
Multi-Agent Hierarchical Architecture Modeling Kinematic Chains

employing Continuous RL Learning with Fuzzified State Space

John N. Karigiannis and Costas S. Tzafestas

Abstract— In the context of multi-agent systems, we are
proposing a hierarchical robot control architecture that com-
prises artificial intelligence (AI) techniques and traditional
control methodologies, based on the realization of a learning
team of agents in a continuous problem setting. In a multi-
agent system, action selection is important for cooperation and
coordination among the agents. By employing reinforcement
learning (RL) methods in a fuzzified state-space, we accomplish
to design a control architecture and a corresponding methodol-
ogy, engaged in a continuous space, which enables the agents to
learn, over a period of time, to perform sequences of continuous
actions in a cooperative manner, in order to reach their goal
without any prior generated task model. By organizing the
agents in a nested architecture, as proposed in this work,
a type of problem-specific recursive knowledge acquisition is
attempted. Furthermore, the agents try to exploit the knowledge
gathered in order to be in position to execute tasks that indicate
certain degree of similarity. The agents correspond in fact to
independent degrees of freedom of the system, and achieve to
gain experience over the task that they collaboratively perform,
by exploring and exploiting their state-to-action mapping space.
A numerical experiment is presented in this paper, performed
on a simulated planar 4 degrees of freedom (DOF) manipulator,
in order to evaluate both the proposed hierarchical multi-
agent architecture as well as the proposed methodological
framework. It is anticipated that such an approach can be
highly scalable for the control of robotic systems that are
kinematically more complex, comprising multiple DOFs and
potentially redundancies in open or closed kinematic chains,
particularly dexterous manipulators.

I. INTRODUCTION

Reinforcement Learning (RL) [1,2,3] is an active area of

machine learning research that is also receiving attention

from the fields of decision theory and control engineering.

Various RL methods [5,6,7] have been employed on multi-

agent architectures that target the control of mobile robots

operating within a fully or partially observable environment.

Moreover, in [8,9,10,11], we have seen cases where single

agent architectures employ RL methods in a continuous

three-dimensional space, implemented by neural networks.

In this paper, we propose a methodology that introduces a

hierarchical multi-agent architecture of nested agents that

learn to explore their space and reach to their common

goal by going through a set of collaborative action-selection

steps. Thus, an attempt is made to incorporate specific RL

John N. Karigiannis is Ph.D Candidate at the Faculty of Electrical and
Computer Engineering, Division of Signals, Control and Robotics, National
Technical University of Athens (NTUA), Zografou, Athens 15773, Greece
john@fhw.gr

Costas S. Tzafestas is with the Faculty of Electrical and Computer
Engineering, Division of Signals, Control and Robotics, National Tech-
nical University of Athens (NTUA), Zografou, Athens 15773, Greece
ktzaf@softlab.ntua.gr

methods in a nested multi-agent architecture and evaluate the

overall behavior of the multi-agent system in the domain of

dexterous manipulation control. The joints (or links) of the

manipulator are considered as distinct agents that utilize RL

methods in order to establish certain skills. Within the multi-

agent environment that is formulated in the proposed system,

every agent in the group is selecting an action independently

of the rest by observing and performing an estimate of what

the rest will do. The resulting cumulative action of the system

is a joint effort (joint actions) of all the nested entities

comprising the system. Although autonomous, the agents are

closely coupled with each other due the physical connectiv-

ity, making the precise cooperation and coordination among

them extremely important in order to achieve stability of such

a system. The next section describes the proposed framework

from the perspective of the algorithm proposed. Section 3,

introduces the agents architecture. The following section

focuses on the approach that we are proposing on the basis

of RL method, both from the side of state space continuity,

as well as from the perspective of action selection. Section

5 presents the experimental setup, the results obtained for

a simulated 4 dof planar manipulator, as well as a general

discussion of results. Section 6, concludes with the current

limitations and certain directions for future work.

