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Abstract— Biologically inspired architectures that mimic the
organizational structure of living organisms and in general
frameworks that will improve the design of intelligent robots
attract significant attention from the research community. Self-
organization problems, intrinsic behaviors as well as effective
learning and skill transfer processes in the context of robotic
systems have been significantly investigated by researchers.
Our work presents a new framework of developmental skill
learning process by introducing a hierarchical nested multi-
agent architecture. A neuro-dynamic learning mechanism em-
ploying function approximators in a fuzzified state-space is
utilized, leading to a collaborative control scheme among the
distributed agents engaged in a continuous space, which enables
the multi-agent system to learn, over a period of time, how
to perform sequences of continuous actions in a cooperative
manner without any prior task model. The agents comprising
the system manage to gain experience over the task that they
collaboratively perform by continuously exploring and exploit-
ing their state-to-action mapping space. For the specific problem
setting, the proposed theoretical framework is employed in the
case of two simulated e-Puck robots performing a collaborative
box-pushing task. This task involves active cooperation between
the robots in order to jointly push an object on a plane to a
specified goal location. We should note that 1) there are no
contact points specified for the two e-Pucks and 2) the shape
of the object is indifferent. The actuated wheels of the mobile
robots are considered as the independent agents that have to
build up cooperative skills over time, in order for the robot to
demonstrate intelligent behavior. Our goal in this experimental
study is to evaluate both the proposed hierarchical multi-agent
architecture, as well as the methodological control framework.
Such a hierarchical multi-agent approach is envisioned to be
highly scalable for the control of complex biologically inspired
robot locomotion systems.

keywords: Developmental Robotics, Multi-Agent Architec-

tures, Neuro-Dynamic Learning

I. INTRODUCTION

Finding new methods for designing and controlling robotic

systems, inspired by biological mechanisms, processes and

principles in general, is attracting significant attention from

the research community. The reason we are fervent support-

ers of this attempt is that robotic systems designed according

to these principles will be able to evolve skills and in general

demonstrate learning abilities without having a detailed task

John N. Karigiannis, Ph.D. Candidate at School of Electrical & Computer
Engineering, Division of Signals, Control & Robotics, National Technical
University of Athens, Zographou, Athens, Greece, john@fhw.gr

Theodoros I. Rekatsinas, Ph.D Candidate at School of Computer
Science, University of Maryland, College Park, MD 20742, USA,
thodrek@umd.edu

Costas S. Tzafestas, Assistant Professor at School of Electrical &
Computer Engineering, Division of Signals, Control & Robotics, National
Technical University of Athens, Zographou Campus, Athens, Greece,
ktzaf@softlab.ntua.gr

model description as a requirement for their proper operation.

Hence, the new scientific field situated in the intersection of

robotics and developmental sciences (i.e. cognitive psychol-

ogy, neuroscience) named Developmental Robotics, tries to

address these problems. The goal of developmental robotics

can been defined as: a) employing robots to instantiate and
investigate models originating from developmental science,

and b) an attempt that seeks to design better robotic systems
by applying insights gained from studies on ontogenetic
development. Furthermore, developmental robotics motivates

the usage of robots as a novel research tool to model and

study the development of cognition and action. Ontogenetic

development has many facets. For instance, it can be defined

as a self-organizing, incremental process, but it can also be

seen as comprising self exploratory activities, and in many

occasions cooperative activities. Thus, in order to understand

better all these different facets of developmental learning,

several research groups have been addressing their work to

cognitive multi-agent robotic system. A complete survey can

be found in [27].

Having said that, we should note that understanding human

cooperative behavior has been a major concern in multi-agent

robotic systems, and has been addressed by work done on

mobile robots [17], robotic hands, and multiple manipulators

[18], [19], [20]. In [23], manipulation protocols have been

developed for a team of mobile robots that collaborate in

order to push large boxes. In [22], an algorithmic structure

coordinates the reorientation of objects in a plane by inde-

pendent robot-agents. In [21], a study is presented where

distributed cooperation strategies are required by a group of

behavior-based mobile robots for handling an object. The

common approach in all these works relies on the assumption

that the motion of the object under pushing/manipulation is

quasi-static, and that all the agents involved have predefined

behavior models that they combine by employing certain

architecture (like subsumption architecture [24]).

Human behavior also demonstrates evolutionary charac-

teristics and self-organizing abilities. These unique attributes

of human behavior have been extensively studied in the

process of designing intelligent robots that need to oper-

ate/collaborate autonomously and adapt to their environment.

