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ABSTRACT 
We present a nonlinear partial differential equation (PDE) 

that models the generation of a large class of advanced mor- 
phological filters, the levelings and the openings/closings 
by reconstruction. These types of filters are very useful in 
numerous image analysis and vision tasks ranging from en- 
hancement, feature detection, image simplification, to seg- 
mentation. The developed PDE models these nonlinear fil- 
ters as the limit of a controlled growth starting from an initial 
seed signal. This growth is of the multiscale dilation or ero- 
sion type and the controlling mechanism is a switch that 
reverses the growth when the difference between the current 
evolution and a reference signal switches signs. We discuss 
theoretical aspects of this PDE, propose a discrete algorithm 
for its numerical solution and corresponding filter implemen- 
tation, and provide insights via several experiments. Finally, 
we outline its use for improving the Gaussian scale-space by 
using the latter as initial seed to generate multiscale level- 
ings that have a superior preservation of image edges and 
boundaries. 

1. INTRODUCTION 

In computer vision there have been proposed continuous 
models for scale-space image analysis based on partial dif- 
ferential equations (PDEs). Motivations for using PDEs in- 
clude better and more intuitive mathematical modeling, con- 
nections with physics, better isotropy, better approximation 
to the Euclidean geometry of the problem, and subpixel ac- 
curacy. While many such continuous approaches have been 
linear (the most notable example being the isotropic heat dif- 
fusion PDE for modeling the Gaussian scale-space), many 
among the most useful ones are nonlinear. Areas where there 
is a need to develop nonlinear approaches include the class 
of problems related to scale-space analysis and multiscale 
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image smoothing. In contrast to the shifting and blurring 
of image edges caused by linear smoothers, there is a large 
variety of nonlinear smoothers that either suffer less from or 
completely avoid these shortcomings. Simple examples are 
the classic morphological openings and closings (cascades 
of erosions and dilations) as well as the median filters. The 
openings suppress signals peaks, the closings eliminate val- 
leys, whereas the medians have a more symmetric behavior. 
All three filter types preserve well vertical image edges but 
may shift and blur horizontal edges. A much more powerful 
class of filters are the reconstruction openings and closings 
which, starting from a reference signal f consisting of sev- 
eral parts and a marker (initial seed) g inside some of these 
parts, can reconstruct whole objects with exact preservation 
of their boundaries and edges. In this reconstruction process 
they simplify the original image by completely eliminating 
smaller objects inside which the marker cannot fit. The re- 
construction filters enlarge the flat zones of the image [6].  
One of their disadvantages i s  that they treat asymmetrically 
the image foreground and background. A recent solution 
to this asymmetry problem came from the development of a 
more general powerful class of morphological filters, the lev- 
elings [3], which include as special cases the reconstruction 
openings and closings. They are transformations A(f, g) 
that depend on two signals, the reference f and the marker 
9. Reconstruction filters and levelings have found numer- 
ous applications in a large variety of problems involving 
image enhancement and simplification, geometric feature 
detection, and segmentation. They also possess many useful 
algebraic and scale-space properties, as discussed in [4]. 

In this paper we develop a PDE that can model and gen- 
erate levelings. This PDE works by growing a marker signal 
g in a way that the growth extent is controlled by a refer- 
ence signal f and its type (expansion or shrinking growth) 
is switched by the sign of the difference between f and the 
current evolution. This growth is modeled by PDEs that can 
generate multiscale dilations or erosions. Therefore, we start 
first with a brief background section on dilation PDEs. After- 
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wards, we introduce a PDE for levelings of 2D images, pro- 
pose a discrete numerical algorithm for its implementation, 
and provide insights via experiments. Finally, we outline the 
use of these PDEs for improving the Gaussian scale-space 
by using the latter as initial seed to generate multiscale lev- 
elings that have a superior preservation of image edges and 
boundaries. 