II. PROPOSED FRAMEWORK

The proposed framework is an attempt to bridge the gap

between high-level and low-level control through a hybrid

architecture that integrates both AI learning techniques and

traditional control methods. In the hierarchical architecture

presented in this paper, the higher layer consists of nested

agents formulating a system that incorporates RL component

aiming to enable the agents to establish certain policies

over time, while the lower end comprises of a simple

classic local feedback controller, responsible to drive the

corresponding actuators. The basic features and requirements

of the proposed control framework are the following:

(a) Each joint is to be assigned an agent having as a

function to govern local control at that joint level. The chal-

lenge here is to build global dexterity through progressive

acquisition of local skills at each local agent level. Now, we

should note here that although every joint is to be assigned

an agent, the reverse definition is different. Every agent could

represent more than a single degree of freedom. So we could

have an agent that actually is comprised of two or more

degrees of freedom.

(b) Each agent functions locally by observing and per-

forming an estimate of the actions that the rest of the

Proceedings of the 2nd Biennial IEEE/RAS-EMBS International
Conference on Biomedical Robotics and Biomechatronics
Scottsdale, AZ, USA, October 19-22, 2008

978-1-4244-2883-0/08/$25.00 ©2008 IEEE 716

agents could potentially perform; however, a measure of

global task performance is supposed to exist, provided by

the higher-level agent and distributed to lower agents in the

nested architecture, guiding in that manner the reinforcement

learning process through the computation of reward function.

This reward function must be computed on a continuous

scale (instead of waiting for a discrete event of type success

or failure to occur), leading to a continuous adaptive dynamic

behavior for the system.

(c) The learning process must also function in a continuous

state-space, for the system to establish manipulation skills.

For the methodology proposed in this paper, a fuzzification

step is applied to the readings forming the system state.

Learning is then accomplished in a discrete state-action

mapping sense; a defuzzification step can then be employed

to perform action selection in a continuous domain.

Let us consider a system that is comprised of n dofs

(agents i = 1, . . . , n), nested in the following manner

presented in Fig. 1. We define as state of agent ai, Si =<
qi, θi, di, ~gi >, where: qi is the current joint position of the

l1

X1

Y1

X2

X3

X4

Xn

Y2

Y3

Y4

Yn

l2

l3

P
goal

d1

d2
d3

d4

dn

dgoal

θgoal

θ1

θ2 θ3

θ4

q1

q2

q3

q4

qn

Fig. 1. n − dof Dexterous Manipulator

ith joint, θi of the current position of the ith agent, di the

current Euclidian distance of the ith agent from the end-

effector, ~gi the current vector that describes the goal at the

task space (i.e goal with respect to the end effector). The

flow of operations depicted in Fig. 2 demonstrates, at an

agent-level, the basic structure of the algorithm proposed in

this paper, as described below. To achieve continuity over

the state space and the action space we have to fuzzify both

according to the process described in subsequent section.

Every agenti identifies certain parameters of its state and

forwards that information in a nested manner to the agent(s)

of the next layer, in order to facilitate them in their own

process of identifying their parameters. This process is a top-

down process, it starts from the root agent of the hierarchy

and travels to the lower ones. During this initial phase the

agent identifies its joint parameters as well as its physical

characteristics (i.e agenti < qi, li >). Where qi is the

agents joint angle, li is its length. It can be seen that

qi defines partially the state of agenti. In order to fully

define its state, agenti requires additional computation of

Fuzzification of the State Space

Fuzzification of the Action Space

State Evaluation

 Agent = Agent(i), Tries to fully evaluate its state.

 If success

 Traverse back the Hierarchy of agents and provide them

 with all the available information in order for them to

 successfully define their state

 Go to Action Selection

 Else

 Pass Information gathered to Agent(i+1) and Agent = Agent(i+1)

 Go to State Evaluation

 Loop until all agents have evaluated their states.

