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Abstract— This paper focuses on evaluating the robustness
and knowledge generalization properties of a model-free learn-
ing mechanism, applied for the kinematic control of robot
manipulation chains based on a nested-hierarchical multi-agent
architecture. In the proposed topology, the agents correspond to
independent degrees-of-freedom (DOF) of the system, managing
to gain experience over the task that they collaboratively
perform by continuously exploring and exploiting their state-to-
action mapping space. Each agent forms a local (partial) view
of the global system state and task progress, through a recursive
learning process. By organizing the agents in a nested topology,
the goal is to facilitate modular scaling to more complex kine-
matic topologies, with loose control coupling among the agents.
Reinforcement learning is applied within each agent, to evolve
a local state-to-action mapping in a continuous domain, thus
leading to a system that exhibits developmental properties. This
work addresses problem settings in the domain of kinematic
control of dexterous-redundant robot manipulation systems.
The numerical experiments performed consider the case of
a single-linkage open kinematic chain, presenting kinematic
redundancies given the desired task-goal. The focal issue in
these experiments is to assess the capacity of the proposed
multi-agent system to progressively and autonomously acquire
cooperative sensorimotor skills through a self-learning process,
that is, without the use of any explicit model-based planning
strategy. In this paper, generalization and robustness properties
of the overall multi-agent system are explored. Furthermore, the
proposed framework is evaluated in constrained motion tasks,
both in static and non-static environments. The computational
cost of the proposed multi-agent architecture is also assessed.

I. INTRODUCTION

Understanding aspects of human cooperative behaviour
constitutes a major research objective in the field of multi-
agent systems. In robotics, related topics have been ad-
dressed by work done on cooperative mobile robots [10] [4],
robotic hands, and multiple cooperating robot manipulators
[11][16][22]. The common ground of all these approaches is
that the motion of the object under cooperative manipulation
(or pushing) actions is considered quasi-static, and that all
the agents involved have predefined behavior models that are
combined by employing specific control architectures.

Human behavior also demonstrates evolutionary charac-
teristics and self-organizing abilities. In this context, the
application of bio-inspired techniques such us Reinforcement
Learning (RL) [20][2][6], evolutionary computation and
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fuzzy systems, constitutes an emerging research topic. Other
approach to acquire robot manipulation skills is through
Learning from Demonstration (LfD) [1], also referred to as
Learning by Imitation [18]. By LfD, instead of learning by
exploration, a policy is learned from examples, or demon-
strations, provided by a teacher. These examples are defined
as sequences of state-action pairs that are recorded during the
teacher’s demonstration of the desired robot behaviour. We
note that a policy derived under LfD is necessarily defined
only in those states encountered, and for those actions taken
during the example executions.

Inspired from the above research directions, this paper ex-
tends our previous work presented in [9][10], and addresses
issues related to knowledge generalization and robustness
achieved through model-free learning on multi-agent robot
control and skill acquisition architectures. Learning is here
approached not through demonstration and training, but as
an autonomous exploration and self-learning (unsupervised)
process, where each agent evolves a local sensori-motor
behaviour by receiving information (reward signals) related
to observations of task performance. With respect to our
previous work, this paper applies multi-resolution goal train-
ing, aiming to explore how well the system manages to
generalize the knowledge acquired during training, in order
to subsequently reach new (untrained) goals. In addition, the
robustness properties of the overall system are assessed, by
considering a complex failure scenario where multiple agents
fail at different time instants. A comparison of the proposed
model-free approach to a typical model-based one is also
performed, and the extensibility of our multi-agent system
to constrained motion tasks is also evaluated. This paper
also includes an analysis of the computational cost of our
topology, which was not included in our previous work.

The paper is organized as follows. The following section
outlines the proposed multi-agent framework and Section III
describes more in detail the learning approach employed in
this work. Section IV presents the numerical experiments
performed and discusses the results obtained in the case of a
simulated single kinematic chain, while Section V discusses
issues related to the computational cost of the proposed
multi-agent framework. Finally, concluding remarks and fu-
ture work directions are presented in Section VI.