2. DILATION AND EROSION PDES 

Inspired by the use in the computer vision community of the 
classic heat PDE to model the linear Gaussian scale-space, 
in 1992 three teams of researchers [ 1],[2],[7]) independently 
published nonlinear PDEs that model the nonlinear scale- 
space of elementary morphological operators; each team fo- 
cused on different aspects of the problem. 

by scaled versions of a flat structuring element, which is 
a unit-scale compact convex and symmetric, planar set B, 
are represented by the space-scale functions 6(z, y, t) and 

Multiscale flat dilations and erosions of a 2D signal f (2, y ) 

E(., y, t ) ,  t > 0: 

where tB  = {(ta, tb )  : (a, b) E B}. If B is the unit disk, 
then the PDEs generating the corresponding multiscale cir- 
cular dilation and erosion of f are: 

6t = llV611 = &,)2 + , Et = -)lVSll 

with initial values 6(z, y, 0) = ~ ( z ,  y) 0) = f(z, y). 

3. PDE FOR LEVELINGS 

Consider a 2D signal f(z, y) and a marker signal g(z, y) 
from which a leveling A(!, 9) will be produced. 

If g 5 f everywhere and we start iteratively growing g 
via incremental flat dilations with a disk of an infinitesimally 
small radius At but without ever growing the result above 
the graph o f f ,  then in the limit we shall have produced the 
opening by reconstruction of f  (with respect to the marker 
g), which is a special leveling. The infinitesimal generator 
of this signal evolution can be modeled via a dilation PDE 
that has a mechanism to stop the growth whenever the in- 
termediate result attempts to create a function larger than f. 
Specifically, let ti(., y) t) represent the evolutions o f f  with 
initial value tio(z, y) = ti(z, y, 0) = g(z, y). Then, ti is a 
weak solution of the following initial-value PDE system 

where sign(r) is equal to +1 if T > 0, -1 if r < 0 and 0 
if r = 0. Since g 5 f, the above initial-value PDE system 
models a conditional dilution that grows the intermediate 
result as long as it does not exceed f. In the limit we obtain 
thefinalresultti,(z, y) = Emt+., u(z, y, t ) .  Themapping 
uo H U, is the opening by reconstruction filter. 

If in the above paradigm we reverse the order between 
f and g, i.e., assume that g 2 f ,  and replace the posi- 
tive growth (dilation) of g with negative growth via erosion 
that stops when the intermediate result attempts to become 
smaller than f ,  then we obtain the closing by reconstruction 
off with respect to the marker g. This is another special case 
of a leveling, whose generation can also be modeled by the 
same PDE (1) but with a marker that exceeds f. This dynam- 
ical system models a conditional erosion that keeps reducing 
the intermediate result as long as it does not decrease below 

What happens if we use any of the above PDE when there 
is no specific order between f and g? In such a case the PDE 
(1) has avarying coefficient sign(f-ti) with spatio-temporal 
dependence which controls the instantaneous growth and 
stops it whenever f = ti. (Of course, there is no growth 
also at stationary points where Vu = 0.) The control mech- 
anism is of a switching type: For each t, at pixels (z,y) 
where u(z, y, t) < f(z, y) it acts as a dilation PDE and 
hence shifts outwards the surface of u(z, y, t) but does not 
move the extrema points. Wherever ti(%, y, t )  > f(z, y) the 
PDE acts as an erosion PDE and reverses the direction of 
propagation. The final result ti,(z, y) = limt+.oo ti(., y, t) 
is a general leveling of f with respect to g. We call (1) a 
switched dilution PDE. The switching action of this PDE 
model occurs at zero crossings of f - U where shocks are 
developed. Obviously, the PDEs generating the opening and 
closing by reconstruction are special cases where g 5 f and 
g 2 f ,  respectively. However, the PDEs generating the 
reconstruction filters do not involve switching of growth. 

The switching between a dilation- or erosion-type PDE 
also occurs in a class of nonlinear time-dependent PDEs 
which was proposed in [5] to deblur images andlor enhance 
their contrast by generating shocks and hence sharpening 
edges. For 2D images a special case of such a PDE is 

f. 

tit = -IIVti1]sign(V2u) (2) 

A major conceptual difference between the above edge sharp- 
ening PDE and our PDE generating levelings is that in the 
former the switching is determined by the edges, i.e., the in- 
flection points of ti itself whereas in the latter the switching 
is controlled by comparing ti against the external reference 
signal f .  