Action Selection

 Agent = Agent(i),

 If NO experience exists in Agent

 Stochastically select Action = a(i)

 Stochastically estimate all other Agents actions

 Else if experience exist

 If Agent wants to explore

 Select Action = not necessary the best action

 Stochastically estimate all other Agents actions

 If Agent do not want to explore

 Select Action = action that will generate the greater reward

 Stochastically estimate all other Agents actions

 End

 End

 Agent = Agent(i+1)

 Loop until all agents have selected Action

Joint Action Execution

Reward Assigned to all Agents

Go Back to State Evaluation

Fig. 2. Proposed Algorithm

the following parameters < θi, di, ~qi > . Those parameters

for agenti cannot be computed at this phase since their

computation requires information from the other agents that

comprise the agent community, and that information is not

available at the moment. So, since agenti, cannot fully solve

the problem of defining its state at the moment, it forwards

the partially computed solution computed to the agenti+1

residing at the next layer. Similarly, agenti+1 calculates

those parameters that can be computed and forwards the

partial solution to the agents below. The process iterates until

we reach an agentn that succeeds in calculating all those

variables that uniquely allow him to compute and define its

state. Next, the recursive process continuous by traversing

back from agenti+1 → agenti providing the agents at the

higher layer with the information that they were missing.

So when this phase concludes, every agent in the system

fully solves its state definition problem, resulting in that

way to a multi-agent system with a fully defined state. This

iterative/recursive process is repeated in order to define the

fuzzified state of every agent in the multi-agent environment.

Every agent in the system acts initially without having any

prior knowledge, thus acting in a sense stochastically. The

agenti decides to perform a random action ai and at the

same time performs an estimate of what the other agents in

the system might choose as their potential actions. That is,

each agent, independently of the rest, selects an action, while

at the same time performing an estimate of how the other

agents are likely to act; each agent thus learns joint actions.

This process is again recursive downwards from the top

agent agenti → agenti+1 where agenti+1 is the agent(s)

at the lower level. So, agenti selects action ai and estimates

that the rest of the agents will select a′
i+1, a

′
i+2, . . . a

′
n,

respectively. Following, in the same manner agenti+1 selects

an action ai+1 while performing an estimate of what the

other agents might select (i.e. a′′
i+2 . . . a′′

n). After the com-

pletion of this recursive process, a specific joint action is

717

718

IV. CONTINUOUS REINFORCEMENT LEARNING

A. Learning Method

In this section we describe the learning process that has

been adopted in our system. Reinforcement learning (RL)

methods have been applied in significant number of cases

[8,12-17], mostly on mobile robots. In our case, RL method

is employed in a quite different domain, namely skill learning

and behavior-based multi-agent control of robotic (dexterous)

manipulation. Back in 1992 [18], a multi-agent architecture

for controlling a multi-fingered hand was presented, but

without incorporating any RL methods building skill learning

on an agent base. In [19,20], some cases are presented where

RL methods are employed in dexterous manipulations, but on

a single-agent system architecture. What we are proposing is

an attempt to develop a nested multi-agent architecture that

aims to enable the control system, through RL methods, to

acquire by itself skills and knowledge on how to perform

agile manipulation. More formally, we assume a collection

of n (homogeneous) agents, each agent i ∈ n having a finite

set of individual actions Ai available to it. Agents repeatedly

operate within the framework of the environment posed, in

which they each independently select an individual action

to perform. In [4], RL is defined as the problem faced by

an agent that must learn a behavior through trial-and error

interactions with a dynamic environment. In terms of math-

ematical description, RL has been formalized as a Markov

Decision Process (MDP). An MDP has four components:

states, actions, transitions and reward distributions. More

precisely, an MDP is a 4-tuple, (S, A, T, r) where S denotes

a finite set of states, A denotes the action space, T is a

probabilistic transition function T : S×A×S → [0, 1], that

denotes the probability for transition from a state s to a new

state s′ when a certain action a is applied, and r : S×A→ ℜ
is a reward function that denotes the reward for applying a

certain action a to a certain state s. Subsequently, we need

a formal description for the state of our system. Due to the

agent architecture that we have formulated, the state of every

individual agent, as well as the state of the entire multi-agent

system, are both expressed as St =< qi, θi, di, ~gi >. For a

4 dof manipulator, the corresponding state definition of each

individual agent and subsequently the state definition of the

entire system are St = {< q1, θ1, d1, ~g1 >, < q2, θ2, d2, ~g2 >
, < q3, θ3, d3, ~g3 >, < q4, θ4, d4, ~g4 >}. All agents wish to

