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Abstract—In this paper a novel approach for 3D environment
mapping using registered robot poses is presented. The proposed
algorithm focuses on improving the quality of robot generated
3D maps by incorporating the uncertainty of 3D points and
propagating it into the normal vectors of surfaces. The uncer-
tainty of normal vectors is an indicator of the quality of the
detected surface. A controlled random search algorithm is applied
to optimize a non-convex function of uncertain normal vectors
and number of clusters in order to find the optimal threshold
parameter for the segmentation process. This approach leads to
an improved cluster coherence and thus better maps.

I. INTRODUCTION

During the last few years, the increase in computational

power and sensor technology has shifted the focus of research

in robotic mapping towards the generation of 3D environment

representations. Since 3D representations hold more informa-

tion with regard to scene understanding, they outperform the

more common 2D maps. Sensors such as the Microsoft kinect

and high resolution stereo cameras can generate accurate 3D

point clouds and a number of algorithms have been proposed

to extract semantics from this raw spatial data [1], [2].

The environment representation consists of a set of planes

that exist in the robot environment and have been captured in a

3D point cloud. The process of building such a representation

implies the segmentation of point clouds into surfaces. Dif-

ferent lines of research, such as Markov Networks [3] and

the RANSAC algorithm [4] have been proposed to tackle

this problem. Our approach is closer to the ones presented

in [5], [6] and [7] where region growing methods are used for

plane extraction. In our work, registration of the point clouds

is not needed since the assumption that the poses of the robot

are known is followed.

The proposed approach partitions the environment into

3D cells where each grid cell center is a random variable

dependent on the distribution of the points in each cell as well

as their inherent uncertainty. No specific assumptions about the

error distribution of the raw points are made; rather we adopt a

more generic model of uncertainty in which only the standard

errors of the points are available. The uncertainty is propagated

from the grid level to the level of surface orientation and

then utilized in an uncertain clustering algorithm to group

cells with similar normal vectors into planes. However, instead

of a simple plane extraction, we incorporate the notion of

uncertainty of the 3D points in order to extract both planes and

their corresponding orientation uncertainty. This uncertainty is

later on used as an estimation of the accuracy of the segmen-

tation process. The quality of planes with high uncertainty is

improved through an optimization approach by dynamically

adjusting the segmentation threshold parameter thus improving

the quality of the overall map. Experiments with real robots

which produces dense point clouds of indoor environments

demonstrate that the algorithm can extract important spatial

relations required to develop better 3D maps.

The rest of the paper is organized as follows: A brief

literature review is provided in Section II. The uncertain

3D grid and essential concepts are presented in Section III.

In Section IV-A, our algorithm for uncertain clustering is

presented. The optimization approach is present in Section V.

In Section VI, we report our results obtained by conducting

different experiments on synthetic and actual sensor data.

Conclusions and future work are presented in Section VII.

II. RELATED WORK

Initially, the majority of the work in the domain of mobile

robot mapping have been focused on building 2D spatial

maps [8] [9], [10]. All approaches incorporate uncertainty in

the problem description thus leading to probabilistic mapping

algorithms. Since the last few years, developing 3D spatial

models has gained major interest in the robotics field [1]. Only

a few algorithm extend 2D occupancy grid formulation directly

to 3D [11]. Most 3D mapping techniques rely on segmentation,

clustering and plane fitting techniques. In many of these works,

similar approaches on surface detection and modeling have

been followed. In [12], the authors use techniques such as

outlier removal, resampling, segmentation and model fitting

in order to reconstruct an indoor environment, in particular

a kitchen. Their data scans refer to the whole environment,

and their methods are applied over this static dataset. In [13],

the incremental nature of data acquisition has been considered.

The authors use an incremental update of their representation

by taking into account only the points that do not overlap

with existing models. In [2], an incremental segmentation

algorithm for 3D points has been proposed. For every point
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in the new scan its neighbours are found. If any of these

points are already assigned to a cluster, the new point is

also assigned to this cluster. If more than one clusters are

candidates for assignment, then a merging of these clusters

is performed. In [14], [15], two approaches for 3D semantic

mapping of urban environments are presented. The received

point cloud is segmented and planes are extracted. In [16], the

surface extraction is followed by classification. A set of hard-

coded rules based on the position and size of the surfaces is

additionally used to classify them into common labels of walls,

floors, ceilings and doors. In [17], a normal vector estimation

upon the original points and a voxel growing technique are

presented.
In comparison to the above mentioned techniques, we utilize

uncertain clustering [18] that takes into account the uncertainty

that is introduced during the sampling process. Moreover,

instead of applying a filtering algorithm such as RANSAC

for outlier removal, we apply an optimization step to improve

the quality of the extracted planes based on the propagated

uncertainty.