II. THE PROPOSED MULTI-AGENT FRAMEWORK

The proposed control framework has been described in
detail in [9][10]. Fig. 1 presents the basic structure of the
multi-agent nested-hierarchical topology for the proposed
developmental robot manipulation control framework. In
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Fig. 1: Nested hierarchical topology of the multi-agent system, for the
case of an n-DOF robot manipulator (open kinematic chain); positioning
of the end-effector at a given goal position is, in this case, the considered
manipulation task

order to facilitate understanding of the work presented in
this paper, we highlight here the basic concepts of this multi-
agent framework.

A. Mapping Agents to Degrees of Freedom

Each robot joint is assigned to an agent having as a
function to govern local control at that joint level. The chal-
lenge here is to evolve global dexterity through progressive
acquisition of local skills at each local agent level.

B. Nested-Hierarchical Multi-Agent Architecture

Each agent functions locally and selects an action indepen-
dently of the rest, by performing an estimate of the actions
that the rest of the agents could potentially perform. This is of
course always performed as viewed in the local perspective
of each agent, that is, with limited visibility only to those
agents that are located below in the nested-hierarchical sense;
in other words, the agent maintains a partial (local) view of
the system topology, and does not know at any time how
many agents constitute the whole system above or below
and what is the exact underlying topology.

C. Continuous Problem Setting and State Definition

The learning process must also function in a continuous
state-space, thus a fuzzification step is applied to the readings
forming the system state. Learning is then accomplished in
a discrete state-action mapping sense; a defuzzification step
can subsequently be employed to perform action selection
in a continuous domain. Let us consider a kinematic chain
that is comprised of n dofs (agents ai : i = 1, . . . , n), nested
in the manner presented in Fig. 1. We define the state of
every agent ai as: Si =< qi, θi, di, g⃗i >, where: qi is the

current relative position of the ith joint (i.e. the angular
displacement of the ith link with respect to the previous link
in the kinematic chain), θi is the current angular position
of the robot’s end-effector with respect to the ith agent, di
is the current Euclidian distance of the robot’s end-effector
from the ith agent, and g⃗i is a vector describing the position
of the goal at the task space with respect to the end-effector
(g⃗i is expressed in polar coordinates, comprising the distance
dgoal and the angle θgoal of the goal w.r.t. the reference
frame of the end-effector agent). Therefore, the state vector
of each agent is composed in total of five variables. Every
agent ai identifies certain variables of its state (constituting a
partial -local- view of the full system topology) and forwards
that information in a nested manner to the agents of the
next layer in the hierarchy, in order to facilitate the process
of identifying their own state variables. This whole process
is composed of two subprocesses that evolve in a recursive
manner. The first is evolving in a top-down manner, while
the second one is evolving in a bottom-up way. Detailed
description of this recursive process is presented in [10].

III. CONTINUOUS REINFORCEMENT LEARNING

Let us assume a collection of n (homogeneous) agents,
each agent ai (i ∈ [1, . . . , n]) having a finite set Ai of indi-
vidual actions aij ∈ Ai available to it (j = 1, . . . , size(Ai)).
Agents repeatedly operate within the framework of the
environment posed, in which they each independently select
an individual action to perform. In [8], RL is defined as
the problem faced by an agent that must learn a behaviour
through trial-and-error interactions with a dynamic envi-
ronment. In terms of mathematical description, RL has
been formalized as a Markov Decision Process (MDP). An
MDP has four components: states, actions, transitions and
reward distributions. More precisely, an MDP is a 4-tuple
(S,A, T, r), where S denotes a finite set of states, A denotes
the action space, T is a probabilistic transition function
T : S × A × S → [0, 1], that denotes the probability for
transition from a state s to a new state s′ when a certain
action a is applied, and r : S ×A→ ℜ is a reward function
that denotes the reward for applying a certain action a to a
certain state s.