select actions that maximize the (expected) reward. Each

agent contributes its own action component to the joint action

that is eventually applied to the environment and determines

the transition. The goal is to find a policy that maximizes

the sum of discounted reward [2]. Before proceeding we

adopt some standard game theory terminology in order to

facilitate the discussion below [21]. A randomized policy for

an agent i is a distribution π ∈ ∆(Ai) (where ∆(Ai) is set of

distributions over the agents action set Ai). Intuitively, π(ai)
denotes the probability of agent i selecting the individual

action ai. A policy π is deterministic if π(ai) = 1 for some

ai ∈ Ai. A collection of policies for each agent i is called

policy profile, Π = {πi : i ∈ n}. The expected value of

acting according to a fixed profile can easily be determined.

If each π ∈ Π is deterministic, we can think of Π as a joint

action. A reduced profile for agent i, is a policy profile for

all agents but i (denoted Π−i). Given a profile Π−i , a

policy πi is a best response for agent i if the expected value

of the policy profile Π−i ∪ {πi} is maximal for agent i ;

that is, agent i could not do better using any other policy

π′
i. In the following section we refer to the requirement of

continuous state-space, introducing an issue that has to be

resolved, which is the infinite number of states [1], which is

discussed hereafter.

B. State-Space Fuzzification for Continuous Problem Sets

In a continuous state-space the number of parameters to be

learned by the agent grows exponentially as the number of

states increases. In order to achieve the desired continuity in

the state-space without building huge lookup tables storing

all the parameters of the agent, each of the parameters

defining the state of each agent and the state of the system

(joint angles, angular displacements, Euclidean distance and

all other signals required) are fuzzified using membership

functions of the type shown in Fig. 6. Here, each joint (agent)

continuous angular position, ranging from 0 to 2π, is divided

into 8 discrete states (but with assigned weight, for each state,

from 0 to 1). For this reason, standard triangular (equidistant)

fuzzy membership functions are used. The action-selection

Continous Signal

L
o

c
a

liz
e

d
 S

ig
n

a
ls

Signal 1

Signal 2
Signal 10...

Fig. 6. The fuzzified state space for the agent

space is also fuzzified in the same manner. In the sequel,

the action selection and reward computation functions are

described.

C. Action Selection and Reward Function

Action selection is significantly difficult if there are mul-

tiple optimal joint actions. If the joint actions are chosen

randomly, or in some way reflecting personal biases, then

there is a risk to select a suboptimal or uncoordinated joint

action. So, we have the general problem of equilibrium

selection (or joint action selection) which can be addressed

by several ways. One way is the communication among the

agents [22]; another is to introduce conventions or rules that

restrict behaviors and so to ensure coordination. What we are

proposing results in a coordination among the agents action

through a repeated performance of the specific task by the

same agents. In our action selection mode, each agent i keeps

a count of the number of times a specific action has been

performed in the past by the same agent (as well as by its

collaborative agents). That concept although simple, is some

times quite effective, and is known as fictitious play [23][24].

More precisely, each agent i keeps a count Cj

aj , for each

719

j ∈ n, and aj ∈ Aj , of the number of times agent j has

used action aj in the past. When a task is assigned to our

multi-agent system, agent i treats the relative frequencies of

each of agents j′s moves as indicative of j′s current policy.

That is, for each agent j, i assumes agent j performs action

aj ∈ Aj with probability Pri
aj = Cj

aj /
∑

bi∈Aj
Cj

bj . We

note that most models (in game theory) assume that each

agent can observe the actions executed by its counterparts

with certainty. What we actually employed is something

more general that allows each agent to obtain an observation

that is related stochastically to the actual joint action selected.