III. UNCERTAIN 3D GRID AND MAPPING

In our scenario, a mobile robot autonomously navigates

in an indoor environment without any prior knowledge. The

robot perceives the world through its sensors by continuously

scanning the environment. Each scan produces a point cloud

and as the robot navigates in the environment a collection

of point clouds is generated. Starting from the first scan, the

goal is to dynamically detect objects that span more than one

consecutive scans in an efficient way. The basic components

of the grid formulation are mentioned below.

A. Density grid
The collection of 3D scans S1, S2, . . ., St that have been

collected during the robot exploration can be considered as a

set of 3D points, S = {p1,p2, . . . ,pn}. There is an inherent

uncertainty associated with the location of each point pi,

due to measuring device limitations. A common approach for

handling this uncertainty is by assuming knowledge of the

underlying probability density function (PDF) that generates

this uncertainty. However, PDFs are usually introduced as

part of the modeling assumptions and roughly approximate

the actual distribution. Therefore, we adopt a more flexible

model of uncertainty where we assume that the standard error

of the sensor is available [19]. In our case, this error is the

standard deviation of the sensor. Thus, an uncertain point is

represented as a tuple (pi, ε(pi)), where pi, ε(pi) ∈ R
3. In

particular, pi = [xi, yi, zi]
T are the values in the X,Y, Z

dimensions, ε(pi) represents the error in the point which is

a random variable with zero mean and standard error σ along

each dimension. Although the error along different dimensions

vary, we make a simplistic assumption. We assume that σ is

the same and is equal to the maximum error in any dimension.

Intuitively, we can imagine an uncertain point as a sphere of

radius σ around pi.
Due to the huge amount of data that has been accumulated

over time, it is inefficient to work upon the original raw data

points. Therefore, we partition the data space into a 3D grid
U consisting of cells {ui} of size ξ along all dimensions and

work on the grid instead of the original raw data. In this paper

the grid cell size is always bigger than the standard error of

the points. The grid itself is dynamic and expands as new

data scans are accumulated. Thus, memory is reserved only

for areas where objects are detected. The number of points

falling into a cell u comprise the density of the cell. Since a

lot of cells might be empty or contain only a few points, we

employ a density threshold τ to distinguish between dense and

sparse cells.

For each cell, we maintain a set of statistics.

Definition 1 (Cell statistics): Let u be a cell in the grid

and let {p1, . . . ,pn} be the set of uncertain points mapped to

u. The cell statistics contains the following entries explained

below:

• The linear sum of the points for each dimension,

L ∈ R
3:

n∑
i=1

pi.

• The square sum of the points for each dimension,

Ssq ∈ R
3:

n∑
i=1

p2
i .

• The square sum of the errors for each dimension,

Esq ∈ R
3:

n∑
i=1

ε(pi)
2.

• The density of u.

When a new point is added to the cell, the cell statistics

are updated by summing up the point coordinates and errors

to the corresponding entries of the cell. With these statistics,

we maintain the virtual center as well its uncertainty for each

cell. The virtual center Cu is a random variable given by the

current instantiation of the center and the mean of the errors

associated with the points in the cell:

Cu =

n∑
i=1

pi

n
+

n∑
i=1

ε(pi)

n
(1)

Note that the error is a random variable with zero mean.

Therefore, E[ε(pi)] = 0. This means that by considering the

expected value of the center, the error factor is eliminated.

To account for the error factor, we estimate the square of the

Euclidean norm.

The expected distance between an uncertain point and the

uncertain virtual center of a cell is defined as follows:

Lemma 3.1 (Expected distance): Let u be a cell in the grid

containing the points {p1,p2, . . . ,pn} and let Cu be its

virtual center. Let pj be an uncertain point, such that pj is not

assigned to any cell in U . The expected value of the square of

the distance between pj and Cu is given by:

E[||pj − Cu||2] = p2j + ε(pj)
2 +

(
n∑

i=1
pi)

2

n2 +
(

n∑

i=1
ε(pi))

2

n2 − 2pj

n∑

i=1
pi

n (2)

Equation (2) describes the analytical case, i.e when the raw

data points of the cell are available. In our case, though only

the statistics are available for each cell. We can re-phrase (2)
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based on the cell statistics as follows:

E[||pj−Cu||2] = p2j+ε(pj)
2+

L2

d(u)2
+

Esq

d(u)2
−2pj

L

d(u)
(3)

Equation (3) defines the expected square distance between a

point and the virtual center of a cell. A point is assigned to

the cell in its neighbourhood based on the smallest expected

square distance. In [19] further details regarding derivation of

this expression are presented.