To produce a shock-capturing and entropy-satisfying nu- 
merical method for solving the general leveling PDE (1), we 
use ideas from the technology of solving PDEs correspond- 
ing to hyperbolic conservation laws and Hamilton-Jacobi 
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Fig. 1. Evolutions of the 2D leveling PDE on the reference image (a) using 3 markers. Columns show evolutions from the 
same marker. First row shows markers (t = 0), second row shows evolutions at t = lOAt, and on third row the final levelings 
(after convergence). In column (b,c,d), the marker (b) was obtained from a 2D convolution of f with a Gaussian of (T = 4. 
In column (e,f,g), the marker (e) was an opening by a square of 9 x 9 pixels and hence the corresponding leveling (g) is a 
reconstruction opening. In column (h,i,j), the marker (h) was a closing by a square of 9 x 9 pixels and hence the corresponding 
leveling (j) is a reconstruction closing. ( A s  = Ay = 1, A t  = 0.25.) 

formulations. Thus, we propose the following discretization 
sheme, which is an adaptation of a scheme proposed in [5] 
for solving (2). 

Let U<j be the approximation of u(x, y, t) on a grid 
(iAz, j a y ,  nAt). Consider the spatial forward and back- 
ward differences (as functions of U, i, j ,  n): 

We have not proved theoretically that the above iterated 
scheme converges when n -+ 00, but through many experi- 
ments we have observed that it converges in a finite number 
of steps. Three examples of the action of the above 2D aI- 
gorithm are shown in Fig. 1. 

Then we approximate the leveling PDE (1) by the following 
nonlinear difference equation: 

U"?' = U?. - At[. . . 
z J w 

(S&)+J(D_,+)Z + (D+z-)2 + (D_,+)2 + (D+J2 

+(s&)-&l+z+)2 + (D+-)Z + (0+ ,+ )2  + (D-J2 ] 
(3) 

where S& = sign(f(iAx,jAy) - and we denote 
(r)+ = max(r,O), (r)- = min(r,O) for any real T .  For 
stability, (At/Ax f At/Ay) 5 0.5 is required. Further, at 
each iteration we enforce the sign consistency 

(4) sign(U" - f) = sign(g - f )  

4. FROM GAUSSIAN SCALE-SPACE TO 
MULTISCALE LEVELINGS 

Consider a reference signal f and a leveling A. If we can 
produce various markers gi, i = 1,2,3, ..., that are related to 
some increasing scale parameter i and produce the levelings 
off with respect to these markers, then we can generate mul- 
tiscale levelings in some approximate sense. This scenario 
will be endowed with an important property if we slightly 
change it to the following hierarchy: 

The above sequence of steps insures that e j  is a leveling of 
ti for j > i. 
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Original Marker 1 Marker 2 Marker 3 

Original Leveling 1 Leveling 2 Leveling 3 

Fig. 2. Multiscale image levelings. The markers were obtained by convolving reference image with 2D Gaussians of standard 
deviations 0 = 3,5,7. (The levelings were produced by running the leveling PDE with Ax = Ay = 1, At = 0.25.) 

The sequence of markers gi may be obtained from f in 
any meaningful way. A particularly interesting choice we 
have considered is the case where the gi are multiscale con- 
volutions off  with Gaussians of increasing standard devia- 
tions oi. Examples of constructing multiscale levelings from 
Gaussian convolution markers according to (5) are shown in 
Fig. 2 for an image f .  The sequence of the multiscale mark- 
ers can be viewed as a scale-sampled Gaussian scale-space. 
As shown in the experiments, the image edges and bound- 
aries which have been blurred and shifted by the Gaussian 
scale-space are better preserved across scales by the multi- 
scale levelings that use the Gaussian convolutions as mark- 
ers. Thus, several computer vision applications that employ 
the Gaussian scale-space may benefit by using the Gaussian 
scale-space as a first phase and the above multiscale level- 
ing scheme as a second phase that sharpens the Gaussian 
convolutions towards the original image. 
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