Since action selection is more difficult when agents are not

aware of the rewards associated with various joint actions,

and since the problem treated in this paper belongs in this

category, the utilization of RL by the agents, in order to

estimate based on previous experience the expected reward

associated with individual and joint action, appears to be

an acceptable approach. Q-learning algorithm developed by

Watkins [25] is the most frequently used RL algorithm. An

agent estimates the utility for doing each of its actions,

chooses an action based on a selection function of the

expected values, observes the reward, and then updates the

Q-value or the estimate of the utility of that action. In the

case of a stateless setting we have an agent updating its

estimate Q(a) as follows: Q(a)← Q(a)+λ(r−Q(a)) where

action a was performed resulting in reward r. Here λ is the

learning rate (0 ≤ λ ≤ 1) governing to what extent the new

sample replaces the current estimate. The next issue concerns

the action selection function, which is particularly important,

since effective learning requires sufficient exploration. An

agent can try its actions at any time; there is no requirement

to perform actions that are currently estimated to be best. Of

course, if we want to enhance overall performance during

learning, it makes sense to bias selection towards better

actions. In order to estimate the probability of choosing an

action, we employed Boltzmann distribution:

π(ai) =
e

EV (ai)
T

∑

ai′∈Ai
e

EV (ai′)
T

where EV is the expected value of an action and T is

the temperature parameter that is controlled to diminish

over time so that the exploitation probability is increased.

Temperature determines the likelihood for an agent to ex-

plore other actions: when T is high even when the EV
of an action is high, an agent may still choose an action

that appears to be less desirable. This exploration strategy

is especially important in stochastic environments like the

one we are examining, where payoffs received for the same

action combination may vary. For effective exploration, high

temperature is used in the early stage of the task. The tem-

perature is then decreased over time to favour exploitation, as

the agent is more likely to have discovered the true values of

different actions. The temperature as a function of iterations

is given by: T (x) = 1 + Tmax ∗ e−sx where x is the

iteration number, s is the rate of decay and Tmax is the

starting temperature. Now let us elaborate on the definition

of the expected value EV . The presence of multiple agents,

each one learning simultaneously with others, is a potential

impediment to the successful employment of Q-learning (and

RL in general) in multi-agent settings like the one considered

in this paper. When agent i is learning the value of its actions

in the presence of other agents, it is learning in a non-

stationary environment. Thus, convergence of the Q-values is

not guaranteed. What we need is each agents policy to settle.

This is a key issue and is discussed below. In general there

are two distinct ways in which Q-learning could be applied

in a multi-agent system; the Independent and the Joint action

learner algorithm [26] [27] [28]. In an Independent Learner

algorithm each agent learns its Q-values regardless of what

the other agents are performing. This method is appropriate

to be employed when and agent has no reason to believe

that other agents are acting strategically. Joint action learner

algorithm is the one where the agents do not learn Q-values

of their individual actions but the Q-values of their joint

actions. This implies that each agent can observe the actions

of other agents. Each agent in such a system maintains beliefs

about the policies of other agents. So, an agent i assesses the

expected value EV of its individual action ai to be

EV (ai) =
∑

a−i∈A−i

Q(a−i ∪ {ai})
∏

j 6=i

{Pri
a−i[j]}

The reward that the agent receives at time instance t, after

selecting certain action At and moving to a new state, is

defined by the reward function Rt which is the formulated

as follows:

Rt =

e−c∗DistGoal(x)

if(DistGoal(x) ≤ Distmin) ∧ (∆DistGoal) ≤ 0)
−2
if(DistGoal(x) > Distmin)
−1
if(DistGoal(x) < Distmin) ∧ (∆DistGoal) > 0)

where DistGoal(x) is the distance from the goal at the

iteration time x . Distmin is a threshold distance after which

the agents starts receiving reward. ∆DistGoal is the rate of

change of distance from the goal.

D. Proposed RL Based Robot Control Architecture

The robot control architecture employed has three layers.