At this stage, we need to provide a formal definition for the
state of our system. Given each agent’s structure formulated
so far, the state of every individual agent ai can be expressed
as < qi, θi, di, g⃗i > and the entire multi-agent system state
can be defined as: St = {< qi, θi, di, g⃗i >, i = 1 . . . n},
at a specific time instance t. For a 4-DOF manipulator, the
corresponding state definition of each individual agent and
subsequently the state definition of the entire system can then
be written as: St = {< q1, θ1, d1, g⃗1 >,< q2, θ2, d2, g⃗2 >,<
q3, θ3, d3, g⃗3 >,< q4, θ4, d4, g⃗4 >}. All agents wish to select
actions that maximize the (expected) reward. Each agent
contributes its own action component to the joint action that
is eventually applied to the environment and determines the
transition. The goal is to find a policy that maximizes the
reward [2].
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Before proceeding, let us adopt some standard game
theory terminology in order to facilitate the discussion below
[15]. A randomized policy for an agent ai is a distribution
π ∈ ∆(Ai) (where ∆(Ai) is a set of distributions over
the agent’s action set Ai). Intuitively, π(αi) denotes the
probability of agent ai selecting an individual action αi. A
policy π is deterministic if π(αi

j) = 1 for some αi
j ∈ Ai. A

collection of policies for all the agents is called policy profile,
Π = {πi : i ∈ [1, . . . , n]}, where n is the number of agents.
The expected value of acting according to a fixed profile can
easily be determined. If each π ∈ Π is deterministic, we can
think of Π as a joint action. A reduced profile for agent ai is
a policy profile for all agents but ai (denoted Π−i). Given a
profile Π−i , a policy πi is a best response for agent ai if the
expected value of the policy profile Π−i ∪ {πi} is maximal
for agent i; that is, agent ai could not do better using any
other policy π′

i.

A. Action Selection and Reward Function

In our multi-agent system, each agent is able (indepen-
dently from the others) to select its action among three
discrete types of actions: increase, decrease or maintain its
joint angular displacement. The action selection problem,
however, is significantly difficult if there are multiple optimal
joint actions. If the joint actions are chosen randomly, or
in some way reflecting personal biases, then there is a risk
to select a suboptimal or uncoordinated joint action. So,
we have the general problem of equilibrium selection (or
joint action selection), which can be addressed in several
ways. One way is the communication among the agents
[19]; another is to introduce conventions or rules that restrict
behaviours and so to ensure coordination. In this paper, we
apply a mechanism that results in a coordination among the
agents’ action through a repeated execution of the specific
task by the same agents. In this action selection mode, each
agent ai keeps a count of the number of times a specific
action has been performed in the past by the same agent (as
well as by its collaborative agents). This concept, although
simple, is some times quite effective, and is known as
fictitious play [7][3]. More precisely, each agent ai keeps
a count Ci(αj

k), for every agent aj that is visible by ai,
indicating the number of times agent aj has selected action
αj
k ∈ Aj in the past. When a task is assigned to our multi-

agent system, each agent ai treats the relative frequencies of
the moves of all other agents aj as indicative of their current
policy. That is, agent ai assumes that agent aj performs
action αj

k ∈ Aj with probability:

P i(αj
k) =

Ci(αj
k)∑

bj∈Aj
Ci(bj)

(1)

We note that most models (in game theory) assume that
each agent can observe the actions executed by its counter-
parts with certainty. What we actually employ is something
more general that allows each agent to obtain an observation
that is related stochastically to the actual joint action selected.
Action selection is more difficult when agents are not aware
of the rewards associated with various joint actions, hence

the expected reward associated with individual and joint
actions has to be estimated based on previous experience.
Q-learning algorithm developed by Watkins [21] is the most
frequently used RL algorithm. An agent estimates the utility
for doing each of its actions, chooses an action based on
a selection function of the expected values, observes the
reward, and then updates the Q-value or the estimate of the
utility of that action. In the case of a stateless setting, we
have an agent updating its estimated Q-values as follows:
Q(s, α)← Q(s, α)+λ(r−Q(s, α)), where in state s action α
was performed resulting in reward r. Here, λ is the learning
rate (0 ≤ λ ≤ 1) governing to what extent the new sample
replaces the current estimate.