In this context, the application and use of bio-inspired

techniques, such as reinforcement learning using function

approximators, evolutionary computation and fuzzy systems

constitutes an emergent research topic. More specifically,

Neuro-Dynamic programming [2], commonly known as Re-

inforcement Learning (RL) [1], [2], [3] is an active area

of machine learning research that is also receiving attention
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from the fields of decision theory and control engineering.

Various RL methods [6], [8], [9] have been employed on

multi-agent architectures that target the control of mobile

robots operating within a fully or partially observable envi-

ronment. Moreover, in [12], [13], [14], [15] we have seen

cases where single agent architectures employ RL meth-

ods in a continuous three-dimensional space, implemented

by neural networks. In [25], a three-layered architecture

is introduced (namely, motion patterns, behavior models,

planning component), which employs RL in order to control

a robotic fish. In general, RL constitutes an approach used

extensively for building a policy based on data acquired

through exploration.

Our work presented in this paper addresses the problem

of autonomous learning on multi-agent architectures and

skill acquisition through agents’ exploration, without having

build-in behavior models. The long-term objective of this

research work is to contribute to evolutionary behaviors es-

tablished within multi-agent systems. The short-term goal is

to evaluate RL-based developmental mechanisms along with

appropriate control architectures employed in the domain

of collaborative autonomous mobile robots. In particular,

in this work we propose a methodology that introduces a

nested hierarchical multi-agent architecture, together with

a corresponding skill-acquisition algorithm, where nested

agents learn to explore their space and reach their common

goal by going through a set of collaborative action-selection

steps. Thus, an attempt is made to incorporate evolutionary

processes, and more specifically RL using function approx-

imators, within a nested multi-agent architecture, and to

evaluate the overall behavior of the multi-agent system in

the domain of collaborative autonomous mobile robots. The

task here involves the agents-wheels of the robots, to learn

over time a certain policy, which will result in pushing an

object to a specified target location. A key issue to point

out in our case is the absence of task model or build in

behavior(s) for the described activity, as well as the fact that

the overall global robot behavior is an outcome of the actions

selected by the individual local agents-wheels that operate

autonomously.

The paper is organized as follows. Section II describes

in general terms the basic aspects and assumptions of the

proposed hierarchical multi-agent control framework, while

Section III focuses on the adaptation of this framework in

the case of collaborative mobile robots, covering all aspects

related to agent mapping and state-space definition. Section

IV presents the fuzzy rule based, temporal difference learning

mechanism, while Section V describes the action selection

mechanism that our multi-agent system employs. The com-

putational cost of our multi-agent approach is presented in

Section VII followed by Section VIII which provides the

overall control architecture. The simulation setup and the

results obtained in the experimental case considered are

presented in Section IX. Finally the paper concludes, in

Section XI, with a general discussion over the results and

the related future research plans.

II. NESTED MULTI-AGENT FRAMEWORK

Our multi-agent control framework fits in the context of

a continuous research effort aiming to explore architectures

that would enable a complex robotic system to autonomously

develop and progressively acquire control skills in a modular,

scalable and robust manner, without the need for tedious task

modeling and restrictive pre-programming. By organizing the

agents in a nested architecture, as proposed in this paper,

we allow a) further scaling to more complex topologies
and b) modeling of the overall system in a modular and
structured manner with loose control coupling among the
agents. Loose coupling is important since it allows the

overall system to compensate with failures of individual

agents. The methodology presented in this paper can be seen

as an attempt to bridge the gap between high-level and low-

level control, by means of a hybrid architecture that inte-

grates both Artificial Intelligence (AI) learning techniques

and classic control methods. In the proposed hierarchical

architecture, the higher layer consists of a nested team

of agents, formulating a system that incorporates learning

components aiming to enable the agents to establish certain

policies over time; the lower end consists of a classic local

feedback controller, responsible to drive the corresponding

actuators. The basic contributions, features and requirements

of the proposed control framework are described below.

A. Mapping System’s Agents to Wheels

A learning agent is assigned to each actuated robot wheel.

Each agent has a function to govern the local control at

that level. The challenge here is to build global state-action

mapping through progressive acquisition of local skills at

each local agent level.

B. Joint Skill Acquisition

The skill that our agents-wheels have to learn is to

collaborate in order for the robots to approach the box, both

robots maintain contact with the object, and jointly manage

to push and turn the object in order to reach the goal position.