The first layer is the error observation layer, the second

layer is the action selection, and the last one is the robotic

mechanism. The first layer receives as input the desired goal

for our multi-agent system along with the feedback from

the last layer (as shown in Fig. 7). The error observation

layer provides input to the next layer, which is the action

selection layer. We can see that the action selection layer is

coupled with the RL module. The RL module, augmenting

the action selection mechanism, receives the error observa-

tion and without any initial previous knowledge regarding

commanded joint-level motion, provides appropriate input

to the action selection mechanism, in order for certain

action(s) to be generated. Subsequently the action selection

mechanism generates the joint-level motion for the robot(s),

720

721

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

Time Duration (sec)/Epoch

E
rr

o
r

(E
n

d
-E

�
e

c
to

r
p

o
si

ti
o

n
 w

rt
 G

o
a

l p
o

si
ti

o
n

)
Epoch 1

Epoch 10

Epoch 100Epoch 200

Fig. 10. Error over time over Different Epochs for factor s = 0.75

TABLE II

DIFFERENT SOLUTIONS DERIVED BY OUR ARCHITECTURE VERSUS THE

PSEUDOINVERSE METHOD J†

J† s = 0.75 s = 0.35 s = 0.05

c1 c1 c2 c3 c1 c2 c3 c1 c2 c3

Q1 0 -2.0 -5.8 -11.8 -13.9 -39.0 29.4 -46.8 -46.9 -27.6

Q2 24.1 63.9 41.9 57.8 39.1 137.3 22.6 120.8 119.0 93.2

Q3 53.7 0.1 40.1 28.1 64.7 -33.3 -2.9 5.3 25.7 6.3

Q4 59.8 84.1 59.8 55.9 26.1 27.2 120.3 10.4 -25.0 43.9

the positioning error is now considerably reduced. In the

subsequent epochs we again see that the agents behavior does

settle to a sequence of actions that have the highest Q-values.

Having seen the error convergence of the proposed approach,

another important issue concerns evaluating the solution(s)

provided by this mechanism. To solve the inverse kinematic

problem of the 4 dof kinematic chain, an iterative method

can be employed, based on the computation of the pseudoin-

verse of the Jacobian matrix, J†. The Jacobian matrix J in

our case is a 3×4 matrix consisting of the following column

vectors ~J1, ~J2, ~J3, ~J4. Each ~Ji vector (i = 1 . . . 4) can be

computed as the cross product of the vector representing the

axis of rotation of the ith link against the vector expressing

the distance between the end-effector and the corresponding

ith joint. We can then write ∆θ = J† ∗ ∆p, where ∆θ is

the increment at the joint angle that causes the end effector

of the chain to move by ∆p where the pseudoinverse J† is

equal to JT ∗ (J ∗ JT)−1. Employing this iterative method

we obtain an optimum set of angular displacements Qi for

i = 1 . . . 4 as shown in Table II (optimum in the least-square

sense, leading to a minimum joint displacement for every

link in the kinematic chain). The corresponding solutions

obtained with our proposed architecture are also shown in

the table, varying according to the decay factor selected. Fig.

11, depicts the results contained in Table II, showing that

in almost all different decay factors the multi-agent system

proposed in this paper generates quite natural solutions,

while in certain cases, close to the optimum one as can be

see in the corresponding schematics (stick diagrams). When

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

Solutions Generated for s=0.75

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

Solutions Generated for s=0.35

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

Solutions Generated for s=0.05

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
(c

m
)

ï�� ï� � � ��

ï��

ï�

�

�

��

x (cm)

y
 (

c
m

)

 Optimum C1 Solution C1 Solution C2 Solution C3

 Optimum C1 Solution C1 Solution C2 Solution C3

 Optimum C1 Solution C1 Solution C2 Solution C3

Fig. 11. Generated Solutions for s = 0.75, s = 0.35 and s = 0.05

the training is completed and the agents have learned how

to reach their goal, the next step is to see how the agents

use the knowledge acquired and how, without any additional

training, they can explore and reach targets that are related to

the ones trained. The approach we follow to test the behavior

of our system is defined on the basis of selecting goals

that are located within an area of a given radial distance

measured from the initial (trained) goal position. We want

to see whether our system is in a position to handle existing

knowledge and exploit it further. So, having as a center

of our potential exploitation area the initial goal position,

we define five areas, each one having a different radius

(r1 = 0.7, r2 = 1.4, r3 = 2.1, r4 = 2.8, r5 = 4.2). For each

of these areas, we assign 5 different new goals to our system;

so in total we have twenty-five new goals. We average the

errors obtained per area and the results are presented in Fig.

