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Contributions

Binary Morphological Classifiers trained

via Difference-of-Convex optimization
−→ Extended to multiclass problems

Sparsity of Morphological Neural Nets −→
Showed quantitatively and qualitatively

superior compression ability

compared to ReLU FeedForward nets

Monotonic function approximation −→ Improved with softened morphological

operators via Maslov Dequantization

Background concepts

Morphological Operators for Vectors

Dilation: δw(x) = w0 ∨
(∨

wi + xi

)
Erosion: εm(x) = m0 ∧

(∧
mi + xi

)
Softmax and Softmin Scalar Operations via Maslov Dequantization [1]

(h > 0: temperature parameter)

max : x ∨ y −→ x ∨h y = h log(exh + eyh) : softmax
min : x ∧ y −→ x ∧h y = −h log(e−xh + e−yh) : softmin

Morphological Operators for Vectors ↘
Softened Morphological operators

Softmax and Softmin scalar operations ↗

Training Morphological Networks via Convex-Concave Procedure

Training for Binary Classification Problems

Dilation-Erosion Perceptron DEP combines dilation and erosion terms. Training can be formu-

lated as a Difference-of-Convex program [2]:

minimize
N∑

i=1
vi max{0, ξi}

subject to λδw(xi) + (1 − λ)εm(xi) ≥ −ξi ∀xi ∈ P ,

λδw(xi)︸ ︷︷ ︸
convex

+ (1 − λ)εm(xi)︸ ︷︷ ︸
concave

≤ +ξi ∀xi ∈ N

Extending to Multiclass Problems

1. Use or reduced ordering alleviates partial ordering flaw of lattice-based DEP → r-DEP

2. Extension to multiclass problems with one-versus-one approach:

K > 2 classes → K(K−1)
2 distinct classifiers

Used Bagging Classifier with RBF kernels

3. Training via CCP [3]: comparable results to similar nets trained with gradient descent

4. Training via CCP [3] is robust: variation is much lower compared to gradient descent variants

MNIST FashionMNIST

n = 5 97.72± 0.01 88.21±0.01

n = 10 97.72± 0.01 88.07±0.01

n = 15 97.67± 0.01 88.11± 0.01

n = 20 97.64± 0.01 88.12± 0.01

Table 1. Results of Bagging multiclass r-DEP with n RBF kernels.

1 This work was performed when N.Dimitriadis was at NTUA.

Pruning Morphological Neural Nets

1. Studied sparsity of Dense Morphological Neural Networks [4]

2. Morphological Neural Networks have superior compression capabilities compared to

FeedForward networks with ReLU activations (FF-ReLU)

3. Morphological Neural Networks can retain performance with only 1% of weights

4. Optimizer plays a role. SGD results in sparser representations than Adam
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Figure 1. Dense Morphological Network with 2 hidden layers. Squares correspond to morphological neurons.

Adaptive Momentum Estimation Stochastic Gradient Descent

p δ ε (δ, ε) FF-ReLU δ ε (δ, ε) FF-ReLU

MN
IS

T

100% 97.62 96.17 97.95 98.13 94.86 93.36 96.07 98.16

75% 97.62 96.18 97.93 98.15 94.86 93.36 96.07 98.12

50% 97.62 96.22 97.90 98.17 94.86 93.37 96.07 98.08

25% 97.62 96.09 97.87 97.51 94.86 93.40 96.06 98.01

10% 97.62 95.78 97.74 93.38 94.86 93.38 96.09 96.67

7.5% 97.62 95.42 97.76 90.17 94.86 93.38 96.10 95.56

5% 97.62 94.51 97.66 83.39 94.86 93.40 96.10 92.96

2.5% 97.62 93.43 97.37 68.93 94.86 93.39 96.09 80.48

1% 97.62 91.17 97.08 44.22 94.86 93.38 96.08 58.07

Fa
sh

io
nM

NI
ST

100% 86.31 86.82 88.32 88.82 82.06 85.23 86.21 87.79

75% 86.30 86.81 88.30 88.88 82.00 85.23 86.21 87.75

50% 86.22 86.80 88.33 88.18 82.05 85.25 86.20 87.19

25% 85.95 86.85 88.31 82.15 81.90 85.26 86.28 84.35

10% 85.58 86.27 88.05 65.89 81.67 85.27 86.23 73.22

7.5% 85.47 86.15 87.99 57.93 81.63 85.27 86.21 63.95

5% 85.37 85.81 87.76 49.12 81.52 85.24 86.22 47.73

2.5% 84.91 85.47 87.56 42.48 81.14 85.26 86.22 38.84

1% 81.14 84.86 86.85 28.13 80.68 85.27 86.18 35.46

Table 2. Accuracy of pruned networks on the MNIST and FashionMNIST datasets. Models:

δ → only dilation neurons, ε → only erosion, (δ, ε) → split equally, FF-ReLU → FeedForward NN with ReLU.

green indicates the absence of performance loss between the unpruned net and the one using only 1% of the

parameters, shades of red showcase the degree of (severe) deterioration in accuracy
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Figure 2. Hidden layer activations for various models (MNIST dataset).

Enforcing Monotonicity Constraints
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Figure 3. Monotonic network [5]. The gray edges correspond to nonnegative weights.

y = f (x) =
∧

k∈[K]

∨
j∈[J ]

{w>
k,jx + bk,j}, wk,j ∈ Rn

+ ∀k ∈ [K], j ∈ [J ]

Used softened morphological operators

Active group: affine term that determines the output for pattern x ∈ Rn

“Hard” operators → 1 − 1 correspondence between active group and output

→ only active hyperplane gets updated

→ a small fraction of hyperplanes dominate the training

“Soft” operators alleviate undifferentiability → better approximation

σ 0.05 0.1 0.15 0.2

Linear Reg. 0.0236 0.03077 0.04827 0.0505

Isotonic Reg. 0.0042 0.01112 0.02557 0.0417

Sill Net [5] 0.00305 0.01107 0.02401 0.0390

Smooth Sill Net [ours] 0.00294 0.00938 0.02302 0.0386

Table 3. RMS error of monotonic regression methods for function f (x) = x3 + x + sin x, x ∈ [−4, 4] scaled to [−1, 1]
and corrupted with additive i.i.d zero-mean Gaussian noise ε ∼ N (0, σ2)
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Figure 4. Comparison of monotonic regression methods

Smooth Monotonic is ours.
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