The next issue that we have to address concerns the action
selection function, which is particularly important since
effective learning requires sufficient exploration. The action
selection mechanism employed in this work is a variant of
ε-greedy, called ε-decreasing, where the probability of an
exploration action decreases as trials progress. This action
selection mechanism starts with an exploration probability:
pexplore(t) = ε · (T (t) − 1)/(Tmax − 1). To compute the
probability of choosing an action, we employ a Boltzmann
distribution as explained below. On each trial, with probabil-
ity: 1− pexplore(t), each agent ai chooses the action αi with
the greatest estimated π(αi):

π(αi) =
e

E(αi)
T∑

αi
j∈Ai

e
E(αi

j)

T

(2)

where E(αi) denotes the expected value of an action αi

and T is the temperature parameter that is controlled to
diminish over time so that the exploitation probability is
increased. Temperature determines the likelihood for an
agent to explore other actions: when T is high, even when
the E(αi) of an action is high, an agent may still choose
an action that appears to be less desirable. This exploration
strategy is especially important in stochastic environments
like the one we are examining, where payoffs received
for the same action combination may vary. For effective
exploration, high temperature is used at the early stages of a
task. The temperature is then decreased over time to favour
exploitation, as the agent is more likely to have discovered
the true values of different actions. The temperature T as a
function of time is given by: T (t) = 1+ Tmax · e−st, where
t here denotes time units (i.e. the iteration number), Tmax is
the initial temperature and s is the rate of decay (in our case,
s ∈ [0, 1], where a value close to 0 facilitates exploration,
while a value of s close to 1 facilitates exploitation).

Now, let us elaborate on the definition of the expected
value E(αi). The presence of multiple agents, each one
learning simultaneously with others, is a potential impedi-
ment to the successful employment of Q-learning (and RL
in general) in multi-agent settings like the one considered
in this paper. When an agent ai is learning the value of its
actions in the presence of other agents, it is learning in a non-
stationary environment. Thus, convergence of the Q-values is
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not guaranteed. What we need is each agent’s policy to settle.
This is a key issue and is discussed hereafter. In general, there
are two distinct ways in which Q-learning could be applied in
a multi-agent system; the Independent and the Joint-Action
Learner algorithm [13][14][5]. In an Independent Learner
algorithm, each agent learns its Q-values regardless of what
the other agents are performing. This method is appropriate
to be employed when an agent has no reason to believe
that other agents are acting strategically. Joint action learner
algorithm is the one where the agents do not learn Q-values
of their individual actions but the Q-values of their joint
actions. This implies that each agent can observe the actions
of other agents. Each agent in such a system maintains beliefs
about the policies of other agents. So, an agent ai assesses
the expected value E(αi) of selecting an individual action
αi at a current state s to be:

E(αi) =
∑

α−i∈A−i

Q
(
s, α−i ∪ {αi}

)
·
∏

α
j
k
∈α−i

[
P i(αj

k)
] (3)

In the above equation, A−i denotes the set of all possible
joint actions that can performed by the group of agents
that are considered “visible” by agent ai, in the nested
hierarchical sense (i.e., in our case, agents that are below
in the hierarchy), α−i ∈ A−i denotes one such joint action
performed by this group of agents, and αj

k ∈ α−i is an
individual action performed by a single agent aj in this
group. The reward that an agent receives at time instant t,
after selecting certain action and moving to a new state, is
defined by the reward function R(t), which is formulated as
follows:

if (Dgoal(t) ≤ Dmin) ∧ (∆Dgoal) ≤ 0) then R(t) = e−c·Dgoal(t)

if (Dgoal(t) > Dmin) then R(t) = −2

if (Dgoal(t) < Dmin) ∧ (∆Dgoal) > 0) then R(t) = −1

(4)

where Dgoal (t) is the distance from the goal at iteration
time t, Dmin is a threshold distance after which the agents
start receiving rewards, and ∆Dgoal is the rate of change of
distance from the goal.