12. We can see that points in areas close to the initial goal

position are indeed reached without any further exploration.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

Time Duration (sec)/Epoch

E
rr

o
r

(E
n

d
-E

�
e

c
to

r
p

o
si

ti
o

n
 w

rt
 G

o
a

l p
o

si
ti

o
n

) r5

r4 r3

r1
r2

Fig. 12. Error observed while reaching new goals at five different areas

722

VI. CONCLUSION AND FUTURE WORK

By combining Reinforcement Learning (RL) methods and

traditional control approaches over a hierarchical multi-

agent architecture, in a fuzzified state-space, we obtain a

hybrid robot architecture, with respect to control topology,

which is applied in a continuous state-space to perform a

robot manipulation task. The nested, self-evolving multi-

agent framework proposed in this paper, which constitutes

in fact an implementation of a recursive mechanism able

to search for solution(s) in a specific problem, appears to

be particularly suitable for robot control problems where

increased degree of dexterity is required. The basic advantage

of such an approach is that no global task model (in the case-

study of this paper, no robot inverse kinematics model) is

needed. Moreover, the proposed multi-agent system, owing

to its homogeneous characteristics (all agents obey the same

structural/modular internal architecture), as well as to its

hierarchical formation, facilitates scaling of the system to

more complex structures. Fig. 13 depicts a potential ap-

plication of the proposed framework, where a rather more

complicated multi-agent environment could be envisaged.

By employing the proposed framework in the domain of

dexterous manipulation, we believe that challenging prob-

lems in this specific area can be tackled in a very elegant,

interesting and powerful way (for instance, in the sense of

modularity, robustness and extensibility). Similar (in some

ways equivalent) problem settings, like grasp planning, loco-

motion control, or designing optimal climbing (and generally

gaiting) patterns, could also be approached within the same

framework, lending to the notions of evolving cooperative

learning and developmental robotics. Bringing together the

areas of multi-agent architectures, machine learning and

dexterous robotics, will create new challenges, both theoretic

and application-oriented, for all these domains of research.

Fig. 13. Climbing Robotic Chain

REFERENCES

[1] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA; 1998.

[2] D. P. Bertsekas and J. N, Tsitsiklis, Neuro-Dynamic Programming,
Athena Scientific, Belmont MA; 1996.

[3] Peter Dayan and L. F. Abbott, Theoretical Neuroscience, Computa-

tional and Mathematical Modeling of Neural Systems, MIT Press,
Cambridge, MA; 2001.

[4] Kaelbling, L.P., Littman, M.L. and Moore, A.W. Reinforcement Learn-
ing: A Survey, Journal of Artificial Intelligence Research, 4, 237-285,
1996.

[5] Jelle R. Kok, Nikos Vlassis, ”Sparse Tabular Multiagent Q-Learning”,
Proceedings of Annual Machine Learning Conference of Benelearn

2004.

[6] Javier Zamora, Jose del R. Millan, Antonio Murciano, ”Learning and
Stabilization of Altruistic Behaviors in multi-agent systems by reci-
procity”, Biological Cybernetics 78, 197-205, Springer-Verlag 1998.

[7] Javier Zamora, Jose del R. Millan, Antonio Murciano, ”Specialization
in multi-agent systems through learning”, Biological Cybernetics 76,
375-382, Springer-Verlag 1997.

[8] Takashi Takahashi, Toshio Tanaka, Kenji Nishida, Takio Kurita, ”Self-
Organization of Place Cells and Reward-Based Navigation for a
mobile Robot”, ICONIP 2001.

[9] Pawel Wawrzynski and Andrsej Pacut, ”A Simple Actor-Critic Algo-
rithm for Continuous Environments”, Proceedings of the 10th MMAR

Int. Conf. , Miedzyzdroje, Poland pp 1143-1149 IEEE 2004.
[10] Getachew Hailu, ”Symbolic Structures in Numeric Reinforcement for

learning optimum robot trajectory”, Robotics and Autonomous Systems

37, 53-68, Elsevier 2001.
[11] Kenji Doya ”Temporal Difference Learning in Continuous Time and

Space”, Advances in Neural Information Processing Systems 8, MIT
Press, 1996.