We realize that this task can be seen as a composition of two

subtasks: a) learn to reach and maintain contact with the

box and b) learn to collaborative (both robots) manipulate

(push/turn) the object in order to reach its destination. Our

proposed learning mechanism neither requires an ”a priori”

task decomposition, nor incorporates a certain mechanism to

enable swapping between behaviors that will deal with each

subtask, in the contrary, without any task model acquires a

skill over the entire task in an abstract manner.

C. Skill Acquisition Independent of Contact Points & Ob-
ject’s Shape

The neuro-dynamic learning mechanism that we employ

does not require us specifying to our agents any contact

points on the object. Basically, the points where our robots

apply forces are neither predefined nor fixed. Moreover, the

shape of the object is not required to be known by the

agents during their process of establishing the specific skill

of pushing the object to a goal position. These two issues

are quite important since the learning process is not linked

313



to the geometric characteristics of the object or to a specified

set of contact points.

D. Hierarchical Nested Architecture

Each agent functions locally by observing the rest of

the agents and by making an estimate of the actions that

these agents could potentially perform in the future horizon.

However, a measure of global task performance is supposed

to exist, provided by a higher-level agent and distributed

to lower agents in a nested architecture. This hierarchical

process guides, in that manner, the reinforcement learning

procedures through the computation of a reward function.

This reward function must be computed on a continuous

scale, leading to a continuous adaptive dynamic behavior of

the system. Fig. 1 depicts the hierarchical, nested arrange-

ment of the agents. The agents are nested in a similar manner

as presented in [28], [29], where the same architecture is

employed in an open loop kinematic chain configuration.

Our system is in fact a nonholonomic multi-robot system,

controlled only through the angular speed of the wheels,

where the goal is to coordinate their activity so that the

object is pushed to the goal position. Our current setup can

be represented as an autonomous kinematic chain with both

ends loose, moving inside the workspace and pushing the

box (shown also in Fig. 1). As it can be seen the nested

hierarchy starts with the agent assigned to the left wheel

of the left robot. Each agent sees only the agents below

in this hierarchical structure. What is interesting to point

out here is the fact that we are trying to fit a hierarchical

relationship within physical entities that have no direct

physical connectivity.
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Fig. 1. Multi-agent nested-hierarchical architecture mapped to the robot
wheels

E. Continuous Problem Setting - Distributed State Definition

The learning process must be designed to function in a

continuous state-space in order for the system to establish

specific skills. This poses a challenge of formulating a

continuous learning mechanism that will handle the problem

of dimensionality. Another contribution of our work is the

specific, distributed among the nested agents, representation

of the system’s state definition. This agent distributed archi-

tecture leads to a reduction of the state-action space. This

reduction will be discussed in a subsequent section since it

reduces significantly the computational cost of the learning

mechanism compared to a non multi-agent.

III. MULTI-AGENT SYSTEM TOPOLOGY

Following the same design principles that were introduced

by our previous work on kinematic chains, the multi-agent

architecture is here adapted in the case of two mobile robots

pushing an object to a goal position. The challenge in this

case is to represent the state of the system. Referring to the

definition of an agent, let us examine again the corresponding

figure (Fig. 1). The state that describes the multi-agent

system is now described as follows. For each agenti, its

state is defined as:

Si =< θi, φi, di, ωi, Θgoali , Φgoali , Dgoali > (1)

where i is an index referring to an individual agent i, θi is the

orientation of the agent with respect to the global reference

frame, φi is the orientation of the agent with respect to the

goal, di is the distance of the agent from the goal, ωi is the

speed of the agent, Θgoali is the orientation of the box with

respect to the global reference frame, Φgoali is the orientation

of the box with respect to the goal, and Dgoali is the distance

of the box from the goal.

IV. NEURO-DYNAMIC LEARNING METHOD

The following subsections address the theoretical analy-

sis of the learning mechanism as adapted for the case of

collaborative mobile robots. The specific experimental setup

poses significant challenges due to the fact that the robot

skill evolves from the actions selected by its wheels. The

state representation poses significant difficulties throughout

the learning process, due to the fact that a minimum set

of parameters is needed in order to uniquely define the

configuration of the system in a continuous space. As

expected, the approach of a look-up table because of the

enormous state-space (over 400 million elements needed to

be stored) was not employed. The dimensionality of the

box-pushing problem directed us towards the linear function

approximation method. Combining reinforcement learning,

more specific Temporal Difference Learning TD(λ) [30] with

function approximators provided a more suitable approach,

as it will be described below.
A. TD(λ) Learning with Linear Function Approximation

