech formant 
tracking and demodulation. In this section we use the iter- 
ative algorithm as the analysis part of a novel vocoder. 

During real speech analysis and synthesis experiments on 
voiced utterances using the AM-FM model, we observed 
significant amounts of amplitude and frequency modulation 
in speech formants. When the modulations are removed 
(according to the linear model) speech quality deteriorates 
considerably. Motivated by the perceptual importance of 
modulations in speech formants, we introduce in this paper 
a speech analysisjsynthesis system: the AM-FM modula- 
tion vocoder. 

The AM-FM vocoder extracts the formant bands from 
the speech spectrum by filtering the speech waveform 
around the formant center frequencies. Thus, the center 
frequencies of the vocoder bands change with time, fol- 
lowing the formant variations. Next, each formant band 
is demodulated into its amplitude envelope and instanta- 
neous frequency components using the discrete-time ESA. 
The demodulated signals are lowpass filtered, subsampled 
and coded. At the receiver the information signals are de- 
coded and used for band reconstruction. Finally, the bands 
are added together to reproduce the speech waveform. The 
block diagram of the vocoder is shown in Fig. 4. 

The automated system presented in the previous section 
is used for extracting and demodulating the formant bands. 
The Gabor filter parameters fc, a are updated at each anal- 
ysis frame (typically 10 msec). 

The AM-FM vocoder combines the advantages of the 
formant [8] and phase vocoders [9], while avoiding some 
of their drawbacks. The non-linear second order terms 
of speech resonances are accounted for, being modeled as 
amplitude ,and frequency modulations, while the formant 
vocoder models only the linear terms. In addition, by 
choosing the bands to follow the formant variations, the 
demodulated signals now have the intuitive interpretation 
of being the envelope and instantaneous frequency of a real 
speech resonator output, as opposed to the fixed-band phase 
vocoder. 

The AM-FM vocoder, without parameter quantization, 
has been tested on both isolated voiced phonemes and words 
with good results. The synthesized speech sounded almost 
identical to the original utterances. We are currently inves- 
tigating efficient coding schemes for encoding the amplitude 
and frequency signals of each resonance. 

6. DISCUSSION 
In future work, we plan to investigate the following refine- 
ments. First, we would like to improve the system by im- 
plementing the automatic selection of the filter bandwidths, 
based on the distance between neighboring formants, be- 
cause, as mentioned earlier, a badly chosen filter bandwidth 
may result in exclusion of modulations or inclusion of neigh- 
boring formants. We have done some preliminary work on 

this, using synthetic AM-FM signals, and the results sug- 
gest that the optimum choice of bandwidth could be a linear 
function of the distance between formants, Af. Our next 
step is to try and apply this result to speech. Complica- 
tions may occur, however, when we try to incorporate this 
with the iterative ESA, because A f will change during iter- 
ation. The solution that we propose is to apply the iterative 
ESA to all  formants in parallel. Then we can vary the fil- 
ter bandwidths on each iteration according to the values of 

The other refinement is to possibly reduce discretization 
effects as follows. Instead of convolving the speech signal 
s with a discrete-time Gabor bandpass filter g and then 
applying the discrete-time energy operator, we apply the 
following combination of the continuous-time energy oper- 
ator and bandpass filtering, which introduces discretization 
only at the very last step: 

fP. 

where g(t)  and g ( t ) ,  the derivatives of the Gabor bandpass 
filter, are functions with simple known formulas. In this 
way, we avoid the approximation of the signal derivatives 
with first differences which maps to $ d  [l], and this may 
improve the results of applying the energy operator and the 
ESA to sampled speech signals. 
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Figure 1. The iterative ESA was started at 
= 1700 Hz for this speech segment. Only 

one iteration was necessary for it to converge to 
F2 = 1563 Hz, a diflerence of about 140 Hz. 
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Figure 3. Morphological closing of speech spectrum. 
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Figure 2. The solid and dashed lines represent the 
speech and LPC spectra, respectively, of 20 msec 
of the vowel /U/, spoken by a female. The vertical 
dotted lines indicate the formant center frequencies 
found by the iterative ESA. 
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Figure 4. Block diagram of the AM-FM vocoder. 
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(a) The vowel / i / ,  from a male speaker. [ b )  The spectrum. Dotted vertical lines Figure 5. Results of the automated system - ~, . .  
indicate formant center frequencies following iteration. (c)-(d) Amplitude envelopes Iu(n)I for the 3rd and 4th formants, 
respectavely. (e)-(f) Instantaneous frequencies f (n) for the 3rd and 4th formants, respectively, after 13 point median filtering. 
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