[12] Toshiyuki Kondo, Koji Ito, ”A Reinforcement Learning using Adap-
tive State Space Construction Strategy for Real Autonomous Mobile
Robots”, Robotics and Autonomous Systems, vol. 46 no.2 pp. 111-124
Elsevier, (2004)

[13] Masaru IIDA, Masanori SUGISAKA, and Katsunari SHIBATA, ”Ap-
plication of Direct-Vision-Based Reinforcement Learning to a Real
Mobile Robot”, Artificial Life and Robotics, Vol. 7, No. 3, pp. 102-
106, 2004

[14] Katsunari Shibata, Koji Ito and Yiochi Okabe, ”Direct-Vision-Based
Reinforcement Learning in Going to Target Task with an Obstacle and
with a Variety of Target Sizes”, Proc. of NEURAP(Neural Networks

and their Applications)98, pp. 95-102. 1998
[15] Katsunari Shibata, Masanori Sugisaka and Koji Ito, ”Fast and Stable

Learning in Direct-Vision-Based Reinforcement Learning”, Proc. of

Intl Sympo. On Artificial Life and Robotics (AROB) 6th, pp. 562-565,
2001.

[16] Katsunari Shibata and Yoichi Okabe, ”Smoothing-Evaluation Method
in Delayed Reinforcement Learning”, 1995

[17] Katsunari Shibata and Yoichi Okabe, ”A Robot that Learns an Evalua-
tion Function for Acquiring of Appropriate Motions” World Congress

on Neural Networks-San Diego, 1994 Intl. Neural Network Society

Annual Meeting, Vol.2. Jun. 1994, pp. II. 29-II34.
[18] Toshihiro Matsui, Tooru Omata, and Yasuo Kaniyoshi, ”Multi-Agent

Architecture for Controlling a Multi-finger Robot”, Proceedings of the

1992 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Raleigh. NC 1992.
[19] Katsunari Shibata and Koji Ito, ” Effect of Force Load in Hand Reach-

ing Movement Acquired by Reinforcement Learning”, ICONIP02,

Proceedings of the 9th International Conference on Neural Informa-

tion Processing, Computational Intelligence for the E-Age.
[20] Katsunari Shibata and Koji Ito, ”Hidden Representation after Rein-

forcement Learning of Hand Reaching Movement with Variable Link
Length”, Proc. of IJCNN(Intl Conf. on Neural Networks) 2003, 1475-
674, pp. 2619-2624, 2003.7

[21] R. B. Myerson, Game Theory: Analysis of conflict, Harvard University
Press, Cambridge 1991

[22] Y. Shoham and Tennenholtz, ”On the synthesis of useful social laws
for artificial agent societies”, Proc. AAAI-92, pp. 276-281, San Jose,
1992

[23] D. Fundenberg and D. M. Kreps, ”Lectures on Learning and Equi-
librium in Strategic Form Games”, CORE Foundation Louvain-La-
Neuve, Belgium, 1992

[24] G. W. Brown, ”Iterative solution of games by fictitious play.” In
T.C. Koopmans editor, Activity Analysis of Production and Allocation,
Wiley, New York 1951

[25] Watkins,C. ”Learning from Delayed Rewards”, PhD Thesis, University
of Cambidge,England, 1989

[26] Martin Lauer, Martin Riedmiller, ”Reinforcement Learning for
Stochastic Cooperative Multi-Agent Systems,” aamas, pp. 1516-1517,

Third International Joint Conference on Autonomous Agents and

Multiagent Systems - Volume 3 (AAMAS’04), 2004
[27] McGlohon, M. and S. Sen. ”Learning to cooperate in multi-agent

systems by combining Q- learning and evolutionary strategy.” World

Conference on Lateral Computing, December 2004
[28] Caroline Claus and Craig Boutilier, ”The Dynamics of Reinforcement

Learning in Cooperative Multiagent Systems”, AAAI/IAAI, pp. 746-
752, 1998

723