IV. NUMERICAL EXPERIMENTS

We have previously considered, in [9], a series of numer-
ical experiments, on a single redundant (planar) kinematic
chain, consisting of four links with 4 independent DOFs
employing the proposed multi-agent architecture. Successful
completion of the learning process has been demonstrated
in [9], where experimental results show how the agents
acquire knowledge to collaboratively reach their goal. In this
paper, we focus on evaluating the generalization properties
of the system; that is, how the agents use the knowledge
acquired and how, without any additional training, they can
explore and reach new targets different from the ones trained.
Moreover, we evaluate robustness properties of the proposed
multi-agent system and extensibility of the approach to
more complex kinematic topologies, involving constrained
manipulation tasks in both stationary and non-stationary
environments.
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Fig. 2: Resolution levels and corresponding training targets
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Fig. 3: Target-reaching error in the entire task space, with 4 training points

A. Multi-Resolution Goal Training and Generalization

In this section, we consider multiple layers of training data,
each layer representing a different resolution at the target
space. Initially, the task space is recursively subdivided into
levels of increasing resolution, in a quad-tree structure as
can be seen in Fig. 2. Starting from Level-1, containing four
nodes (quadrants), we progressively move down to Level-4
that contains 256 nodes. Each node corresponds to a single
target position, for which the multi-agent system receives
training. Therefore, for each resolution level, the multi-
agent system is trained on a different set of target-positions,
increasing in size according to the training resolution Level
(i.e.: at Level-1, the four nodes correspond to four goal
positions on which the system is trained, for Level-2, 16
target positions are trained, etc).

For the purpose of the experiment presented in this Sec-
tion, we thus investigate a range of resolutions starting from
4 up to 44 target training points, as shown in Fig. 2. For
each resolution level, after completion of training on the
corresponding target points (constituting the training-set at
this resolution level), a test-set is generated consisting of 100
new goals randomly distributed in the entire task space (by
employing Halton sequences to obtain a uniform distribution
of points in the task space). Our aim is to explore the
accuracy by which, at each resolution level, the multi-agent
system manages to reach all the new (untrained), randomly
generated goals, without performing any additional training.

The experimental process is the following: a) Select a

1143



-10

-5

 0

 5

 10

-10

-5

 0

 5

 10

 0

 0.5

 1

 1.5

 2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

Task Space
Task Space

New Goals 

in Task Space

E
rr

o
r 

in
 R

e
a

ch
in

g
 N

e
w

 R
a

n
d

o
m

 G
o

a
ls

 W
it

h
o

u
t 

a
n

y
 T

ra
in

in
g

Fig. 4: Target-reaching error in the entire task space with 16 training points
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Fig. 5: Target-reaching error in task space with 256 training points

resolution level; b) Perform off-line training on the target
points of the corresponding resolution level; c) After com-
pletion of training, issue successive on-line requests to reach
all 100 randomly generated goal positions of the test set. The
target-reaching results, for three different resolution levels,
are depicted in Figures 3 to 5. By observing these plots, it
is clear that even at the lowest resolution level (comprising
only 4 training points in the entire task space), the proposed
multi-agent topology manages to successfully reach almost
all 100 randomly generated new goals assigned. It is also
clear that the situation improves as the training resolution
increases from 4 to 16 up to 256 points (both the height
of the ‘bumps’, representing the error for reaching specific
goals, as well as their population, diminish).