IV. SURFACE CLUSTERS

For the robot, point clouds do not offer any direct informa-

tion about the spatial structure of the environment. To allow

for geometric interpretation and abstraction, the robot should

be able to process this data and extract patterns of spatial

information. Typically, surfaces are used for the description

of an environment; walls, doors, tables consist of (or can

be partitioned into component) surfaces. Thus, the patterns

we are focusing on in this work are surfaces. However, 3D

point clouds represent only a noisy sampling of surfaces that

exist in the real world and the explicit information about the

orientation and curvature of the surfaces is lost during the

sampling process. Normal vector estimation aims at restoring

this information for every sampled point by constructing a

vector that is orthogonal to the tangent plane of that point.

To do so, existing methods compute the least square plane

fitting in the neighborhood of the given point [20].

In our case, the notion of normal vector for points is

extended to grid cells and also considers the uncertainty

of the points. For the normal vector computation, the cell

neighborhood should first be defined.

Definition 2 (Cell neighborhood):
Let u be a cell. Let d be the depth parameter, d ≥ 1. The

neighborhood of u in depth d, denoted by Nd(u), consists of:

i) all cells u′ that are directly connected to u, and ii) all cells

u′′ for which there exists a path of cells 〈u1, u2, . . ., ud〉,
u1 = u, ud = u′′ such that ui+1 is directly connected to ui,

1 ≤ i ≤ d.

The normal vector of a cell is estimated by computing the

least square plane fitting its neighborhood. Recall that each cell

is represented in terms of a virtual center. To account for the

uncertainty of the virtual centers and estimate its effect on the

normal vectors, we employ a min-max approach that computes

the maximum variation in the parameters of the plane. In

particular, we perturb each virtual center proportionally to its

uncertainty based on the center of the plane and calculate

the best fitting plane in each case. The variation in the plane

parameters is a direct indicator of the uncertainty in the normal

vectors.

Definition 3 (Normal vector of a cell):
Let u be a cell and let Nd(u) be its neighborhood in depth

d. The normal vector −→u of cell u is a random variable with

an expected value given by the best plane fitting Nd(u) and a

deviation approximated by the min-max approach.

Based on the vicinity of the cells in the grid and their normal

vectors denoting the surfaces they belong to, we can now define

the notion of surface clusters.

Definition 4 (Surface cluster):
A surface cluster is a maximal set of connected dense cells

{u1, u2, . . . , uk} belonging to the same surface.

In order to extract the surface clusters, we use an uncertain

version of the clustering algorithm presented in [21] explained

in the next section.

A. Uncertain 3D clustering

1) Extraction of planes: We first map S to the grid structure

and extract the cell statistics according to Definition 1. Then,

we find the dense cells based on the density threshold τ . The

dense cells that have normal vector uncertainty lower than a

certain threshold ω are considered for clustering with a density

based uncertain algorithm. Neighboring cells are grouped into

clusters if their normal vectors have similar orientation.

In particular, a new cluster C is created starting from

a random cell u: the normal vector of C is initialized to

the normal vector of u. The algorithm tries to expand the

cluster based on the directly connected dense cells u′ from

u. The expansion is possible iff u′ and C belong to similar

surfaces, i.e. if the cosine similarity of the normal vectors is

less then the orientation distance threshold φ. Note that both−→
u′ and

−→
C are uncertain normal vectors, thus we compute their

expected distance similarly to (3). If the addition is possible,

the statistics of C are updated so as to consider the effect

of u. We maintain cluster statistics similarly to unit statistics

(Definition 1). The algorithm restarts at some other dense cell

u that has not been visited yet and continues until no more

unvisited dense cells exist.

The output of the algorithm is a set of clusters/planes; each

cluster is represented in terms of its component dense cells and

of a normal vector describing the orientation of each plane.

V. OPTIMIZATION OVER THE INITIAL CLUSTERING

In this section, we discuss an optimization approach which

improves the quality of the map based on the notion of

uncertainty of each cluster. As mentioned in the previous step,

the clustering algorithm utilizes a global orientation threshold

φ for the whole point cloud. However, the algorithm is sensitive

to the value of this threshold and areas with different densities

and uncertainties cannot utilize the same threshold. As shown

in the experimental section, this would lead to erroneous results

such as two different planes being grouped into one.