State spaces may be extremely large and the look-up table

approach may require excessive memory space. Of course the

problem is not just the memory needed for large tables, but

also the time and data needed to fill them accurately. In other

words, the key issue is that of generalizing the knowledge

acquired. The only way to learn anything at all on these

tasks is to generalize from previously experienced states to

ones that have never been seen. The TD(λ) algorithm can

be generalized to use an approximate value function instead

of keeping an explicit table of states. Let us define the

approximate function: Q(s) � fθ(s), where fθ is a function

parameterized in θ, and s is the state vector. Now, instead

of updating the Q(s) directly, the value of θ can be updated

instead. More formally, we seek to learn the parameter vector
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θ ∈ R
n of an approximate value function Qθ : S → R, such

that Qθ(s) = θT φs (where φs ∈ R
n is a feature vector

characterizing state s) in order to minimize an objective

function. There are multiple methods suitable for updating

the parameter vector θ. One approach is the gradient descent

method, where the values of θ are proportional to the gradient

of a suitable objective function with respect to θ. One natural

choice might be the mean squared error (MSE) between the

approximate value function Qθ and the true value function

Q. Hence, we define the objective function:

E = (1/2)(Q̂(st) − fθ(st))
2

(2)

By taking the gradient of function E, we simply get:

∇θ(E) = (Q̂(st) − fθ(st))(0 −∇θfθ(st)) (3)

and by rearranging the terms we obtain:

−∇θ(E) = (Q̂(st) − fθ(st))∇θfθ(st) (4)

From this, we can define the conventional linear TD algo-

rithm of the following form:

θt+1 ← θt + α(Q̂(st) − fθ(st))∇θfθ(st) (5)

Next we incorporate this θ update mechanism to our TD(λ)
algorithm. A fuzzy rule-base, as will be described in section

IV-B, is an instance of a linear parameterized function

approximation architecture, where the weight of each rule

i can be used as a feature φi(s). This is the learning

mechanism that will be employed in the case-study regarding

collaborative mobile robots, presented later on in this paper;

it should be noted, however, that this approach does not

always converge. Very recently, Sutton et al. [26] presented a

fast Gradient-Descent method for TD(λ) learning with linear

approximation, which was proved to always converge.

B. Linear Function Approximation using a Fuzzy Rule Base

Having described in the previous sections the TD(λ)
function approximation method, let us now discuss the

specific function approximation architecture that we employ

in this work, which is tuned with the reinforcement learning

mechanism already discussed. The mechanism employed is

a fuzzy rule base (FRB), which can be defined as a function

f that maps an input vector in a scalar output. If fθ(�s) is the

function that we are trying to approximate, and �s is a vector

of state parameters, the input to the FRB function is this

vector of state parameters. The next element that is required

is a set of fuzzy rules. The form of these rules is:

Rule−i : IF (s1 ∈ Ai
1) AND (s2 ∈ Ai

2) AND . . . (sn ∈ Ai
n)

THEN (output = θi)

where sn is the nth parameter of the state parameters vector,

Ai
n are fuzzy membership functions used in the ith rule, and

θi are tunable output parameters. Thus, the output of the

FRB is a weighted average of θi:

fθ(�s) = θ1φ
1 + θ2φ

2 + θ3φ
3 + · · · + θnφn

i.e.: fθ(s1, s2, s3 . . . sn) = θ1φ
1 +θ2φ

2 +θ3φ
3 + · · ·+θnφn

where φi is a feature vector characterizing the state. It should

be noted here that all values φi are normalized.

In order to explain further the values obtained by φi, let

us consider an example, where an input vector of three state

variables (s1, s2, s3) is considered, each variable having

two membership functions as shown in Fig. 2.

LOW

HIGH

0 0.5 1

1

Fig. 2. Localized Signal Values Describing every State Variable

In this figure it can be seen that each input state variable

has two membership functions (basically two sigmoids) (for

the purpose of demonstration, let us assume these two values

being HIGH and LOW). For this case of three state variables

with two localized signal values each, eight rules need

to be included in the FRB. All rules, from 1 . . . 8, will

provide respectively eight outputs φ1 . . . φ8. These outputs

are then estimated based on the following set of probabil-

ities: P s1
HIGH , P s1

LOW , P s2
HIGH , P s2

LOW , P s3
HIGH , P s3

LOW . The

probability P s1
LOW can be defined as:

P s1
LOW =

1

1 + ci e−cjs1
(6)

where in Eq. 6, ci and cj are just two constant coefficients

of the sigmoid and: P s1
HIGH = 1 − P s1

LOW .