Fig. 6 depicts the statistics of the target-reaching gener-
alization results. We observe that even for the 4 training
points (Level-1) resolution, the mean value of the error is
quite low (mean = 0.3814), but with significant standard
deviation value (std = 0.5596), showing again that most
of the random target points at the test set are successfully
reached, even using the lowest resolution level for training.
The mean value of the error decays smoothly and reaches, at
the 64 points resolution (Level-3), a value of mean = 0.2366,
while the corresponding standard deviation drops to the value
of std = 0.2036. We also observe that, in this experiment,
increasing the resolution from Level-3 to Level-4 (i.e. from
64 to 256 training points) does not significantly improve
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Fig. 7: Kinematic solution generated by the multi-agent system and
position error over time (for the fully operational system, with all agents
active).

the accuracy of the system. These findings clearly highlight
the powerful generalization properties of the proposed multi-
agent architecture. Furthermore, considering the results pre-
sented in Fig. 6, a resolution of level 2 to 3 (16 to 64 training
points, in this case) is found to be sufficient to adequately
cover the entire task-space.

B. Robustness to Changes in Kinematic Topology

A key advantage of a distributed multi-agent control
strategy (with respect to a typical single-agent model-based
architecture) is related to robustness. In this paragraph, we
evaluate the capacity of the proposed multi-agent architecture
to compensate, at run-time, for partial failures that may occur
to the agents (degrees of freedom) comprising the system
and, therefore, to adapt to unpredictable sudden changes in
the kinematic topology.

We start by training the multi-agent system to reach a
goal position, as described in the previous section. After
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unpredictable failure-recovery events of agents 1 to 3.

completion of the training period, the fully operational multi-
agent system is now able to find a solution and decrease the
tracking error (end-effector w.r.t. goal position), as depicted
in Fig. 7. Fig. 8 shows the actions (joint displacements) of
individual agents.

In the sequel, we simulate a number of failure situations in
the agents, in order to evaluate the robustness properties of
the system. Firstly, we simulate an initial partial failure of the
system, assumed to be progressively recovered. We consider
that, initially (at T = 0), three of the agents (agents 1, 2
and 3) are non-operational and only agent 4 is responding.
This situation corresponds to a failure of receiving and
executing any action by these agents, which means that
agents 1 to 3 stay blocked to their initial angular position.
Subsequently, at T1 = 100, agent 3 starts responding and
later on, at T2 = 500 and T3 = 1000, agents 2 and 3,
respectively, are also recovering from their failure. Our goal
is to explore how, without any external assistance, the multi-
agent system manages to compensate for the imposed failure
situation. The results are quite interesting, demonstrating
that the multi-agent system manages, at run-time, to find
a new solution adapting to the unpredictable changes in the
kinematic topology caused by the considered failure situation
with some of the agents not responding during operation.
Fig. 9 depicts the new kinematic solution generated by the
multi-agent system, and the evolution of the tracking error.
Fig. 10 shows the actions of the individual agents, and how
they adapt to cope for the disturbance caused by the failure
events.

To better highlight the superior robustness properties ex-
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Fig. 11: Comparative tracking error results (model-based vs. multi-agent
approach) in a failure scenario with agents 2 and 3 fully blocked.
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Fig. 12: Comparative target-tracking response for the model-based and the
multi-agent systems in a failure scenario with agents 2 and 3 fully blocked.