In order to improve the quality of the clustering step, we

apply an additional step of optimization over the extracted

clusters. This optimization is done only for clusters with

high uncertainty in the surface orientation vectors. Given the

map built by the robot consisting of clusters, normal vectors

and their respective uncertainities, the optimization approach

aims at modifing the initial clusters based on the orientation

threshold to minimize the uncertainty in each cluster while

maintaining an appropriate number of clusters. To find the

optimal orientation threshold for each cluster C, we apply the

clustering algorithm described in the previous section over all

points of C for different orientation thresholds φ:

[six, s
i
y, s

i
z, Nc] = fc(φ,C)
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(a) Threhold = 0.97 (b) Threshold = 0.7

Fig. 1. Results on the synthetic dataset. The datasets (a) Wrong Clusters (threshold 0.97), (b) Clusters after optimization (threshold 0.7)

TABLE I
AVERAGE UNCERTAINITIES OF NORMAL VECTORS FOR SYNTHETIC DATA

sx sy sz

Without Optimization 0.34 0.18 0.34
With Optimization 0.09 0.13 0.15

Algorithm ControlledRandomSearch()
Input: Orientation Threhold φ,

Maximum Iterations ζ,
Cluster C,

Output: φ̂ , Optimal orientation threshold
[ŝx, ŝy, ŝz, N̂c],
ŝx, ŝy, ŝz Minimum normal vector uncertainty,
N̂c Optimal number of clusters,

1. Randomly sample based on constraints 0 ≤ φ ≤ 1:
φs = {φ1, φ2, . . . , φn} ;

2. Evaluate cost function β at φsamples:
βs = {β1, β2, . . . , βn};

3. while(counter ≤ ζ)
4. Find βmax = max(βs)
5. Generate m samples from φs : m ≤ n;
6. φm = {φ1, φ2, . . . , φm}
7. Find centroid φ1:m−1;
8. Generate new sample φnew = 2φ1:m−1 − φm;
9. Evaluate cost function: βnew given φnew;
10. If(βnew < βmax);
11. replace φmax with φnew ;
12. increment counter;
13.end;

Fig. 2. The pseudocode of controlled random search algorithm.

where sx, sy and sz are the uncertainties in the normal vectors

for all newly generated clusters (in case the cluster is split

up) and Nc represents the number of these clusters. For every

cluster C we keep the threshold that optimizes the cost function

given the contraints:

β(sx, sy, sz, Nc) = wnv

Nc∑

i=0

(six + siy + siz) + wncNc

0 ≤ φ ≤ 1,

where wnv , wnc represent the weighting factors for the normal

vectors and number of clusters respectively. The addition of

Nc in the cost function is essential otherwise the optimization

would generate a large number of clusters with very small

uncertainties.

An analytical evaluation of the cost function shows that

it exhibits a staircase property. The cost function can remain

constant for a certain range of orientation threshold values,

however a change in number of clusters can cause a huge

increase/decrease in the cost function. These sudden changes

attribute to staircase property or step behaviour in the cost

function. This property of the cost function makes all gradient

based optimization algorithms not applicable for our case.

Thus, in order to find an optimal configuration for each cluster,

we implement a ”controlled random search” algorithm [22]

over the search space of the orientation threshold φ. The

optimization is done for all uncertain clusters and since the

search space is not high dimensional, the algorithm converges

to an optimal configuration with respect to the ground truth.

The pseudocode of the controlled random search opti-

mization is given in Fig 2. The input parameters to this

function are the initial value of the orientation threshold

and the maximum number of iterations ζ required for the

optimization. The outputs of the algorithm are the optimal

(minimum) uncertainities of the normal vectors and number

of clusters based on the trade off between these two elements.