The value of φi can now be estimated as: φi = wi∑8

i=1
wi

,

where wi =
∏k

j=1 P
sj

Ai
j

, where k is the number of state

parameters and i is the number of rules. So, in our example

where k = 3 and i = 8 we have:

w1 = P s1
HIGH · P s2

HIGH · P s3
HIGH , w2 = P s1

HIGH · P s2
HIGH ·

P s3
LOW , . . . , w8 = P s1

LOW · P s2
LOW · P s3

LOW

since in this case the denominator
∑8

i=1 wi = 1. Having

calculated the FRB function fθ as described above, its

gradient ∇θfθ(s1, s2, s3) needs to be computed next, in order

to update the eligibility traces. Thus, for every state variable

the derivative of fθ�s needs to be computed. For every θi,

∇θifθ(s1, s2, s3) equals φi. The eligibility traces can then

be calculated and, hence, the θ values can be updated.

Let us elaborate more on the update of the eligibility traces

and θ values. In the specific example of three state variables

and two localized signals, resulting to a total number of eight

eligibility traces, we have:

δ ← R(sprevious) + γ fθ(scurrent) − fθ(sprevious) (7)

One should not get confused with the names “previous state”

and “current state” because TD(λ) is in fact an algorithm that

is looking at the past, meaning that it is evaluating the state-

transition by updating the variables starting from each state

of the system and going backwards:

e(sprevious) ← γ λ 	e + ∇θfθ(	s) (8)
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The above relationship states that all the eligibility traces

of the previous state are updated, where �e is the vector of

the eligibility traces, ∇θ is the gradient of function fθ with

respect to the parameter vector θ, and �s is the vector of all

state variables defining the state of the system. So, recalling

that:

fθ(s1, s2, s3 . . . sn) = θ1φ
1 + θ2φ

2 + θ3φ
3 + · · · + θnφn

(9)

for the specific example of three state variables, with two

localized signal values for each state variable, we have:

fθ(s1, s2, s3) = θ1φ1 + θ2φ2 + θ3φ3 + θ4φ4 + θ5φ5 + θ6φ6 + θ7φ7 + θ8φ8

(10)

The eligibility traces are then computed as:

ei(sprevious) ← ei(sprevious) λγ + ∇θi
fθ(s1, s2, s3) (11)

(for every i = 1, . . . 8), which, if further elaborated, gives:

ei(sprevious) ← ei(sprevious) λγ + φi, (for every i = 1, . . . 8)
(12)

Given the above updates for all the eligibility traces, the last

step that remains is to update the parameter values of θ:

θi ← θi + α δ ei(sprevious), (for every i = 1, . . . 8) (13)

V. ε-DECREASING - BOLTZMANN ACTION SELECTION

Initially the agents (wheels of the mobile robots) have to

establish a Joint Action that will be executed. Then some

reward will be generated for all agents according to the

evaluation (positive/negative) of their joint action. In our

multi-agent system each agent is able to select independently

from the others, four types of actions: increase, decrease,

maintain or make zero its wheel speed. The action selection

is significantly difficult if there are multiple optimal joint

actions. If the joint actions are chosen randomly, or in

some way reflecting personal biases, then there is a risk

of selecting a suboptimal or uncoordinated joint action. So,

we have the general problem of equilibrium selection (or

joint action selection). The action selection mechanism that

we employ is a variant of ε-Greedy, which is called ε-

Decreasing. The action selection mechanism starts with an

exploration probability ε∗(T (t)−1)/(Tmax−1). In order to

estimate the probability of choosing an action, we employed

Boltzmann distribution as shown below and on each trial t,
with probability 1 − ε ∗ (T (t) − 1)/(Tmax − 1) the agent

chooses the action with the greatest estimated π(αi):

π(αi) =
e

fθ(s,αi)
T

∑
αi′∈Ai

e
fθ(s,αi′ )

T

(14)

In any other case the agent choses a random action. T is

the temperature parameter that is controlled to diminish over

time so that the exploitation probability is increased. Tem-

perature determines the likelihood for an agent to explore

other actions: when T is high even when the fθ(s, αi) of

an action is high, an agent may still choose an action that

appears to be less desirable. The proposed hybrid action

selection mechanism provides a controlled balance between

exploration and exploitation. This exploration strategy is

especially important in stochastic environments like the one

we are examining, where payoffs received for the same

action combination may vary. For effective exploration, high

temperature is used in the early stage of the task. The tem-

perature is then decreased over time to favour exploitation, as

the agent is more likely to have discovered the true values of

different actions. The temperature as a function of iterations

is given by: T (t) = 1 + Tmax ∗ e−st where t is the iteration

number, s is the rate of decay and Tmax is the starting

temperature. The root agent selects an action by stochasti-

cally observing what the other agents have done in the past.