hibited by the proposed (model-free) multi-agent system, as
compared to a model-based (single-agent) control strategy,
we assume the failure situation where joints 2 and 3 are
completely blocked, and we perform the same experiment
but this time applying a model-based (resolved motion rate)
kinematic control at the joints (using the Jacobian matrix
pseudo-inverse). The tracking error results obtained are de-
picted in Fig. 11, comparatively for the model-based and the
multi-agent approach. The target-tracking response of the
kinematic chain is also illustrated in Fig. 12. From these
plots, it is evident that the kinematic chain under model-
based kinematic control is unable to reach the designated tar-
get position, generating oscillatory motion patterns between
specific configurations. This is obviously due to the fact that
the kinematic model is in this case a-priori invalid and a
typical model-based system does not have the mechanism
(without any remodelling and replanning) to cope with such
unpredictable errors, therefore potentially generating motions
inconsistent with the target position at the task space. On the
contrary, the proposed multi-agent system is still able to find
a feasible solution (which seems, in fact, consistent with a
minimum-energy configuration), as shown in Fig. 12(b). The
above results clearly demonstrate the superior performance
of the multi-agent approach in terms of its adaptability to
changes in kinematic topology and its capacity to cope for
unpredictable and complex failure situations.

C. Extensibility to Constrained Motion Tasks

To evaluate the extensibility of the proposed framework
to a more complex topology, we assume the following
constrained motion task. A seven DOF kinematic chain is
considered and the corresponding multi-agent system must
learn how to reach a target position that is located at the
inside end of a narrow corridor. The goal is to generate
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Fig. 13: Extensibility of the proposed multi-agent framework to a 7 DOF
kinematic chain performing a constrained motion task within static environ-
ment, involving collision-free target reaching inside a narrow corridor
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Fig. 14: Extensibility of the proposed multi-agent framework to a 7
DOF kinematic chain performing a constrained motion task within non-
static environment (four oscillating obstacles) involving collision-free target
reaching

a collision-free motion for the kinematic chain, enabling
the end-effector to reach the target position without us-
ing any a-priori model of the environment. In such an
experimental scenario, a typical model-based (single-agent)
kinematic approach would have to introduce additional dis-
tance optimization criteria, which would make the analytic
redundancy resolution problem more complex and more
sensitive to modelling errors. The proposed distributed multi-
agent architecture is naturally extended to cope with such a
topology, considering only an additional term on the reward
function that signals collision events during training. The
results obtained are depicted in Fig. 13. These results show
that the multi-agent system manages to evolve behaviors that
effectively guide the kinematic chain to enter the opening
of the narrow corridor and to successfully reach the target
position, generating a natural collision-free path.

Subsequently, we consider a non-static environment com-
prising moving obstacles. In Fig. 14 and Fig. 15, we see
that the multi-agent system learns to avoid collision with all
four oscillating obstacles throughout the simulation, keeping
a minimum safe distance from all obstacles (with a mean
value of mean = 1.0965), while at the same time maintaining
continuous contact with the target for the entire runtime, as
can be seen in Fig. 15b (with a position error having a mean
value of: mean = 0.2060).

V. COMPUTATIONAL COST CONSIDERATIONS

The state space S of the multi-agent system is composed
of the local state spaces S1, S2, . . . Sn of the individual
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Fig. 15: The multi-agent system maintains contact with the target (Fig.
15b), while it avoids collision with all moving obstacles keeping a safe
minimum distance for the entire duration of the run( Fig. 15a)

agents. Every local state-space is comprised of homogeneous
state parameters. If we consider the system as a single
agent then S = S1 × S2 × · · · × Sn, meaning that the
cardinality of the state-space in a single-agent representation
is: |S| = |Sn|n. By adopting the proposed multi-agent
(nested hierarchical) architecture along with a uniform state
definition for every agent, the computational cost of the value
iteration problem that we are solving is reduced, as compared
to a single-agent approach.