A large increase in the number of clusters can cause the

overall uncertainty to reduce however may not represent the

optimal configuration and vice versa. The algorithm begins by

generating n samples, φs = {φ1, φ2, . . . , φn} from the search

space based on constraints and evaluating the cost function at

each of these samples (line 1-2). The algorithm finds the value

φmax with the maximum cost βmax (lines 4) and then tries

to replace this maximum value by generating a new sample

using ’m’ random samples from the set φs (line 5-6). The

new sample φnew (line 8) is calculated by using the centroid

of φ1:m−1 (line 7) and sample φm. If the cost function value
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(a) Actual Environment (b) Without Optimization (c) Without Optimization

Fig. 3. Results on the actual dataset.(a) Actual Environment (b) Without Optimization, (c) Without Optimization

(a) With Optimization (b) With Optimization

Fig. 4. Results on the actual dataset.(a) Clusters after Optimization , (b) Clusters after Optimization

TABLE II
AVERAGE UNCERTAINITIES OF NORMAL VECTORS FOR REAL DATA

sx sy sz

Without Optimization 0.32 0.36 0.18
With Optimization 0.22 0.25 0.13

at the new sample φnew is less then φmax (line 10-11), then

values are swapped, otherwise the iterations continue until the

variance in the sample set falls below a certain threshold or

the maximum number of iterations are reached.

VI. EXPERIMENTS

In this section, an experimental evaluation of the proposed

optimization technique on a synthetic as well as a real dataset

is presented. The synthetic dataset consists of 3 planes forming

a table-like structure. In case the clustering algorithm fails due

to incorrect clustering threshold (leading to higher cluster un-

certainities) the optimization approach can improve the quality

of those clusters. Similarly we also evaluate the optimization

approach on a real dataset and present results.

A. Results on synthetic data

The synthetic dataset is presented in Figure 1. During the

generation of the 3D point clouds for these planes, white noise

has been added to the points in order to simulate the uncertaint

data collection of real devices. In order to demonstrate the

applicability of our approach, we initialize the clustering

procedure with a very high orientation distance threshold (0.97

rad). In Figure 1(a), it is shown that the clustering algorithm

merged two planes into one. However after applying the

controlled random search optimization approach, the optimal

orientation distance threhold for this specific cluster is found

(0.7 rad) leading to the correct representation of the actual

environment. These results on sythetic data set has shown

that it is possible to improve cluster quality based on the

normal vector uncertainty for each cluster. Table I shows the

average uncertainties in the normal vectors with and without

optimization. It can be seen that the optimization approach

clearly minimizes the average uncertainties of the normal

vectors.

B. Results on real dataset

An evaluation of this optimization approach is also pre-

sented in an actual scenario, in which a robot is present in an

indoor environment. The experimental environment consists

of several objects (e.g. walls, doors, tables and chairs). The

scans are collected through a kinect device mounted on the

robot. The actual environment is depicted in Figure 3(a). The

results without optimization are shown in Figure 3(b) and

Figure 3(c). It can be seen that in flat regions such as the wall,

ceiling and floor the planes are estimated with high certainty.

However, at cluttered regions that contain small objects such
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as the monitor and table etc, the clustering algorithm does

not perform well. Due to high uncertainty in the planes, small

surfaces are merged together (such as the pink cluster which

is tilted at a certain angle) that do not correspond to the real

environment.

The evaluation of the same scenario with the controlled ran-

dom search optimization approach is presented in Figure 4(a)

and Figure 4(b). It can be seen that the optimization approach

splits up regions with higher uncertainty. For example, the pink
cluster is split up into multiple planes (such as the yellow and

the black cluster) orthogonal to each other representing the

actual scenario in a more accurate manner.

Table II shows the average uncertainities of normal vectors

corresponding to all the clusters. It can be seen that the

uncertainities are higher when the optimization approach is

not used and this increase can be attributed to clusters which

have been merged incorrectly as shown in Figure 3(b). In

retrorespect to this case the average uncertainities of all clusters

are lower since all incorrectly merged clusters have been split

up as shown in Figure 3(c).

VII. CONCLUSIONS AND OUTLOOK

In this paper, we present a new approach for optimization

of point cloud segmentation. Our approach propagates the

uncertainty on the spatial attributes of the points in the point

clouds to the normal vectors of the 3D cells. An optimization

approach is used to improve the quality of clusters based on the

normal vector uncertainty. The extraction of the surfaces and

their uncertainties is a process that does not require intensive

calculations. It is based on the update of the statistics of the 3D

cells and the min-max approach and can be executed online.

On the other hand, the cluster improvement technique is a slow

iterative process that can be applied once a complete map of the

environment is present to ensure that all clusters are optimized

with respect to the uncertainty criterion.

One possible future research direction could be to improve

the computation time for the optimization algorithm. Further

improvements are needed in order to generate planes with

better quality in an online fashion with real time constrains.

Additionally, a more complex optimization over different

thresholds such as the depth parameter and the cell size used

by the clustering algorithm will be considered and is expected

to further improve the resulting map.
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