Thus, agenti will propose an action αi. Then, possible Joint

Actions are generated and evaluated. In order to evaluate

these joint actions the system estimates the corresponding

possible states that will be obtained by performing those

actions. From those possible states, the related state variables

are extracted and subsequently inserted to the estimation

of fθ. For every possible joint action, a corresponding fθ

value is computed. By employing Boltzmann distribution as

we just saw, a decision over what Joint Action should be

selected is then obtained. Finally, based on this decision,

the action that each agenti will perform is finalized, and

this information is passed to the next level (i.e. agenti+1).

Following the proposed hierarchical architecture, the next-

level agent receives as input the action that the above agent

has decided to execute, and based on this information it goes

through the same process (but this time, one action less has to

be decided for the system’s Joint Action). When this iterative

process concludes, every agent locks its own action and,

thus, a cumulative Joint Action is executed. Subsequently, the

selected final Joint Action is executed and the system moves

from its “previous state” to its “current state”. A reward is

then calculated. The state variables of the current state are

used to compute fθ(scurrent), while the state variables of

the previous state are used to compute fθ(sprevious). By

computing these two values along with the reward, we can

calculate δ and subsequently the eligibility traces, θ values.

VI. REWARD FUNCTION

The computation of the reward function R(t) at time step

t, in order to enable the learning of the joint task, performs

a fusion of the IR readings, coming from the sensors of the

ePucks with the distance / orientation data, coming from the

simulation environment, resulting to the following form:

R(t) =

⎧⎪⎨
⎪⎩

R1 − R2 − R3 − R4 if Condition1

0.000001 if Condition2

R1 − R2 − R3 if Condition3

−0.0015 if Condition4

−0.002 if Condition5

(15)

where R1...4, Conditions1...5 = (C1...5):

R1...4 =

⎧⎨
⎩

R1 = c1 · exp−r1·Distance to Goal

R2 = c2 · exp−r2·IR Readings ePuck 1

R3 = c3 · exp−r3·IR Readings ePuck 2

R4 = c4 · Error in Orientation

(16)

where c1, . . . c4,r1, . . . r3, are constants < 1 & (C1...5):

C1...5 =

⎧⎪⎨
⎪⎩

if (∀ epucks, contact == 1) ∧ (ΔD < 0)
if (∀ epucks, contact == 1) ∧ (ΔD ≥ 0)
if (∀ epucks IR Readings==Within Range)
if (∃ epuck IR Readings!=Within Range)
if (∀ epucks IR Readings!=Within Range)

(17)
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where ΔD is the rate of change of distance from the goal

position, IR Reading, are the readings from the ePuck IR

sensors, Within Range, is whether or not the ePucks are

close enough to the box in order to receive valid readings.

VII. COMPUTATIONAL COST OF THE PROPOSED

MULTI-AGENT ARCHITECTURE

Our state space S is composed of the local state spaces

S1, S2, . . . Sn of the agents comprising our multi-agent sys-

tem. Every local state-space is comprised of homogeneous

state parameters. If we consider our system as a single

agent we have that S = S1 × S2 × · · · × Sn ⇒ the

cardinality of single agent representation of the state space

is |S| = |Sn|n. By adopting now the proposed multi-agent

hierarchical nested architecture along with a uniform state

definition for every agent in our system we manage to reduce

the computational cost of the value iteration problem that

we are solving compared to a single agent approach. Let as

assume Si ∈ R
n the state of agent i and αi the action that

agent i may select. Our multi-agent architecture is defined

based on homogeneous agents, meaning that all of them

have the same number of state parameters that uniquely

define their state for all possible states. This implies that

the cardinality |·|, of every local state space is |S| = |s1| =
|s2| = |s3| = · · · = |Si| for every agent i. According to the

nested architecture an agent in order to formulate its joint

action, can monitor only the agents below in the hierarchy.