The proposed multi-agent architecture is defined by ho-
mogeneous agents, meaning that all of them have the same
number of state variables that uniquely define their state for
all possible configurations. This implies that the cardinality
| · | of every local state-space is the same: |S1| = |S2| =
|S3| = · · · = |Si| = |S| for every agent i. According to the
nested-hierarchical architecture, each agent is able to monitor
only those agents that are below in the hierarchy, in order to
formulate a joint action. Therefore, the corresponding action
space of each agent is reduced, as we move from a higher
to a lower level in the hierarchy. Eventually, the cardinality
of the joint action space is |A|i, where i is the number of
agents that participate in the joint action at the specific level
of the hierarchy, and |A| is the number of distinct actions
of each agent. Assuming that the state-space is finite, the
number of state-action pairs to be updated at every iteration
is: |S| · |A|i. In order to update the value for a given state-
action pair, the maximization over the joint action space is
solved by enumeration over |A|i elements. So, the cost per
iteration is |S| · |A|i · |A|i or |S| · (|A|i)2. Assuming that our
algorithm runs for L iterations and for n agents, the total
computational cost can be computed as follows:

L ·
n∑

i=1

{
|S| · (|A|i)2

}
=

= L · |S|
n∑

i=1

(|A|2)i = L · |S| · (|A|
2
)n+1 − |A|2

|A|2 − 1
=

= L · |S| (|A|2)n
|A|2 − 1

(|A|2)n−1

|A|2 − 1
=

≃ L · |S| · (|A|2)n ·K (5)

where, for a large value of n, we can assume that

K ∼=
|A|2

|A|2 − 1
(6)
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Now comparing the above cost with the case of a single-
agent system is trivial. In a single-agent representation,
the state parameters, instead of being uniformly distributed
among several agents, would be accumulated on a single
agent, resulting to an exponential increase of the state-space
cardinality. Thus, the computational cost for a single-agent
architecture would be:

L · |S|n · (|A|2)n (7)

Comparing Eq. (5) to Eq. (7) it is clear that, when the
number n of agents increases, the computational cost in the
single-agent architecture increases exponentially, since the
cardinality of the state space in (7) is raised to the power
of n. In the case of the open kinematic chain considered
in Section IV-C, the proposed multi-agent system comprises
seven nested agents, so n = 7. The state-space of each
agent, as defined in Section II-C, is composed of six state
variables. Each state variable is fuzzified with 8 memberships
functions. Therefore, the cardinality of the state-space of
each agent is: |S| = 86. Furthermore, as defined in Section
III-A, each agent has three distinct actions, so: |A| = 3.
Each training epoch, within which every agent is allowed to
operate, is assumed to have a duration of 1500 iterations, so:
L = 1500. Based on these assumptions, the computational
cost when employing the proposed multi-agent architecture,
equals: 1500 · 86 · (32)7 · 32

32−1 = 2.1158× 1015 operations.
In the case of a single-agent approach, this cost would
be: 6.8663 × 1047. Therefore, as the number of agents
increases, it is evident that the computational benefit of the
proposed multi-agent architecture (as compared to a single-
agent approach) becomes significant.

VI. CONCLUSION AND FUTURE WORK

This paper explores the applicability of a multi-agent
nested-hierarchical architecture in the domain of dexterous
robot kinematic control, evaluating key system properties
related to knowledge generalization and robustness. Fur-
thermore, the proposed multi-agent system, owing to its
homogeneous characteristics (all agents obey the same mod-
ular internal structure) and to its hierarchical formation,
facilitates scaling to more complex structures. Fig. 16 depicts
a potential application of the proposed framework, where
a more complex multi-agent topology could be envisaged.
In addition, an analysis of the computational cost shows
a significant gain of the proposed distributed multi-agent
approach as compared to a typical centralized single-agent
architecture.

By employing the proposed framework in the domain of
dexterous manipulation, we believe that challenging prob-
lems can be tackled in a very elegant and powerful way (in
the sense of modularity, robustness and extensibility). Similar
(in some ways equivalent) problem settings, like grasp plan-
ning, locomotion control, or designing optimal climbing (and
generally gaiting) patterns, could also be approached within
the same framework, lending to the notions of evolving
cooperative learning and developmental robot control skills.

Fig. 16: Dexterous robotic chains performing hybrid locomotion / manip-
ulation tasks (such as climbing)
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