Therefore the corresponding action space of each agent is

reduced as we move from a higher level in the hierarchy to

a lower one. Eventually, the cardinality of the joint action is

|A|i where i is the number of agents that participate in the

joint action at the specific level of the hierarchy, and |A| is

the number of distinct single-agent actions. Assuming that

the state space is finite the state-action pairs that have to be

updated are |S| · |A|i at every iteration. In order to update

the value for a given state-action pair, the maximization over

the joint action space is solved by enumeration over |A|i
elements. So, the cost per iteration is |S| · |A|i · |A|i or

|S| ·(|A|i)2 . Assume that our algorithm runs for L iterations

and for agents i we have:

L ·
n∑

i=1

{
|S| · (|A|i)2

}
(18)

L · |Sn|
n∑

i=1

(|A|2)i = L · |Sn| · (|A|2)n+1 − |A|2
|A|2 − 1

(19)

L · |Sn| (|A|2)n
|A|2 − 1

(|A|2)n−1

|A|2 − 1
(20)

L · |Sn| (|A|2)n
|A|2 − 1

(|A|2)n−1

|A|2 − 1
� L · |Sn| · (|A|2)n · K (21)

for a large value of n we can assume that

K =
|A|2

|A|2 − 1
(22)

Now comparing the above cost with the case of a single

agent is trivial. In a single agent representation the state pa-

rameters, which in our multi-agent architecture are uniformly

distributed among several agents, would be accumulated on

a single agent, resulting to an exponential increase of the

state space cardinality. Thus, the cost of the single agent

architecture would be:

L · |Sn|n · (|A|2)n (23)

Comparing Eq. (21) and (23) it is clear that when the

number of agents n increases the computational cost in the

single agent architecture increases exponentially since the

cardinality of the state space in (23) is raised to the power

of n. In the case of the two e-Pucks we have modeled them

as four nested agents, so n = 4. The state definition as has

been presented in Section III has seven state variables. Each

state variable in fuzzified with five memberships functions

according to the process described in Section IV-B. So the

cardinality |Sn| = 57. As we have stated in Section V, each

agent has four distinct actions, so |A| = 4. A training epoch

that we allow an agent to operate has a duration of 450

iterations, so L = 450. Having said that the computational

cost when our multi-agent architecture is employed equals:

450 · 57 · (42)4 · 42

42−1 = 2.45 × 1012 operations, while

in the case of a single agent approach the cost would

be 1.1 × 1027. As the number of agents increases it is

obvious that the benefit of our architecture has significant

computational impact.

VIII. RL-BASED ROBOT CONTROL ARCHITECTURE

The robot control architecture employed has three layers.

The first layer is the error observation layer, the second one

is the action selection layer, and the last one is the servo

control layer. The first layer receives as input the desired

goal for the multi-agent system along with the feedback from

the last layer (as shown in Fig. 3). The error observation

layer provides input to the next layer, which is the action

selection layer. It can seen that the action selection layer is

coupled with the RL module. The RL module, augmenting

the action selection mechanism, receives the error observa-

tion data, provides appropriate input to the action selection

mechanism, in order for certain action(s) to be generated

(without any initial prior knowledge regarding appropriate

joint-level motion). Subsequently, the action selection mech-

anism generates the wheel-level motion commands or the

robot(s) servos, based on stochastic models, while providing

information to the RL module regarding the probabilistic

distribution that was assigned to the different action(s) by

the action selection process. The commanded wheel-level

motion propagates to the third layer which corresponds to

the robotic mechanism. This last layer generates the actual

robot motion for the agent(s) involved in the system.

Wheel -Level

Fig. 3. RL-Based Robot Control Architecture
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IX. EXPERIMENTS - RESULTS AND DISCUSSION

A. Collaborative Mobile Robots: Box-Pushing Task

The task assigned to two mobile robots is to build certain

skills over time that consist of collaboratively pushing a box

towards a specified goal position. Box-pushing is related

to the wwl-known ”piano mover’s problem” and is stated

formally as follows: given an arbitrary rigid polyedral en-

vironment, find a continuous collision-free path taking this

object from a source configuration to a desired destination

configuration. It was shown by Reif [7] that this problem

is PSPACE-hard. The system in our experimental setup

comprises four distinct agents: Robot 1-left wheel, Robot

1-right wheel, Robot 2-left wheel, and Robot 2-right wheel.

Thus, rephrasing the initial problem statement, four agents

have to collaborate in order to push a box to the desired

location. In addition, in this experiment we assume that there

is no previous knowledge or build-in behavior model. The

simulation environment that we employ is Webots 6.1.5 [31],

where a synthetic environment has been designed, as can be

seen in Fig. 4. The system is allowed to tune its θ parameters

Fig. 4. Simulation Setup involving two e-Puck Robots

for a series of epochs, each one lasting for 450 trials. The

learning parameters are: learning rate α = 0.00012, the

discount factor γ = 0.999, λ = 0.40, while the decay factor

s = 0.005. The results of the simulations are presented in

Figures 5 and 6. We can see in Fig. 5 (a) that the agents

(wheels) manage to build skills over time, so that they

eventually collaborate to drive the robots in a way that the

box is finally pushed to the goal location. During the first

epochs (1-5) the wheels manage to decrease the distance

of the object from the goal but without proper orientation,

we can also see in Fig. 6 that during that initial period the

robots cannot maintain contact with the object. The situation

is significantly improved in the subsequent epochs, reaching

epoch 7,10,20 when the box is successfully pushed by the

cooperating robots to reach the desired goal location with

proper orientation. Fig. 5 (b) shows the improvement of the

orientation that the box approaches the target. Fig. 6 shows

an instance of the simulation results obtained using Webots

6.1.5 software, for a set of selected epochs.

X. RELATED WORK

The work described in this article builds on work from

the joint area of mobile robotics and reinforcement learning.

Next, we review the prior work from these two areas.
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Fig. 5. (a) The wheels turning the object towards the goal position. (b) The
wheels decreasing the distance of the box from the goal position.

Fig. 6. Simulation results for different Epochs

A. Multiagent Reinforcement Learning

In [4] Craus and Boutilier formulate how Q-learning can

be applied in multiagent systems by using the notion of a

Nash equilibrium for describing the optimal joint action. Our

hierarchical architecture is based on the same formulation

and by assuming that the multiagent system is comprised by

agents that have the same state and action space, manages to

reduce the complexity of the learning problem. A different

approach of multiagent reinforcement learning is proposed

by Guestrin et al. [5]. In this work a structured representation

of the multiagent reinforcement learning is proposed. The

coordination requirements of the system can be captured

by a coordination graph, representing agents as nodes and

direct coordination requirements between agents as edges.

The optimal joint action of the system can be computed by

using variable elimination on the coordination graph. Using

a coordination graph for multiagent learning requires having

knowledge of the agents’ topology. Instead, our hierarchical

architecture does not need the topology of the agents. We

provide an alternative way of coordinating our agents by

assuming a hierarchical chain among them. We note here

that this hierarchical chain is in fact arbitrary and does not

make any assumption on the topology of the agents.

B. Collaborative Multi-robot Box-pushing

Much of the work on the collaborative box-pushing prob-

lem assigns one agent to a robot [10], [11]. We propose an

alternative mapping for the agents. As mentioned before each
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agent corresponds to one wheel of the mobile robot. By using

this mapping our system is able to reconfigure itself in case

one of the wheel of the robot fails. This advantage is clear in

cases of mobile robots with more than 2 wheels. The system

is able to recover from such failures by adjusting the optimal

speed of the rest of the wheels of the robot. Furthermore in

[10], Wang and de Silva, propose a reinforcement learning

framework, where each action of a robot is dependent of

the geometry of the rigid object that the robots need to

manipulate. Pushing points are precomputed and encoded

as actions of an agent. We follow a different approach

and by combining two tasks in one learning problem we

manage to avoid such limitations. Apart from learning how

to cooperate in order to manipulate an object, the agents also

learn which setup implies the appropriate pushing points in

order to manipulate the object. Because of this combination

of learning tasks, our approach is free of limitations inserted

by the geometry of the box and therefore consistent with the

initial definition of the box pushing problem.

XI. CONCLUSION AND FUTURE WORK

By combining Reinforcement Learning (RL) methods and

traditional control approaches over a hierarchical multi-agent

architecture in a fuzzified state-space, we obtain a hybrid

robot control architecture, with respect to control topology,

which is applied in a continuous state-space to perform

a box-pushing task. The nested, self-evolving multi-agent

architecture proposed in this paper appears to be particularly

suitable for robot control problems where increased degree

of dexterity and cooperative skills are required. The basic

advantage of such an approach is that no global task model

is needed. Moreover, the proposed multi-agent system, owing

to its homogeneous characteristics (all agents obey the same

structural/modular internal architecture), as well as to its

hierarchical formation, facilitates scaling of the system to

more complex structures. We show the proposed architecture

within the field of mobile robotics, where the wheels of the

robots become the independent agents that explore behaviors,

and evolve collaborative skills. Future work is to examine

how robust is our architecture to different number of mobiles

and different types of collaborative tasks among them.
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